Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Combined Marangoni and Buoyancy Convection in a Porous Annular Cavity Filled with Ag-MgO/Water Hybrid Nanofluid

Author(s): B. Kanimozhi, M. Muthtamilselvan, Qasem M. Al-Mdallal* and Bahaaeldin Abdalla

Volume 19, Issue 1, 2023

Published on: 12 January, 2022

Page: [4 - 14] Pages: 11

DOI: 10.2174/1573413717666210921153441

Price: $65

Abstract

Background: This article numerically examines the effect of buoyancy and Marangoni convection in a porous enclosure formed by two concentric cylinders filled with Ag-MgO water hybrid nanofluid. The inner wall of the cavity is maintained at a hot temperature, and the outer vertical wall is considered to be cold. The adiabatic condition is assumed for the other two boundaries. The effect of the magnetic field is considered in radial and axial directions. The Brinkman-extended Darcy model has been adopted in the governing equations.

Methods: The finite difference scheme is employed to work out the governing Navier-Stokes equations. The numerically simulated outputs are deliberated in terms of isotherms, streamlines, velocityand average Nusselt number profiles for numerous governing parameters.

Results: Except for a greater magnitude of axial magnetic field, our results suggest that the rate of thermal transport accelerates as the nanoparticle volume fraction grows. Also, it is observed that there is an escalation in the profile of average Nusselt numberwith an enhancement in Marangoni number.

Conclusion: Furthermore, the suppression of heat and fluid flow in the tall annulus is mainly due to the radial magnetic field whereas in the shallow annulus, the axial magnetic field profoundly affects the flow field and thermal transfer.

Keywords: Marangoni convection, hybrid nanofluid, finite difference method, porous annular cavity, crystal, magnet.

Graphical Abstract

[1]
Bergman, T.L.; Ramadhyani, S. Combined buoyancy- and thermocapillary-driven convection in open square cavities. Numer. Heat Transf., 1986, 9(4), 441-451.
[http://dx.doi.org/10.1080/10407788608913487]
[2]
Bergman, T.L.; Keller, J.R. Combined buoyancy, surface tension flow in liquid metals. Numer. Heat Transf., 1988, 13(1), 49-63.
[http://dx.doi.org/10.1080/10407788808913603]
[3]
Vrentas, J.S.; Narayanan, R.; Agrawal, S.S. Free surface convection in a bounded cylindrical geometry. Int. J. Heat Mass Transf., 1981, 24(9), 1513-1529.
[http://dx.doi.org/10.1016/0017-9310(81)90218-0]
[4]
Schwabe, D.; Zebib, A.; Sim, B.C. Oscillatory thermocapillary convection in open cylindrical annuli. part 1. Experiments under microgravity. J. Fluid Mech., 2003, 491(491), 239-258.
[http://dx.doi.org/10.1017/S002211200300541X]
[5]
Ozoe, H.; Okada, K. The effect of the direction of the external magnetic field onthe three-dimensional natural convection in a cubical enclosure. Int. J. Heat Mass Transf., 1989, 32(10), 1939-1954.
[http://dx.doi.org/10.1016/0017-9310(89)90163-4]
[6]
Venkatachalappa, M.; Subbaraya, C.K. Natural convection in a rectangular enclosure in the presence of a magnetic field with uniform heat flux from the side walls. Acta Mech., 1993, 96(1-4), 13-26.
[http://dx.doi.org/10.1007/BF01340696]
[7]
Rudraiah, N.; Venkatachalappa, M.; Subbaraya, C.K. Combined surface tension and buoyancy-driven convection in a rectangular open cavity in the presence of a magnetic field. Int. J. Non-linear Mech., 1995, 30(5), 759-770.
[http://dx.doi.org/10.1016/0020-7462(95)00026-K]
[8]
Gelfgat, A.Y.; Bar-Yoseph, P.Z. The effect of an external magnetic field on oscillatory instability of convective flows in rectangular cavity. Phys. Fluids, 2001, 13(8), 2269-2278.
[http://dx.doi.org/10.1063/1.1383789]
[9]
Hossain, M.A.; Hafiz, M.Z.; Rees, D.A.S. Buoyancy and thermocapillary driven convection flow of an electrically conducting fluid in an enclosure with heat generation. Int. J. Therm. Sci., 2005, 44(7), 676-684.
[http://dx.doi.org/10.1016/j.ijthermalsci.2004.11.005]
[10]
Kakarantzas, S.C.; Sarris, I.E.; Grecos, A.P.; Vlachos, N.S. Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature. Int. J. Heat Mass Transf., 2009, 52(1–2), 250-259.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.035]
[11]
Sankar, M.; Venkatachalappa, M.; Do, Y. Effect of magnetic field on the buoyancy and thermocapillary driven convection of an electrically conducting fluid in an annular enclosure. Int. J. Heat Fluid Flow, 2011, 32(2), 402-412.
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.12.001]
[12]
Nield, D.A.; Bejan, A. Convection in Porous Media; Springer International Publishing: Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-49562-0]
[13]
Havstad, M.A.; Burns, P.J. Convective heat transfer in vertical cylindrical annuli filled with a porous medium. Int. J. Heat Mass Transf., 1982, 25(11), 1755-1766.
[http://dx.doi.org/10.1016/0017-9310(82)90155-7]
[14]
Hickox, C.E.; Gartling, D.K. A numerical study of natural convection in a vertical, annular, porous layer. Int. J. Heat Mass Transf., 1985, 28(3), 720-723.
[http://dx.doi.org/10.1016/0017-9310(85)90196-6]
[15]
Prasad, V.; Kulacki, F.A.; Keyhani, M. Natural convection in porous media. J. Fluid Mech., 1985, 150, 89-119.
[http://dx.doi.org/10.1017/S0022112085000040]
[16]
Marpu, D.R. Forchheimer and brinkman extended darcy flow modelon natural convection in a vertical cylindrical porous annulus. Acta Mech., 1995, 109(1–4), 41-48.
[http://dx.doi.org/10.1007/BF01176815]
[17]
Sathiyamoorthy, M.; Basak, T.; Roy, S.; Pop, I. Steady natural convection flow in a square cavity filled with a porous medium for linearly heated side wall(S). Int. J. Heat Mass Transf., 2007, 50(9–10), 1892-1901.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.010]
[18]
Shivakumara, I.S.; Nanjundappa, C.E.; Chavaraddi, K.B. Darcy-benard-marangoniconvection in porous media. Int. J. Heat Mass Transf., 2009, 52(11-12), 2815-2823.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.09.038]
[19]
Sankar, M.; Park, Y.; Lopez, J.M.; Do, Y. Numerical study of natural convection in a vertical porous annulus with discrete heating. Int. J. Heat Mass Transf., 2011, 54(7–8), 1493-1505.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.043]
[20]
Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizingnanofluids. Int. J. Heat Mass Transf., 2003, 46(19), 3639-3653.
[http://dx.doi.org/10.1016/S0017-9310(03)00156-X]
[21]
Muthtamilselvan, M.; Doh, D.H. Mixed convection of heat generating nanofluid in a lid-driven cavity with uniform and non-uniform heating of bottom wall. Appl. Math. Model., 2014, 38(13), 3164-3174.
[http://dx.doi.org/10.1016/j.apm.2013.11.033]
[22]
Zhuang, Y.J.; Zhu, Q.Y. Numerical study on combined buoyancy- marangoni convection heat and mass transfer of power-law nanofluids in a cubic cavity filled with a heterogeneous porous medium. Int. J. Heat Fluid Flow, 2017, 2018(71), 39-54.
[23]
Selimefendigil, F.; Öztop, H.F. Impact of a rotating coneon forced convection of Ag-MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects. J. Therm. Anal. Calorim., 2021, 143(2), 1485-1501.
[http://dx.doi.org/10.1007/s10973-020-09348-w]
[24]
HemmatEsfe. M.; Abbasian Arani, A. A.; Rezaie, M.; Yan, W. M.; Karimipour, A Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf., 2015, 66, 189-195.
[25]
Du, R.; Gokulavani, P.; Muthtamilselvan, M.; Al-Amri, F.; Abdalla, B. Influence of the lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu - Al2O3 - H2O hybrid nanofluid. Int. Commun. Heat Mass Transf., 2020, 116, 104676.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104676]
[26]
Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z. MHD convectiveheat transfer of Ag-MgO/water hybrid nanofluid in a channelwith active heaters and coolers. Int. J. Heat Mass Transf., 2019, 137, 714-726.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.03.169]
[27]
Tayebi, T.; Chamkha, A.J. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J. Therm. Anal. Calorim., 2020, 139(3), 2165-2179.
[http://dx.doi.org/10.1007/s10973-019-08651-5]
[28]
Muthtamilselvan, M.; Sureshkumar, S. Convective heat transfer in a nanofluid-saturated porous cavity with the effects of various aspect ratios and thermal radiation. Phys. Chem. Liquids, 2017, 55(5), 617-636.
[http://dx.doi.org/10.1080/00319104.2016.1253087]
[29]
Benzema, M.; Benkahla, Y.K.; Labsi, N.; Ouyahia, S-E.; El Ganaoui, M. Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag-MgO/water hybrid nanofluid. J. Therm. Anal. Calorim., 2019, 137(3), 1113-1132.
[http://dx.doi.org/10.1007/s10973-019-08017-x]
[30]
Tlili, I.; Nabwey, H.A.; Samrat, S.P.; Sandeep, N. 3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect. Sci. Rep., 2020, 10(1), 9181.
[http://dx.doi.org/10.1038/s41598-020-66102-w] [PMID: 32514160]
[31]
Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S. Effectof a magnetic field on natural convection in aninclinedhalf-annulus enclosure filled with Cu-water nanofluid using CVFEM. Adv. Powder Technol., 2013, 24(6), 980-991.
[http://dx.doi.org/10.1016/j.apt.2013.01.012]
[32]
Wilkes, J.O.; Churchill, S.W. The finite-difference computation of natural convection in a rectangular enclosure. AIChE J., 1966, 12(1), 161-166.
[http://dx.doi.org/10.1002/aic.690120129]
[33]
DeVahl Davis, G. Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids, 1983, 3(3), 249-264.
[http://dx.doi.org/10.1002/fld.1650030305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy