Abstract
Background: This article numerically examines the effect of buoyancy and Marangoni convection in a porous enclosure formed by two concentric cylinders filled with Ag-MgO water hybrid nanofluid. The inner wall of the cavity is maintained at a hot temperature, and the outer vertical wall is considered to be cold. The adiabatic condition is assumed for the other two boundaries. The effect of the magnetic field is considered in radial and axial directions. The Brinkman-extended Darcy model has been adopted in the governing equations.
Methods: The finite difference scheme is employed to work out the governing Navier-Stokes equations. The numerically simulated outputs are deliberated in terms of isotherms, streamlines, velocityand average Nusselt number profiles for numerous governing parameters.
Results: Except for a greater magnitude of axial magnetic field, our results suggest that the rate of thermal transport accelerates as the nanoparticle volume fraction grows. Also, it is observed that there is an escalation in the profile of average Nusselt numberwith an enhancement in Marangoni number.
Conclusion: Furthermore, the suppression of heat and fluid flow in the tall annulus is mainly due to the radial magnetic field whereas in the shallow annulus, the axial magnetic field profoundly affects the flow field and thermal transfer.
Keywords: Marangoni convection, hybrid nanofluid, finite difference method, porous annular cavity, crystal, magnet.
Graphical Abstract
[http://dx.doi.org/10.1080/10407788608913487]
[http://dx.doi.org/10.1080/10407788808913603]
[http://dx.doi.org/10.1016/0017-9310(81)90218-0]
[http://dx.doi.org/10.1017/S002211200300541X]
[http://dx.doi.org/10.1016/0017-9310(89)90163-4]
[http://dx.doi.org/10.1007/BF01340696]
[http://dx.doi.org/10.1016/0020-7462(95)00026-K]
[http://dx.doi.org/10.1063/1.1383789]
[http://dx.doi.org/10.1016/j.ijthermalsci.2004.11.005]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.035]
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.12.001]
[http://dx.doi.org/10.1007/978-3-319-49562-0]
[http://dx.doi.org/10.1016/0017-9310(82)90155-7]
[http://dx.doi.org/10.1016/0017-9310(85)90196-6]
[http://dx.doi.org/10.1017/S0022112085000040]
[http://dx.doi.org/10.1007/BF01176815]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.010]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.09.038]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.043]
[http://dx.doi.org/10.1016/S0017-9310(03)00156-X]
[http://dx.doi.org/10.1016/j.apm.2013.11.033]
[http://dx.doi.org/10.1007/s10973-020-09348-w]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104676]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.03.169]
[http://dx.doi.org/10.1007/s10973-019-08651-5]
[http://dx.doi.org/10.1080/00319104.2016.1253087]
[http://dx.doi.org/10.1007/s10973-019-08017-x]
[http://dx.doi.org/10.1038/s41598-020-66102-w] [PMID: 32514160]
[http://dx.doi.org/10.1016/j.apt.2013.01.012]
[http://dx.doi.org/10.1002/aic.690120129]
[http://dx.doi.org/10.1002/fld.1650030305]