Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Structural and Impedance Analysis of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 Ceramic

Author(s): Jayanta Kumar Mishra, Khusboo Agrawal and Banarji Behera*

Volume 14, Issue 3, 2022

Published on: 07 December, 2021

Page: [250 - 255] Pages: 6

DOI: 10.2174/1876402913666210929125515

Price: $65

Abstract

Background: Since (1-x)[Pb(Mg1/3Nb2/3)O3]-(x)PbTiO3 (PMN-PT) ceramic has a high dielectric constant and piezoelectric coefficient, it has been widely investigated for profound applications in electro-optical devices, sensors, multilayer capacitors and actuators.

Objectives: The objective of this paper is to study the structural and electrical properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) ceramic to understand the biphasic structural nature using Rietveld Refinement. Also, it characterises the type of conduction process as well as the role of grain and grain boundary resistance in the material on the basis of electrical properties such as impedance and modulus to understand the relaxation process.

Methods: 0.7PMN-0.3PT is synthesised by mixed oxide method using PbO, MgO, Nb2O5 and TiO2 as precursor materials.

Results: The XRD data reveals the biphasic structure of the tetragonal phase with the space group of P4mm and the monoclinic phase with the space group of Pm. The complex impedance analysis clearly represents the effect of grain on the overall resistance and departs from normal Debye-type behaviour. Also, the resistance is found to decrease with temperature, thereby confirming the semiconducting nature of the sample. The presence of long as well as short-range mobility of charge carriers is confirmed from the modulus and impedance analysis. The influence of long-range motion is observed at high temperatures and of short-range motion at low temperatures.

Conclusion: XRD analysis confirmed the biphasic structure of the M+T phase. The frequencydependent modulus and impedance spectroscopy show the presence of a relaxation effect in the ceramic which is found to increase with temperature. The Nyquist plot shows that the resistance is decreased with temperature, thereby confirming the NTCR behaviour in the studied sample.

Keywords: PMN-PT, XRD, biphasic, complex impedance, modulus, rietveld.

Graphical Abstract

[1]
Wang, F.; Wang, H.; Yang, Q.; Zhang, Z.; Yan, K. Fine-grained relaxor ferroelectric PMN-PT ceramics prepared using hot-press sintering method. Cer. Inter, 2021, 47, 15005-15009.
[http://dx.doi.org/10.1016/j.ceramint.2021.02.055]
[2]
Tian, F.; Liu, Y.; Ma, R.; Li, F.; Xu, Z.; Yang, Y. Properties of PMN-PT single crystal piezoelectric material and its application in underwater acoustic transducer. Appl. Acoust., 2021, 175, 107829-8.
[http://dx.doi.org/10.1016/j.apacoust.2020.107827]
[3]
Viehland, D.; Ewart, L.; Powers, J.; Li, J.F. Stress dependence of the electromechanical properties of 001-oriented Pb(Mg1/3Nb2/3)O3 – PbTiO3 crystals: Performance advantages and limitations. J. Appl. Phys., 2001, 90, 2479-2483.
[http://dx.doi.org/10.1063/1.1389480]
[4]
Park, S.E.; Shrout, T.R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 1997, 82, 1804-1811.
[http://dx.doi.org/10.1063/1.365983]
[5]
Pramanik, R.; Sahukar, M.K.; Mohan, Y.; Praveen Kumar, B.; Sangawar, S.R.; Arockiarajan, A. Effect of grain size on piezoelectric, ferroelectric and dielectric properties of PMN-PT ceramics. Cer. Inter., 2019, 45, 5731-5742.
[http://dx.doi.org/10.1016/j.ceramint.2018.12.039]
[6]
Bokov, A.A.; Ye, Z-G. Double freezing of dielectric response in relaxor Pb(Mg1/3Nb2/3)O3 crystals. Phys. Rev. B Condens. Matter Mater. Phys., 2006, 74, 132102-132104.
[http://dx.doi.org/10.1103/PhysRevB.74.132102]
[7]
Ye, Z-G.; Dong, M. Morphotropic domain structures and phase transitions in relaxor-based piezo / ferroelectric (1−x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals. J. Appl. Phys., 2000, 87, 2312-2319.
[http://dx.doi.org/10.1063/1.372180]
[8]
Noblanc, O. Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary. J. Appl. Phys., 1996, 79, 4291-4297.
[http://dx.doi.org/10.1063/1.361865]
[9]
Noheda, B.; Cox, D.E.; Shirane, G.; Gao, J.; Ye, Z-G. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B Condens. Matter Mater. Phys., 2002, 66, 054104-054110.
[http://dx.doi.org/10.1103/PhysRevB.66.054104]
[10]
Noheda, B. Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci., 2002, 6, 27-34.
[http://dx.doi.org/10.1016/S1359-0286(02)00015-3]
[11]
Xu, G.; Viehland, D.; Li, J.F.; Gehring, P.M.; Shirane, G. Evidence of decoupled lattice distortion and ferroelectric polarization in the relaxor system PMN-xPT. Phys. Rev. B Condens. Matter Mater. Phys., 2003, 68, 212410-212414.
[http://dx.doi.org/10.1103/PhysRevB.68.212410]
[12]
Bai, F.; Wang, N.; Li, J.; Viehland, D. X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)-0.3PbTiO3 crystal. J. Appl. Phys., 2004, 96, 1620-1627.
[http://dx.doi.org/10.1063/1.1766087]
[13]
Cross, L.E. Relaxor ferroelectrics. Ferroelectrics, 1987, 76, 241-267.
[http://dx.doi.org/10.1080/00150198708016945]
[14]
Viehland, D.; Li, J.F.; Jang, S.J.; Cross, L.E.; Wuttig, M. Glassy polarization behavior of relaxor ferroelectrics. Phys. Rev. B Condens. Matter, 1992, 46(13), 8013-8017.
[http://dx.doi.org/10.1103/PhysRevB.46.8013] [PMID: 10002556]
[15]
Lu, X.; Fan, J.; Zhang, H.; Wu, H.; Li, H.; Cao, W. Phase stability and Landau phenomenological model of relaxor ferroelectric single crystals 0.78Pb(Mg1/3Nb2/3)O3-0.22PbTiO3. Cer. Inter., 2021, 47, 9842-9848.
[http://dx.doi.org/10.1016/j.ceramint.2020.12.125]
[16]
Singh, A.K.; Pandey, D. Evidence for MB and MC phases in the morphotropic phase boundary region of (1−x)[ Pb(Mg1/3Nb2/3)O3]−xPbTiO3: A Rietveld study. Phys. Rev. B Condens. Matter Mater. Phys., 2003, 67, 064102-064112.
[http://dx.doi.org/10.1103/PhysRevB.67.064102]
[17]
McCusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Lou¨er, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Cryst., 1999, 32, 36-50.
[http://dx.doi.org/10.1107/S0021889898009856]
[18]
Sen, S.; Choudhary, R.N.P. Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys., 2004, 87, 256-263.
[http://dx.doi.org/10.1016/j.matchemphys.2004.03.005]
[19]
Brahma, S.; Choudhary, R.N.P.; Thakur, A.K. AC impedance analysis of LaLiMo2O8 electroceramics. Physica B, 2005, 355, 188-201.
[http://dx.doi.org/10.1016/j.physb.2004.10.091]
[20]
Macdonald, J.R. Impedance Spectroscopy Emphasizing Solid Materials and Systems; Wiley & Sons: New York, 1987.
[21]
Suchanicz, J. The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng. B, 1998, 55, 114-118.
[http://dx.doi.org/10.1016/S0921-5107(98)00188-3]
[22]
Suman, C.K.; Prasad, K.; Choudhary, R.N.P. Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mats. Sc., 2006, 41, 369-375.
[http://dx.doi.org/10.1007/s10853-005-2620-5]
[23]
Provenzano, V.; Boesch, L.P.; Volterra, V.; Moynihan, C.T.; Macedo, P.B. Electrical relaxation in Na2O3SiO2 glass. J. Am. Ceram. Soc., 1972, 55, 492-496.
[http://dx.doi.org/10.1111/j.1151-2916.1972.tb13413.x]
[24]
Jain, H.; Hsieh, C.H. Window’ effect in the analysis of frequency dependence of ionic conductivity. J. Non-Cryst. Sols, 1994, 172, 1408-1412.
[http://dx.doi.org/10.16/0022-30939490669-6]
[25]
Hodge, I.M.; Ingram, M.D.; West, A.R. A new method for analysing the a.c. behaviour of polycrystal- line solid electrolytes. J. Electroanal. Chem. Interfacial Electrochem., 1975, 58, 429-432.
[http://dx.doi.org/10.1016/S0022-0728(75)80102-1]
[26]
Badapanda, T.; Sarangi, S.; Behera, B.; Anwar, S. Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical route. Curt. App. Phys., 2014, 14, 1192-1200.
[http://dx.doi.org/10.1016/j.cap.2014.06.007]
[27]
Saparjya, S.; Behera, S.; Behera, B.; Das, P.R. Structural and electrical properties of a new lead free tungsten bronze ferroelectric ceramics Na2Ba2Eu2W2Ti4Nb4O30. J. Mater. Sci. Mater. Electron., 2017, 28, 3843-3850.
[http://dx.doi.org/10.1007/s10854-016-5995-y]
[28]
Behera, B.; Nayak, P.; Choudhary, R.N.P. Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull., 2008, 43, 401-410.
[http://dx.doi.org/10.1016/j.materresbull.2007.02.042]
[29]
Sahu, T.; Behera, B. Dielectric and electrical study along with the evidences of small polaron tunnelling in Gd doped bismuth ferrite lead titanate composites. J. Mats. Sci.: Mats. Elects., 2018, 29, 7412-7424.
[http://dx.doi.org/10.1007/s10854-018-8732-x]
[30]
Jonscher, A.K. The ‘universal’ dielectric response. Nature, 1977, 267, 673-679.
[http://dx.doi.org/10.1038/267673a0]
[31]
Yeum, B. ZSimpWin Version 2.00; E Chem Software, 2001.
[32]
Pokhriyal, P.; Bhakar, A. Colossal dielectric permittivity and mechanism of AC conduction in bulk delafossite CuFeO2. J. Appl. Phys., 2019, 25, 164101-164110.
[http://dx.doi.org/10.1063/1.5064483]
[33]
Das, P.S.; Chakraborty, P.K.; Behera, B.; Choudhary, R.N.P. Electrical properties of Li2BiV5O15 ceramics. Physica B, 2007, 395, 98-103.
[http://dx.doi.org/10.1016/j.physb.2007.02.065]
[34]
Sahu, T. Behera, Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites. J. Phys. Chem. Solids, 2018, 113, 186-193.
[http://dx.doi.org/10.1016/j.jpcs.2017.10.021]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy