Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Polymer-based Nanotherapeutics for Burn Wounds

Author(s): Rewati Raman Ujjwal, Awesh Yadav*, Shourya Tripathi and S.T.V. Sai Krishna

Volume 23, Issue 12, 2022

Published on: 07 January, 2022

Page: [1460 - 1482] Pages: 23

DOI: 10.2174/1389201022666210927103755

Price: $65

Abstract

Burn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.

Keywords: Burn wounds, wound healing, topical dressings, nanotherapeutics, natural polymers, synthetic polymers.

Graphical Abstract

[1]
Peck, M.; Molnar, J.; Swart, D. A global plan for burn prevention and care. Bull. World Health Organ., 2009, 87(10), 802-803.
[http://dx.doi.org/10.2471/BLT.08.059733] [PMID: 19876549]
[2]
Kallinen, O.; Koljonen, V.; Tukiainen, E.; Randell, T.; Kirves, H. Prehospital care of burn patients and trajectories on survival. Prehosp. Emerg. Care, 2016, 20(1), 97-105.
[PMID: 26270935] [http://dx.doi.org/10.3109/10903127.2015.1056895]
[3]
Douglas, H.E.; Dunne, J.A.; Rawlins, J.M. Management of Burns; Surgery: United Kingdom, 2017, pp. 511-518.
[http://dx.doi.org/10.1016/j.mpsur.2017.06.007]
[4]
Sanchez, D.A.; Schairer, D.; Tuckman-Vernon, C.; Chouake, J.; Kutner, A.; Makdisi, J.; Friedman, J.M.; Nosanchuk, J.D.; Friedman, A.J.; Amphotericin, B. Releasing Nanoparticle Topical Treatment of Candida Spp. in the Setting of a Burn Wound. Nanomedicine Nanotechno. Biol. Med. (Aligarh), 2014, 10(1), 269-277.
[http://dx.doi.org/10.1016/j.nano.2013.06.002] [PMID: 23770066]
[5]
Tiwari, V.K. Burn wound: How it differs from other wounds? Indian J. Plast. Surg., 2012, 45(2), 364-373.
[http://dx.doi.org/10.4103/0970-0358.101319] [PMID: 23162236]
[6]
Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: review and advancements. Crit. Care, 2015, 19, 243.
[http://dx.doi.org/10.1186/s13054-015-0961-2] [PMID: 26067660]
[7]
Adamian, A.A.; Dobysh, S.V.; Kilimchuk, L.E.; Shandurenko, I.N.; Chekmareva, I.A. Development of new biologically active dressings and methodology of their use]. Khirurgiia (Mosk.), 2004, (12), 10-14.
[PMID: 15699950]
[8]
Livshits, V.S. Polymer Dressings for Wounds and Burns.(Review) Pharm. Chem. J., 1988, 515-522. [Review].
[http://dx.doi.org/10.1007/BF00763518]
[9]
Cornelius, V.J.; Majcen, N.; Snowden, M.J.; Mitchell, J.C.; Voncina, B. Preparation of SMART wound dressings based on colloidal microgels and textile fibres. In: Smart Materials IV;, 2006.
[http://dx.doi.org/10.1117/12.712573]
[10]
Zilberman, M.; Elsner, J.J. Antibiotic-eluting medical devices for various applications. J. Control. Release, 2008, 130(3), 202-215.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.020] [PMID: 18687500]
[11]
Mogoşanu, G.D.; Popescu, F.C.; Busuioc, C.J.; Pârvănescu, H.; Lascăr, I. Development of new biologically active dressings and methodology of their use] Rom. J. Morphol. Embryol., 2012, 53(2), 249-262.
[PMID: 22732793]
[12]
Moura, L.I.F.; Dias, A.M.A.; Carvalho, E.; de Sousa, H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomater., 2013, 9(7), 7093-7114.
[http://dx.doi.org/10.1016/j.actbio.2013.03.033] [PMID: 23542233]
[13]
Shukla, R.; Kakade, S.; Handa, M.; Kohli, K. Emergence of nanophytomedicine in health care setting. Nanophytomedicine; Springer Singapore: Singapore, 2020, pp. 33-53.
[http://dx.doi.org/10.1007/978-981-15-4909-0_3]
[14]
Atiyeh, B.S.; Hayek, S.N.; Gunn, S.W. New technologies for burn wound closure and healing--review of the literature. Burns, 2005, 31(8), 944-956.
[http://dx.doi.org/10.1016/j.burns.2005.08.023] [PMID: 16274932]
[15]
Singh, M.R.; Saraf, S.; Vyas, A.; Jain, V.; Singh, D. Innovative approaches in wound healing: trajectory and advances. Artif. Cells Nanomed. Biotechnol., 2013, 41(3), 202-212.
[http://dx.doi.org/10.3109/21691401.2012.716065] [PMID: 23316788]
[16]
Shukla, R.; Handa, M.; Pardhi, V.P. Introduction to Pharmaceutical Product Development.Pharmaceutical Drug Product Development and Process Optimization; Apple Academic Press, 2020, pp. 1-32.
[http://dx.doi.org/10.1201/9780367821678-1]
[17]
Sefton, M. V.; Woodhouse, K. A. Tissue Engineering. J. Cutane. Medic. Sur., 1998, (Suppl 1), S1-18-23.
[18]
Debone, H.S.; Lopes, P.S.; Severino, P.; Yoshida, C.M.P.; Souto, E.B.; da Silva, C.F. chitosan/copaiba oleoresin films for would dressing application. Int. J. Pharm., 2019, 555, 146-152.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.054] [PMID: 30468843]
[19]
aladini, F.; Pollini, M. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel), 2019, 12(16), 2540.
[http://dx.doi.org/10.3390/ma12162540]
[20]
Hissae Yassue-Cordeiro, P.; Zandonai, C.H.; Pereira Genesi, B.; Santos Lopes, P.; Sanchez-Lopez, E.; Garcia, M.L.; Camargo Fernandes-Machado, N.R.; Severino, P.; Souto, B. E.; Ferreira da Silva, C. Development of chitosan/silver sulfadiazine/zeolite composite films for wound dressing. Pharmaceutics, 2019, 11(10), E535.
[http://dx.doi.org/10.3390/pharmaceutics11100535] [PMID: 31615120]
[21]
Mofazzal Jahromi, M.A.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Sahandi Zangabad, K.; Ghamarypour, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 2018, 123, 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[22]
Hoffmann, D.C.; Willenborg, S.; Koch, M.; Zwolanek, D.; Müller, S.; Becker, A.K.A.; Metzger, S.; Ehrbar, M.; Kurschat, P.; Hellmich, M.; Hubbell, J.A.; Eming, S.A. Proteolytic processing regulates placental growth factor activities. J. Biol. Chem., 2013, 288(25), 17976-17989.
[http://dx.doi.org/10.1074/jbc.M113.451831] [PMID: 23645683]
[23]
Chereddy, K.K.; Lopes, A.; Koussoroplis, S.; Payen, V.; Moia, C.; Zhu, H.; Sonveaux, P.; Carmeliet, P.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine, 2015, 11(8), 1975-1984.
[http://dx.doi.org/10.1016/j.nano.2015.07.006] [PMID: 26238081]
[24]
Dunn, K.; Edwards-Jones, V. The role of Acticoat with nanocrystalline silver in the management of burns. Burns, 2004, 30(Suppl. 1), S1-S9.
[http://dx.doi.org/10.1016/S0305-4179(04)90000-9] [PMID: 15327800]
[25]
Huang, Y.; Li, X.; Liao, Z.; Zhang, G.; Liu, Q.; Tang, J.; Peng, Y.; Liu, X.; Luo, Q. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns, 2007, 33(2), 161-166.
[http://dx.doi.org/10.1016/j.burns.2006.06.020] [PMID: 17175106]
[26]
Chung, H.J.; Park, T.G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv. Drug Deliv. Rev., 2007, 59(4-5), 249-262.
[http://dx.doi.org/10.1016/j.addr.2007.03.015] [PMID: 17482310]
[27]
Ma, P.X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev., 2008, 60(2), 184-198.
[http://dx.doi.org/10.1016/j.addr.2007.08.041] [PMID: 18045729]
[28]
Garg, T.; Singh, O.; Arora, S.; Murthy, R. Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2012, 29(1), 1-63.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10] [PMID: 22356721]
[29]
Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev., 2006, 19(2), 403-434.
[PMID: 16614255] [http://dx.doi.org/10.1128/CMR.19.2.403-434.2006]
[30]
American Burn Association, Burn Incidence and Treatment in the United States: 2016, Burn Incid. Fact Sheet. 2016. Available from: http://www.ameriburn.org/resources_factsheet.php
[31]
Burns Available from: https://www.who.int/news-room/fact-sheets/detail/burns (accessed Feb 22, 2021)
[32]
Marquart-Elbaz, C.; Lipsker, D.; Sick, H.; Grosshans, E.; Cribier, B. Does subcutaneous cellular tissue exist? Ann. Dermatol. Venereol., 2001, 128(11), 1201-1205.
[PMID: 11908163]
[33]
Fuchs, E. Skin stem cells: rising to the surface. J. Cell Biol., 2008, 180(2), 273-284.
[http://dx.doi.org/10.1083/jcb.200708185] [PMID: 18209104]
[34]
Merad, M.; Ginhoux, F.; Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol., 2008, 8(12), 935-947.
[http://dx.doi.org/10.1038/nri2455] [PMID: 19029989]
[35]
Nestle, F.O.; Di Meglio, P.; Qin, J.Z.; Nickoloff, B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol., 2009, 9(10), 679-691.
[http://dx.doi.org/10.1038/nri2622] [PMID: 19763149]
[36]
Blanpain, C.; Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol., 2006, 22, 339-373.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104357] [PMID: 16824012]
[37]
Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature, 2008, 453(7193), 314-321.
[http://dx.doi.org/10.1038/nature07039] [PMID: 18480812]
[38]
Bellas, E.; Seiberg, M.; Garlick, J.; Kaplan, D.L. In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol. Biosci., 2012, 12(12), 1627-1636.
[http://dx.doi.org/10.1002/mabi.201200262] [PMID: 23161763]
[39]
Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229. http://journals.sagepub.com/doi/10.1177/0022034509359125
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[40]
Novelli, S.; García-Muret, P.; Mozos, A.; Sierra, J.; Briones, J. Total body-surface area as a new prognostic variable in mycosis fungoides and Sézary syndrome. Leuk. Lymphoma, 2016, 57(5), 1060-1066.
[http://dx.doi.org/10.3109/10428194.2015.1057894] [PMID: 27096891]
[41]
Mahdavian Delavary, B.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J. Macrophages in skin injury and repair. Immunobiology, 2011, 216(7), 753-762.
[http://dx.doi.org/10.1016/j.imbio.2011.01.001] [PMID: 21281986]
[42]
Halloran, C.M.; Slavin, J.P. Pathophysiology of wound healing. Surg., 2002, 20(5), i-v.
[http://dx.doi.org/10.1383/surg.20.5.0.14629]
[43]
Das, S.; Baker, A.B. Biomaterials and Nanotherapeutics for enhancing skin wound healing. Front. Bioeng. Biotechnol., 2016, 4, 82.
[http://dx.doi.org/10.3389/fbioe.2016.00082] [PMID: 27843895]
[44]
Shukla, R.; Mishra, P.; Ujjwal, R.R.; Kesharwani, P. Electrospun nanofibers for wound healing. Theory and Applications of Nonparenteral Nanomedicines;, 2021.
[http://dx.doi.org/10.1016/B978-0-12-820466-5.00013-2]
[45]
Vogt, P.M.; Lehnhardt, M.; Wagner, D.; Jansen, V.; Krieg, M.; Steinau, H.U. Determination of endogenous growth factors in human wound fluid: temporal presence and profiles of secretion. Plast. Reconstr. Surg., 1998, 102(1), 117-123.
[http://dx.doi.org/10.1097/00006534-199807000-00018] [PMID: 9655416]
[46]
Vashi, N.A.; Maibach, H.I., Eds.; Dermatoanthropology of Ethnic Skin and Hair; Springer International Publishing: Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-53961-4]
[47]
Saarialho-Kere, U.K.; Kovacs, S.O.; Pentland, A.P.; Olerud, J.E.; Welgus, H.G.; Parks, W.C. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing. J. Clin. Invest., 1993, 92(6), 2858-2866.
[http://dx.doi.org/10.1172/JCI116906] [PMID: 8254040]
[48]
Lauer, G.; Sollberg, S.; Cole, M.; Flamme, I.; Stürzebecher, J.; Mann, K.; Krieg, T.; Eming, S.A. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J. Invest. Dermatol., 2000, 115(1), 12-18.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00036.x] [PMID: 10886501]
[49]
Gill, S.E.; Parks, W.C. Metalloproteinases and their inhibitors: regulators of wound healing. Int. J. Biochem. Cell Biol., 2008, 40(6-7), 1334-1347.
[http://dx.doi.org/10.1016/j.biocel.2007.10.024] [PMID: 18083622]
[50]
Strbo, N.; Yin, N.; Stojadinovic, O. Innate and Adaptive Immune Responses in Wound Epithelialization. Adv. Wound Care (New Rochelle), 2014, 3(7), 492-501.
[http://dx.doi.org/10.1089/wound.2012.0435] [PMID: 25032069]
[51]
Li, J.; Chen, J.; Kirsner, R. Pathophysiology of acute wound healing. Clin. Dermatol., 2007, 25(1), 9-18.
[http://dx.doi.org/10.1016/j.clindermatol.2006.09.007] [PMID: 17276196]
[52]
Broughton, G.I.I.; Janis, J.E.; Attinger, C.E. The basic science of wound healing. Plast. Reconstr. Surg., 2006, 117(7)(Suppl.), 12S-34S.
[http://dx.doi.org/10.1097/01.prs.0000225430.42531.c2] [PMID: 16799372]
[53]
Young, A.; McNaught, C.E. The Physiology of wound healing. Surgery, 2011, 475-479.
[http://dx.doi.org/10.1016/j.mpsur.2011.06.011]
[54]
Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care (New Rochelle), 2014, 3(7), 445-464.
[http://dx.doi.org/10.1089/wound.2013.0473] [PMID: 25032064]
[55]
Tonnesen, M.G.; Feng, X.; Clark, R.A.F. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc., 2000, 5(1), 40-46.
[http://dx.doi.org/10.1046/j.1087-0024.2000.00014.x] [PMID: 11147674]
[56]
Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol., 2007, 127(3), 526-537.
[http://dx.doi.org/10.1038/sj.jid.5700613] [PMID: 17299435]
[57]
Malekzad, H.; Mirshekari, H.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Baniasadi, F.; Sharifi Aghdam, M.; Karimi, M.; Hamblin, M.R. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit. Rev. Biotechnol., 2018, 38(1), 47-67.
[http://dx.doi.org/10.1080/07388551.2017.1312267] [PMID: 28434263]
[58]
Yah, C.S.; Simate, G.S. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru, 2015, 23, 43.
[http://dx.doi.org/10.1186/s40199-015-0125-6] [PMID: 26329777]
[59]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.X.; Mitter, N.; Yu, C.; Middelberg, A.P.J. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[60]
Shukla, R.; Thok, K.; Kakade, S.; Handa, M.; Beg, S. Clinical Translation Status of Nanoformulations.Nanoformulation Strategies for Cancer Treatment; Elsevier, 2021, pp. 303-338.
[http://dx.doi.org/10.1016/B978-0-12-821095-6.00012-4]
[61]
Feng, Z.G.; Pang, S.F.; Guo, D.J.; Yang, Y.T.; Liu, B.; Wang, J.W.; Zheng, K.Q.; Lin, Y. Recombinant keratinocyte growth factor 1 in tobacco potentially promotes wound healing in diabetic rats. BioMed Res. Int., 2014, 2014, 579632.
[http://dx.doi.org/10.1155/2014/579632] [PMID: 24783215]
[62]
Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: scope and advancement. Nanomedicine (Lond.), 2015, 10(16), 2593-2612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]
[63]
Chereddy, K.K.; Vandermeulen, G.; Préat, V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen., 2016, 24(2), 223-236.
[http://dx.doi.org/10.1111/wrr.12404] [PMID: 26749322]
[64]
Zhang, Y.; Wischke, C.; Mittal, S.; Mitra, A.; Schwendeman, S.P. design of controlled release PLGA microspheres for hydrophobic fenretinide. Mol. Pharm., 2016, 13(8), 2622-2630.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00961] [PMID: 27144450]
[65]
Mofazzal Jahromi, M.A.; Karimi, M.; Azadmanesh, K.; Naderi Manesh, H.; Hassan, Z.M.; Moazzeni, S.M. The effect of chitosan-tripolyphosphate nanoparticles on maturation and function of dendritic cells. Comp. Clin. Pathol., 2014, 23(5), 1421-1427.
[http://dx.doi.org/10.1007/s00580-013-1799-0]
[66]
Bonferoni, M.C.; Sandri, G.; Dellera, E.; Rossi, S.; Ferrari, F.; Mori, M.; Caramella, C. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. Eur. J. Pharm. Biopharm., 2014, 87(1), 101-106.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.018] [PMID: 24384070]
[67]
Hu, W.; Chen, S.; Yang, J.; Li, Z.; Wang, H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym., 2014, 101, 1043-1060.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.102] [PMID: 24299873]
[68]
Kalomiraki, M.; Thermos, K.; Chaniotakis, N.A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomedicine, 2015, 11, 1-12.
[http://dx.doi.org/10.2147/IJN.S93069] [PMID: 26730187]
[69]
Liu, X.; Hao, W.; Lok, C.N.; Wang, Y.C.; Zhang, R.; Wong, K.K.Y. Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. J. Pediatr. Surg., 2014, 49(12), 1846-1851.
[http://dx.doi.org/10.1016/j.jpedsurg.2014.09.033] [PMID: 25487498]
[70]
Goh, M.; Hwang, Y.; Tae, G. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing. Carbohydr. Polym., 2016, 147, 251-260.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.072] [PMID: 27178931]
[71]
van de Kamp, J.; Paefgen, V.; Wöltje, M.; Böbel, M.; Jaekel, J.; Rath, B.; Labude, N.; Knüchel, R.; Jahnen-Dechent, W.; Neuss, S. Mesenchymal stem cells can be recruited to wounded tissue via hepatocyte growth factor-loaded biomaterials. J. Tissue Eng. Regen. Med., 2017, 11(11), 2988-2998.
[http://dx.doi.org/10.1002/term.2201] [PMID: 27641068]
[72]
Sett, S.; Lee, M.W.; Weith, M.; Pourdeyhimi, B.; Yarin, A.L. Biodegradable and biocompatible soy protein/polymer/adhesive sticky nano-textured interfacial membranes for prevention of esca fungi invasion into pruning cuts and wounds of vines. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(10), 2147-2162.
[http://dx.doi.org/10.1039/C4TB01887G] [PMID: 32262383]
[73]
Ahire, J.J.; Dicks, L.M.T. 2,3-dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa . Antimicrob. Agents Chemother., 2014, 58(4), 2098-2104.
[http://dx.doi.org/10.1128/AAC.02397-13] [PMID: 24449781]
[74]
Ahire, J.J.; Hattingh, M.; Neveling, D.P.; Dicks, L.M.T. Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS One, 2016, 11(3), e0152755.
[http://dx.doi.org/10.1371/journal.pone.0152755] [PMID: 27028292]
[75]
Liu, Y.; Sun, Q.; Wang, S.; Long, R.; Fan, J.; Chen, A.; Wu, W. Studies of silk fibroin/poly(lactic-Co-Glycolic Acid) scaffold, prepared by thermally induced phase deparation, as a possible wound dressing. Sci. Adv. Mater., 2016, 8(5), 1045-1052.
[http://dx.doi.org/10.1166/sam.2016.2693]
[76]
Tan, L.; Hu, J.; Huang, H.; Han, J.; Hu, H. Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int. J. Biol. Macromol., 2015, 79, 469-476.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.014] [PMID: 26003301]
[77]
Dongargaonkar, A.A.; Bowlin, G.L.; Yang, H. Electrospun blends of gelatin and gelatin-dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromolecules, 2013, 14(11), 4038-4045.
[http://dx.doi.org/10.1021/bm401143p] [PMID: 24127747]
[78]
Chung, E.; Rybalko, V.Y.; Hsieh, P.L.; Leal, S.L.; Samano, M.A.; Willauer, A.N.; Stowers, R.S.; Natesan, S.; Zamora, D.O.; Christy, R.J.; Suggs, L.J. Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen., 2016, 24(5), 810-819.
[http://dx.doi.org/10.1111/wrr.12459] [PMID: 27348084]
[79]
Kim, J.O.; Noh, J.K.; Thapa, R.K.; Hasan, N.; Choi, M.; Kim, J.H.; Lee, J.H.; Ku, S.K.; Yoo, J.W. Nitric oxide-releasing chitosan film for enhanced antibacterial and in vivo wound-healing efficacy. Int. J. Biol. Macromol., 2015, 79, 217-225.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.073] [PMID: 25957720]
[80]
Huang, S.; Fu, X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J. Control. Release, 2010, 142(2), 149-159.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.018] [PMID: 19850093]
[81]
Das, N.; Bera, T.; Mukherjee, A. Biomaterial hydrogels for different biomedical applications Int. J. Pharma Bio Sci., 2012, 3(3)
[82]
Haji-Saeid, M.; Safrany, A.; Sampa, M.H. de O.; Ramamoorthy, N. Radiation processing of natural polymers: The IAEA contribution. Radiat. Phys. Chem., 2010, 79(3), 255-260.
[http://dx.doi.org/10.1016/j.radphyschem.2009.11.001]
[83]
Kennedy, J.F.; Knill, C.J.; Thorley, M. Natural polymers for healing wounds. In: Recent Advances in Environmentally Compatible Polymers; ,, 2001.
[http://dx.doi.org/10.1533/9781845693749.2.97]
[84]
Lloyd, L.L.; Kennedy, J.F.; Methacanon, P.; Paterson, M.; Knill, C.J. carbohydrate polymers as wound management aids. Carbohydr. Polym., 1998, 37(3), 315-322.
[http://dx.doi.org/10.1016/S0144-8617(98)00077-0]
[85]
Lee, K.Y.; Jeong, L.; Kang, Y.O.; Lee, S.J.; Park, W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev., 2009, 61(12), 1020-1032.
[http://dx.doi.org/10.1016/j.addr.2009.07.006] [PMID: 19643155]
[86]
Medusheva, E.O.; Filatov, V.N.; Ryl’tsev, V.V.; Kazakova, N.A.; Filatov, N.V.; Kulagina, A.S.; Avagyan, A.A. New medical materials with an integral lasting effect based on fibre-forming polymers. Fibre Chem., 2007, 39(4), 268-271.
[http://dx.doi.org/10.1007/s10692-007-0059-y]
[87]
Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M., Jr The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8(1), 1-12.
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[88]
Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym., 2013, 92(2), 1432-1442.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.071] [PMID: 23399174]
[89]
Muangman, P.; Opasanon, S.; Suwanchot, S.; Thangthed, O. Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J. Am. Col. Certif. Wound Spec., 2011, 3(1), 16-19.
[http://dx.doi.org/10.1016/j.jcws.2011.04.001] [PMID: 24527162]
[90]
Klemm, D.; Schumann, D.; Kramer, F.; Heßler, N.; Hornung, M.; Schmauder, H.P.; Marsch, S. Nanocelluloses as innovative polymers in research and application. Adv. Polym. Sci., 2006, 49-96.
[http://dx.doi.org/10.1007/12_097]
[91]
Rambo, C.R.; Recouvreux, D.O.S.; Carminatti, C.A.; Pitlovanciv, A.K.; Antônio, R.V.; Porto, L.M. Template Assisted Synthesis of Porous Nanofibrous Cellulose Membranes for Tissue Engineering. Mater. Sci. Eng. C, 2008, 28(4), 549-554.
[http://dx.doi.org/10.1016/j.msec.2007.11.011]
[92]
Kim, J.; Cai, Z.; Lee, H.S.; Choi, G.S.; Lee, D.H.; Jo, C. Preparation and Characterization of a Bacterial cellulose/Chitosan Composite for Potential Biomedical Application. J. Polym. Res., 2011, 18(4), 739-744.
[http://dx.doi.org/10.1007/s10965-010-9470-9]
[93]
Li, H.; Yang, J.; Hu, X.; Liang, J.; Fan, Y.; Zhang, X. Superabsorbent Polysaccharide Hydrogels Based on Pullulan Derivate as Antibacterial Release Wound Dressing. J. Biomed. Mater. Res. - Part A, 2011, 98 A(1), 31-39.
[http://dx.doi.org/10.1002/jbm.a.33045]
[94]
Vetvicka, V.; Vetvickova, J. β(1-3)-D-Glucan Affects Adipogenesis, Wound Healing and Inflammation. Orient. Pharm. Exp. Med., 2011, 11(3), 169-175.
[http://dx.doi.org/10.1007/s13596-011-0024-4]
[95]
Logeart-Avramoglou, D.; Jozefonvicz, J. Carboxymethyl benzylamide sulfonate dextrans (CMDBS), a family of biospecific polymers endowed with numerous biological properties: a review. J. Biomed. Mater. Res., 1999, 48(4), 578-590.
[http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:4<578:AID-JBM26>3.0.CO;2-8] [PMID: 10421704]
[96]
Unnithan, A.R.; Barakat, N.A.M.; Pichiah, P.B.; Gnanasekaran, G.; Nirmala, R.; Cha, Y.S.; Jung, C.H.; El-Newehy, M.; Kim, H.Y. Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr. Polym., 2012, 90(4), 1786-1793.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.071] [PMID: 22944448]
[97]
Shi, C.; Zhu, Y.; Ran, X.; Wang, M.; Su, Y.; Cheng, T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J. Surg. Res., 2006, 133(2), 185-192.
[http://dx.doi.org/10.1016/j.jss.2005.12.013] [PMID: 16458923]
[98]
Han, S.S. Topical Formulations of Water-Soluble Chitin as a Wound Healing Assistant. Fibers Polym., 2005, 6(3), 219-223.
[http://dx.doi.org/10.1007/BF02875645]
[99]
Sugamori, T.; Iwase, H.; Maeda, M.; Inoue, Y.; Kurosawa, H. Local hemostatic effects of microcrystalline partially deacetylated chitin hydrochloride. J. Biomed. Mater. Res., 2000, 49(2), 225-232.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200002)49:2<225:AID-JBM10>3.0.CO;2-V] [PMID: 10571909]
[100]
Madhumathi, K.; Sudheesh Kumar, P.T.; Abhilash, S.; Sreeja, V.; Tamura, H.; Manzoor, K.; Nair, S.V.; Jayakumar, R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med., 2010, 21(2), 807-813.
[http://dx.doi.org/10.1007/s10856-009-3877-z] [PMID: 19802687]
[101]
Ahmed, S.; Ikram, S. Chitosan based scaffolds and their applications in eound healing. Achiev. Life Sci., 2016, 10(1), 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[102]
Alemdaroğlu, C.; Değim, Z.; Çelebi, N.; Zor, F.; Oztürk, S.; Erdoğan, D. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns, 2006, 32(3), 319-327.
[http://dx.doi.org/10.1016/j.burns.2005.10.015] [PMID: 16527411]
[103]
Xia, G.; Liu, Y.; Tian, M.; Gao, P.; Bao, Z.; Bai, X.; Yu, X.; Lang, X.; Hu, S.; Chen, X. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(17), 3172-3185.
[http://dx.doi.org/10.1039/C7TB00479F] [PMID: 32263715]
[104]
Jang, S.I.; Mok, J.Y.; Jeon, I.H.; Park, K.H.; Nguyen, T.T.; Park, J.S.; Hwang, H.M.; Song, M.S.; Lee, D.; Chai, K.Y. Effect of electrospun non-woven mats of dibutyryl chitin/poly(lactic acid) blends on wound healing in hairless mice. Molecules, 2012, 17(3), 2992-3007.
[http://dx.doi.org/10.3390/molecules17032992] [PMID: 22406903]
[105]
Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 2008, 397-430.
[http://dx.doi.org/10.1002/pi.2378]
[106]
Aderibigbe, B.A.; Buyana, B. Alginate in wound dressings. Pharmaceutics, 2018, 10(2), 42.
[http://dx.doi.org/10.3390/pharmaceutics10020042] [PMID: 29614804]
[107]
Qin, Y. An overview of the production processes and applications Polym. Int., 2006, 2008(57), 171-180.
[108]
Tu, L.; He, Y.; Yang, H.; Wu, Z.; Yi, L. Preparation and characterization of alginate-gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. J. Biomater. Sci. Polym. Ed., 2015, 26(12), 735-749.
[http://dx.doi.org/10.1080/09205063.2015.1056075] [PMID: 26159659]
[109]
Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym., 2012, 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.012]
[110]
Sikareepaisan, P.; Ruktanonchai, U.; Supaphol, P. Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr. Polym., 2011, 83(4), 1457-1469.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.048]
[111]
Ma, L.; Yu, W.; Ma, X. Preparation and characterization of novel sodium alginate/chitosan two ply composite membranes. J. Appl. Polym. Sci., 2007, 106(1), 394-399.
[http://dx.doi.org/10.1002/app.26463]
[112]
Li, M.; Li, H.; Li, X.; Zhu, H.; Xu, Z.; Liu, L.; Ma, J.; Zhang, M. A Bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl. Mater. Interfaces, 2017, 9(27), 22160-22175.
[http://dx.doi.org/10.1021/acsami.7b04428] [PMID: 28640580]
[113]
Kong, Y.; Xu, R.; Darabi, M.A.; Zhong, W.; Luo, G.; Xing, M.M.Q.; Wu, J. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. Int. J. Nanomedicine, 2016, 11, 2543-2555.
[http://dx.doi.org/10.2147/IJN.S102861] [PMID: 27354789]
[114]
Montaser, A.S.; Abdel-Mohsen, A.M.; Ramadan, M.A.; Sleem, A.A.; Sahffie, N.M.; Jancar, J.; Hebeish, A. Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int. J. Biol. Macromol., 2016, 92, 739-747.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.050] [PMID: 27431797]
[115]
Bao, L.; Yang, W.; Mao, X.; Mou, S.; Tang, S. Agar/collagen membrane as skin dressing for wounds. In: Biomedical Materials, 2008, 3
[http://dx.doi.org/10.1088/1748-6041/3/4/044108]
[116]
Bao, X.; Hayashi, K.; Li, Y.; Teramoto, A.; Abe, K. Novel agarose and agar fibers: fabrication and characterization. Mater. Lett., 2010, 64(22), 2435-2437.
[http://dx.doi.org/10.1016/j.matlet.2010.08.008]
[117]
Chee, B.S.; Nugent, M. Electrospun natural polysaccharide for biomedical application. In: Natural Polysaccharides in Drug Delivery and Biomedical Applications;, 2019, 589-615.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00026-1]
[118]
Şen, M.; Avci, E.N. Radiation synthesis of poly(N-vinyl-2-pyrrolidone)-κ-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J. Biomed. Mater. Res. A, 2005, 74(2), 187-196.
[http://dx.doi.org/10.1002/jbm.a.30308] [PMID: 15962270]
[119]
Munarin, F.; Tanzi, M.C.; Petrini, P. Advances in biomedical applications of pectin gels. Int. J. Biol. Macromol., 2012, 51(4), 681-689.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.002] [PMID: 22776748]
[120]
Valle, K.Z.M.; Saucedo Acuña, R.A.; Ríos Arana, J.V.; Lobo, N.; Rodriguez, C.; Cuevas-Gonzalez, J.C.; Tovar-Carrillo, K.L. Natural film based on pectin and allantoin for wound healing: obtaining, characterization, and rat model. BioMed Res. Int., 2020, 2020, 6897497.
[http://dx.doi.org/10.1155/2020/6897497] [PMID: 33123582]
[121]
Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.L.; Alam, M.S.; Gupta, B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int. J. Biol. Macromol., 2016, 82, 104-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087] [PMID: 26529192]
[122]
Andriotis, E.G.; Eleftheriadis, G.K.; Karavasili, C.; Fatouros, D.G. Development of bio-active patches based on pectin for the treatment of ulcers and wounds using 3D-bioprinting technology. Pharmaceutics, 2020, 12(1), E56.
[http://dx.doi.org/10.3390/pharmaceutics12010056] [PMID: 31936630]
[123]
Giusto, G.; Vercelli, C.; Comino, F.; Caramello, V.; Tursi, M.; Gandini, M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement. Altern. Med., 2017, 17(1), 266.
[http://dx.doi.org/10.1186/s12906-017-1769-1] [PMID: 28511700]
[124]
Salbach, J.; Rachner, T.D.; Rauner, M.; Hempel, U.; Anderegg, U.; Franz, S.; Simon, J.C.; Hofbauer, L.C. Regenerative potential of glycosaminoglycans for skin and bone. J. Mol. Med. (Berl.), 2012, 90(6), 625-635.
[http://dx.doi.org/10.1007/s00109-011-0843-2] [PMID: 22187113]
[125]
Price, R.D.; Myers, S.; Leigh, I.M.; Navsaria, H.A. The role of hyaluronic acid in wound healing: assessment of clinical evidence. Am. J. Clin. Dermatol., 2005, 6(6), 393-402.
[http://dx.doi.org/10.2165/00128071-200506060-00006] [PMID: 16343027]
[126]
Litwiniuk, M.; Krejner, A.; Speyrer, M.S.; Gauto, A.R.; Grzela, T. Development of new biologically active 30 dressings and methodology of their use] Wounds, 2016, 28(3), 78-88.
[PMID: 26978861]
[127]
Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid-Based wound dressings: A review. Carbohydr. Polym., 2020, 241, 116364.
[http://dx.doi.org/10.1016/j.carbpol.2020.116364] [PMID: 32507198]
[128]
Neuman, M.G.; Nanau, R.M.; Oruña-Sanchez, L.; Coto, G. Hyaluronic acid and wound healing. J. Pharm. Pharm. Sci., 2015, 18(1), 53-60.
[http://dx.doi.org/10.18433/J3K89D] [PMID: 25877441]
[129]
Uppal, R.; Ramaswamy, G. N.; Arnold, C.; Goodband, R.; Wang, Y. 2011.
[http://dx.doi.org/10.1002/jbm.b.31776]
[130]
Lai, H.J.; Kuan, C.H.; Wu, H.C.; Tsai, J.C.; Chen, T.M.; Hsieh, D.J.; Wang, T.W. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater., 2014, 10(10), 4156-4166.
[http://dx.doi.org/10.1016/j.actbio.2014.05.001] [PMID: 24814882]
[131]
Tarvady, S.; Anguli, V.C.; Pichappa, C.V. Effect of heparin on wound healing. J. Biosci., 1987, 12(1), 33-40.
[http://dx.doi.org/10.1007/BF02716951]
[132]
Kurpinski, K.T.; Stephenson, J.T.; Janairo, R.R.R.; Lee, H.; Li, S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials, 2010, 31(13), 3536-3542.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.062] [PMID: 20122725]
[133]
Tong, M.; Tuk, B.; Hekking, I.M.; Vermeij, M.; Barritault, D.; van Neck, J.W. Stimulated neovascularization, inflammation resolution and collagen maturation in healing rat cutaneous wounds by a heparan sulfate glycosaminoglycan mimetic, OTR4120. Wound Repair Regen., 2009, 17(6), 840-852.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00548.x] [PMID: 19903305]
[134]
Merrill, A.H.; Vu, M.N. In: Encyclopedia of Cell Biology;. 2016, 1, 180-193.
[http://dx.doi.org/10.1016/B978-0-12-394447-4.10022-7]
[135]
Gupta, S.; Raghuwanshi, N.; Varshney, R.; Banat, I.M.; Srivastava, A.K.; Pruthi, P.A.; Pruthi, V. Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute. Biomed. Pharmacother., 2017, 94, 1186-1196.
[http://dx.doi.org/10.1016/j.biopha.2017.08.010] [PMID: 28830069]
[136]
Prasad, Y.S.; Miryala, S.; Lalitha, K.; Saritha, B.; Maheswari, C.U.; Sridharan, V.; Srinandan, C.S.; Nagarajan, S. An injectable self-healing anesthetic glycolipid-based oleogel with antibiofilm and diabetic wound skin repair properties. Sci. Rep., 2020, 10(1), 18017.
[http://dx.doi.org/10.1038/s41598-020-73708-7] [PMID: 33093507]
[137]
Galili, U.; Wigglesworth, K.; Abdel-Motal, U.M. Accelerated healing of skin burns by anti-Gal/α-gal liposomes interaction. Burns, 2010, 36(2), 239-251.
[http://dx.doi.org/10.1016/j.burns.2009.04.002] [PMID: 19501971]
[138]
Weyers, A.; Linhardt, R.J. Neoproteoglycans in tissue engineering. FEBS J., 2013, 280(10), 2511-2522.
[http://dx.doi.org/10.1111/febs.12187] [PMID: 23399318]
[139]
Ramnath, V.; Sekar, S.; Sankar, S.; Sastry, T.P.; Mandal, A.B. In vivo Evaluation of composite wound dressing material containing soya protein and sago starch. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 414-419.
[140]
Silva, S.S.; Popa, E.G.; Gomes, M.E.; Cerqueira, M.; Marques, A.P.; Caridade, S.G.; Teixeira, P.; Sousa, C.; Mano, J.F.; Reis, R.L. An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine. Acta Biomater., 2013, 9(6), 6790-6797.
[http://dx.doi.org/10.1016/j.actbio.2013.02.027] [PMID: 23462554]
[141]
Murali, R.; Anumary, A.; Ashokkumar, M.; Thanikaivelan, P.; Chandrasekaran, B. Hybrid biodegradable films from collagenous wastes and natural polymers for biomedical applications. Waste Biomass Valoriz., 2011, 2(3), 323-335.
[http://dx.doi.org/10.1007/s12649-011-9072-8]
[142]
Sedlarik, K.M.; Schoots, C.; Fidler, V.; Oosterbaan, J.A.; Klopper, J.P. Vergleichende tierexperimentelle Untersuchungen über den Einfluss von exogenem Kollagen auf die Heilung einer tiefen Hautwunde. Unfallchirurgie, 1991, 17(1), 1-13.
[http://dx.doi.org/10.1007/BF02588170] [PMID: 2042253]
[143]
Ghica, M.V.; Albu, M.G.; Leca, M.; Popa, L.; Moisescu, S.T. Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections. Pharmazie, 2011, 66(11), 853-861.
[http://dx.doi.org/10.1691/ph.2011.1061] [PMID: 22204131]
[144]
Kempf, M.; Miyamura, Y.; Liu, P.Y.; Chen, A.C.H.; Nakamura, H.; Shimizu, H.; Tabata, Y.; Kimble, R.M.; McMillan, J.R. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials, 2011, 32(21), 4782-4792.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.023] [PMID: 21477857]
[145]
Chen, K.Y.; Liao, W.J.; Kuo, S.M.; Tsai, F.J.; Chen, Y.S.; Huang, C.Y.; Yao, C.H. Asymmetric chitosan membrane containing collagen I nanospheres for skin tissue engineering. Biomacromolecules, 2009, 10(6), 1642-1649.
[http://dx.doi.org/10.1021/bm900238b] [PMID: 19419166]
[146]
Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl., 2016, 31(2), 283-301.
[http://dx.doi.org/10.1177/0885328216644536] [PMID: 27095659]
[147]
Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target., 2016, 24(6), 520-529.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[148]
Gaspar-Pintiliescu, A.; Stanciuc, A.M.; Craciunescu, O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int. J. Biol. Macromol., 2019, 138, 854-865.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.155] [PMID: 31351963]
[149]
Ulubayram, K.; Aksu, E.; Gurhan, S.I.D.; Serbetci, K.; Hasirci, N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J. Biomater. Sci. Polym. Ed., 2002, 13(11), 1203-1219.
[http://dx.doi.org/10.1163/156856202320892966] [PMID: 12518800]
[150]
Bragulla, H.H.; Homberger, D.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat., 2009, 214(4), 516-559.
[http://dx.doi.org/10.1111/j.1469-7580.2009.01066.x] [PMID: 19422428]
[151]
Vasconcelos, A.; Cavaco-Paulo, A. Wound dressings for a proteolytic-rich environment. Appl. Microbiol. Biotechnol., 2011, 90(2), 445-460.
[http://dx.doi.org/10.1007/s00253-011-3135-4] [PMID: 21360151]
[152]
Keratin-based dressings for chronic wounds | DermNet NZ Available from:. https://dermnetnz.org/topics/keratin-based-dressings-for-chronic-wounds/ (accessed Feb 22, 2021).
[153]
Vasconcelos, A.; Freddi, G.; Cavaco-Paulo, A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules, 2008, 9(4), 1299-1305.
[http://dx.doi.org/10.1021/bm7012789] [PMID: 18355027]
[154]
Ki, C.S.; Park, Y.H.; Jin, H.J. Silk Protein as a Fascinating biomedical polymer: structural fundamentals and applications. Macromol. Res., 2009, 935-942.
[http://dx.doi.org/10.1007/BF03218639]
[155]
Zhang, X.; Reagan, M.R.; Kaplan, D.L. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev., 2009, 61(12), 988-1006.
[http://dx.doi.org/10.1016/j.addr.2009.07.005] [PMID: 19643154]
[156]
Kang, M.; Yoon, S.H.; Jin, H.J. Preparation of electrospun protein nanofibers with multiwalled carbon nanotubes. Key Eng. Mater., 2006, 326–328(II), 1737-1740.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.326-328.1737]
[157]
Kang, M.; Chen, P.; Jin, H.J. Preparation of multiwalled carbon nanotubes incorporated silk fibroin nanofibers by electrospinning. Curr. Appl. Phys., 2009, 9(1)(Suppl.)
[http://dx.doi.org/10.1016/j.cap.2008.08.014]
[158]
Roh, D.H.; Kang, S.Y.; Kim, J.Y.; Kwon, Y.B.; Young Kweon, H.; Lee, K.G.; Park, Y.H.; Baek, R.M.; Heo, C.Y.; Choe, J.; Lee, J.H. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J. Mater. Sci. Mater. Med., 2006, 17(6), 547-552.
[http://dx.doi.org/10.1007/s10856-006-8938-y] [PMID: 16691353]
[159]
De Moraes, M.A.; Beppu, M.M. Biocomposite Membranes of sodium alginate and silk Fibroin fibers for biomedical applications. J. Appl. Polym. Sci., 2013, 130(5), 3451-3457.
[http://dx.doi.org/10.1002/app.39598]
[160]
Liu, T.L.; Miao, J.C.; Sheng, W.H.; Xie, Y.F.; Huang, Q.; Shan, Y.B.; Yang, J.C. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. J. Zhejiang Univ. Sci. B, 2010, 11(1), 10-16.
[http://dx.doi.org/10.1631/jzus.B0900163] [PMID: 20043346]
[161]
Ju, H.W.; Lee, O.J.; Lee, J.M.; Moon, B.M.; Park, H.J.; Park, Y.R.; Lee, M.C.; Kim, S.H.; Chao, J.R.; Ki, C.S.; Park, C.H. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int. J. Biol. Macromol., 2016, 85, 29-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.055] [PMID: 26718866]
[162]
Dror, Y.; Ziv, T.; Makarov, V.; Wolf, H.; Admon, A.; Zussman, E. Nanofibers made of globular proteins. Biomacromolecules, 2008, 9(10), 2749-2754.
[http://dx.doi.org/10.1021/bm8005243] [PMID: 18803419]
[163]
Ohto-Fujita, E.; Konno, T.; Shimizu, M.; Ishihara, K.; Sugitate, T.; Miyake, J.; Yoshimura, K.; Taniwaki, K.; Sakurai, T.; Hasebe, Y.; Atomi, Y. Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts. Cell Tissue Res., 2011, 345(1), 177-190.
[http://dx.doi.org/10.1007/s00441-011-1172-z] [PMID: 21597915]
[164]
Zhou, W.; Zhao, M.; Zhao, Y.; Mou, Y. A fibrin gel loaded with chitosan nanoparticles for local delivery of rhEGF: Preparation and in vitro release studies. J. Mater. Sci. Mater. Med., 2011, 22(5), 1221-1230.
[http://dx.doi.org/10.1007/s10856-011-4304-9] [PMID: 21445654]
[165]
Szycher, M.; Lee, S.J. Modern wound dressings: a systematic approach to wound healing. J. Biomater. Appl., 1992, 7(2), 142-213.
[http://dx.doi.org/10.1177/088532829200700204] [PMID: 1447701]
[166]
Miao, J.; Pangule, R.C.; Paskaleva, E.E.; Hwang, E.E.; Kane, R.S.; Linhardt, R.J.; Dordick, J.S. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, 2011, 32(36), 9557-9567.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.080] [PMID: 21959009]
[167]
Khang, D.; Carpenter, J.; Chun, Y.W.; Pareta, R.; Webster, T.J. Nanotechnology for regenerative medicine. Biomed. Microdevices, 2010, 12(4), 575-587.
[http://dx.doi.org/10.1007/s10544-008-9264-6] [PMID: 19096767]
[168]
Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[169]
Constant, J.S.; Feng, J.J.; Zabel, D.D.; Yuan, H.; Suh, D.Y.; Scheuenstuhl, H.; Hunt, T.K.; Hussain, M.Z. Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen., 2000, 8(5), 353-360.
[http://dx.doi.org/10.1111/j.1524-475X.2000.00353.x] [PMID: 11115148]
[170]
Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21(23), 2475-2490.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[171]
Said, S.S.; Aloufy, A.K.; El-Halfawy, O.M.; Boraei, N.A.; El-Khordagui, L.K. Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria. Eur. J. Pharm. Biopharm., 2011, 79(1), 108-118.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.002] [PMID: 21396444]
[172]
Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci., 2014, 14(6), 772-792.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[173]
Chen, D.W.C.; Liao, J.Y.; Liu, S.J.; Chan, E.C. Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: An in vitro and in vivo study. Int. J. Nanomedicine, 2012, 7, 763-771.
[http://dx.doi.org/10.2147/IJN.S29119] [PMID: 22359454]
[174]
Singh, D.; Singh, M.R. Development of antibiotic and debriding enzyme-loaded PLGA microspheres entrapped in PVA-gelatin hydrogel for complete wound management. Biotechnol., 2012, 40(5), 345-353.
[http://dx.doi.org/10.3109/10731199.2012.675337] [PMID: 22540900]
[175]
Losi, P.; Briganti, E.; Errico, C.; Lisella, A.; Sanguinetti, E.; Chiellini, F.; Soldani, G. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater., 2013, 9(8), 7814-7821.
[http://dx.doi.org/10.1016/j.actbio.2013.04.019] [PMID: 23603001]
[176]
Garcia-Orue, I.; Gainza, G.; Gutierrez, F.B.; Aguirre, J.J.; Evora, C.; Pedraz, J.L.; Hernandez, R.M.; Delgado, A.; Igartua, M. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int. J. Pharm., 2017, 523(2), 556-566.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.006] [PMID: 27825864]
[177]
Chu, Y.; Yu, D.; Wang, P.; Xu, J.; Li, D.; Ding, M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen., 2010, 18(5), 499-505.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00612.x] [PMID: 20840519]
[178]
Vink, E.T.H.; Rábago, K.R.; Glassner, D.A.; Springs, B.; O’Connor, R.P.; Kolstad, J.; Gruber, P.R. The sustainability of NatureWorks polylactide polymers and Ingeo polylactide fibers: an update of the future. Macromol. Biosci., 2004, 4(6), 551-564.
[http://dx.doi.org/10.1002/mabi.200400023] [PMID: 15468247]
[179]
Sundaramurthi, D.; Krishnan, U.M.; Sethuraman, S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polym. Rev. (Phila. Pa.), 2014, 348-376.
[http://dx.doi.org/10.1080/15583724.2014.881374]
[180]
Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev., 2016, 107, 206-212.
[http://dx.doi.org/10.1016/j.addr.2016.04.019] [PMID: 27125190]
[181]
Aoki, S.; Kinoshita, M.; Miyazaki, H.; Saito, A.; Fujie, T.; Iwaya, K.; Takeoka, S.; Saitoh, D. Application of poly-L-lactic acid nanosheet as a material for wound dressing. Plast. Reconstr. Surg., 2013, 131(2), 236-240.
[http://dx.doi.org/10.1097/PRS.0b013e3182789c79] [PMID: 23357985]
[182]
Nguyen, T.T.T.; Ghosh, C.; Hwang, S.G.; Tran, L.D.; Park, J.S. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J. Mater. Sci., 2013, 48(20), 7125-7133.
[http://dx.doi.org/10.1007/s10853-013-7527-y]
[183]
Woodruff, M.A.; Hutmacher, D.W. The Return of a Forgotten Polymer - Polycaprolactone in the 21st Century; Progress in Polymer Science: Oxford, 2010, pp. 1217-1256.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002]
[184]
Zhou, X.; Wang, H.; Zhang, J.; Li, X.; Wu, Y.; Wei, Y.; Ji, S.; Kong, D.; Zhao, Q. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater., 2017, 54, 128-137.
[http://dx.doi.org/10.1016/j.actbio.2017.03.011] [PMID: 28285076]
[185]
Muwaffak, Z.; Goyanes, A.; Clark, V.; Basit, A.W.; Hilton, S.T.; Gaisford, S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int. J. Pharm., 2017, 527(1-2), 161-170.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.077] [PMID: 28461267]
[186]
Kim, B.J.; Cheong, H.; Choi, E.S.; Yun, S.H.; Choi, B.H.; Park, K.S.; Kim, I.S.; Park, D.H.; Cha, H.J. Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J. Biomed. Mater. Res. A, 2017, 105(1), 218-225.
[http://dx.doi.org/10.1002/jbm.a.35903] [PMID: 27648732]
[187]
Kanitkar, M.; Jaiswal, A.; Deshpande, R.; Bellare, J.; Kale, V.P. Enhanced growth of endothelial precursor cells on PCG-matrix facilitates accelerated, fibrosis-free, wound healing: a diabetic mouse model. PLoS One, 2013, 8(7), e69960.
[http://dx.doi.org/10.1371/journal.pone.0069960] [PMID: 23922871]
[188]
Levengood, S.L.; Erickson, A.E.; Chang, F.C.; Zhang, M. Chitosan-poly(caprolactone) nanofibers for skin repair. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(9), 1822-1833.
[http://dx.doi.org/10.1039/C6TB03223K] [PMID: 28529754]
[189]
Yordanov, G.; Skrobanska, R.; Petkova, M. Poly(butyl cyanoacrylate) nanoparticles stabilised with poloxamer 188: particle size control and cytotoxic effects in cervical carcinoma (HeLa) Cells. Chem. Pap., 2016, 70(3), 365-374.
[http://dx.doi.org/10.1515/chempap-2015-0220]
[190]
Lenaerts, V.; Couvreur, P.; Christiaens-Leyh, D.; Joiris, E.; Roland, M.; Rollman, B.; Speiser, P. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials, 1984, 5(2), 65-68.
[http://dx.doi.org/10.1016/0142-9612(84)90002-4] [PMID: 6722249]
[191]
Alyautdin, R.N.; Petrov, V.E.; Langer, K.; Berthold, A.; Kharkevich, D.A.; Kreuter, J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res., 1997, 14(3), 325-328.
[http://dx.doi.org/10.1023/A:1012098005098] [PMID: 9098875]
[192]
Reszka, R.; Beck, P.; Fichtner, I.; Hentschel, M.; Richter, J.; Kreuter, J. Body distribution of free, liposomal and nanoparticle-associated mitoxantrone in B16-melanoma-bearing mice J. Pharmacol. Exp. Ther., 1997, 280(1), 232-237.
[PMID: 8996201]
[193]
Lee, J.H.; Lee, H.B.; Andrade, J.D. Blood compatibility of polyethylene oxide surfaces. Prog. Polym. Sci., 1995, 1043-1079.
[http://dx.doi.org/10.1016/0079-6700(95)00011-4]
[194]
Alcantar, N.A.; Aydil, E.S.; Israelachvili, J.N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res., 2000, 51(3), 343-351.
[http://dx.doi.org/10.1002/1097-4636(20000905)51:3<343:AID-JBM7>3.0.CO;2-D] [PMID: 10880075]
[195]
Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci., 2016, 105(2), 460-475.
[http://dx.doi.org/10.1016/j.xphs.2015.11.015] [PMID: 26869412]
[196]
Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials, 2010, 31(17), 4639-4656.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.044] [PMID: 20303169]
[197]
Sharma, B.; Fermanian, S.; Gibson, M.; Unterman, S.; Herzka, D.A.; Cascio, B.; Coburn, J.; Hui, A.Y.; Marcus, N.; Gold, G.E.; Elisseeff, J.H. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med., 2013, 5(167), 167ra6.
[http://dx.doi.org/10.1126/scitranslmed.3004838] [PMID: 23303605]
[198]
Martens, P.J.; Bryant, S.J.; Anseth, K.S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 2003, 4(2), 283-292.
[http://dx.doi.org/10.1021/bm025666v] [PMID: 12625723]
[199]
Lin, C.C.; Anseth, K.S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res., 2009, 26(3), 631-643.
[http://dx.doi.org/10.1007/s11095-008-9801-2] [PMID: 19089601]
[200]
Razzak, M.T. Zainuddin; Erizal; Dewi, S. P.; Lely, H.; Taty, E.; Sukirno. The characterization of dressing component materials and radiation formation of PVA-PVP hydrogel. Radiat. Phys. Chem., 1999, 55(2), 153-165.
[http://dx.doi.org/10.1016/S0969-806X(98)00320-X]
[201]
Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of Poly (Vinyl Alcohol) Based Materials; Progress in polymer science: oxford, 2003, p. 963-1014.
[http://dx.doi.org/10.1016/S0079-6700(02)00149-1]
[202]
DeMerlis, C.C.; Schoneker, D.R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol., 2003, 41(3), 319-326.
[http://dx.doi.org/10.1016/S0278-6915(02)00258-2] [PMID: 12504164]
[203]
Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater., 2009, 21(32-33), 3307-3329.
[http://dx.doi.org/10.1002/adma.200802106] [PMID: 20882499]
[204]
Kamoun, E.A.; Kenawy, E.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res., 2017, 8(3), 217-233.
[http://dx.doi.org/10.1016/j.jare.2017.01.005] [PMID: 28239493]
[205]
Kamoun, E.A.; Chen, X.; Mohy Eldin, M.S.; Kenawy, E.R.S. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkablyblended polymers. Arab. J. Chem., 2015, 1-14.
[http://dx.doi.org/10.1016/j.arabjc.2014.07.005]
[206]
Wacker, M.G.; Proykova, A.; Santos, G.M.L. Dealing with nanosafety around the globe-Regulation vs . innovation. Int. J. Pharm., 2016, 509(1-2), 95-106.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.015] [PMID: 27184102]
[207]
Definition - nanomaterials - environment - european commission Available from: https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm (accessed Feb 23, 2021).
[208]
Environmental Protection Agency Federal Facilities Restoration, U.; Office, R. Technical Fact Sheet – Nanomaterials, 2017.
[209]
[211]
Guideline for the Development of Liposome Drug Products, 2016.
[212]
A.N.M.A.T. - Principal Available from: http://www.anmat.gov.ar/webanmat/institucional/que_es_la_anmat_en.asp (accessed Feb 23, 2021).
[213]
Marques, M.R.C.; Choo, Q.; Ashtikar, M.; Rocha, T.C.; Bremer-hoffmann, S.; Wacker, M.G. nanomedicines - tiny particles and big challenges. Adv. Drug Deliv. Rev., 2019, 151-152, 23-43.
[http://dx.doi.org/10.1016/j.addr.2019.06.003] [PMID: 31226397]
[214]
harami, Scientific committee on emerging and newly identified health risks SCENIHR opinion on the guidance on the determination of potential health effects of nanomaterials used in medical devices. 2015.
[http://dx.doi.org/10.2772/41391]
[215]
Nanotechnology, P.; Washington, W.; Haubenreisser, S. An agency of the european union EMA perspective on the development of nanomedicines EMA perspective on the development of nanomedicines 2 Content., 2014.
[216]
WHITEPAPER 2 A basic guide to particle characterization 2. better understanding of products, ingredients and processes, 2015.
[217]
nanomaterials relational database. (Accessed on February 20, 2021)
[218]
Nanopinion - european observatory for nanomaterials available from: https://euon.echa.europa.eu/nanopinion (accessed Feb 23, 2021).
[219]
Welcome to the European union observatory for nanomaterials - european observatory for nanomaterials available from: https://euon.echa.europa.eu/ (Accessed Feb 23, 2021).
[220]
D’Mello, S.R.; Cruz, C.N.; Chen, M.L.; Kapoor, M.; Lee, S.L.; Tyner, K.M. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol., 2017, 12(6), 523-529.
[http://dx.doi.org/10.1038/nnano.2017.67] [PMID: 28436961]
[221]
Overview of Device Regulation | FDA Available from: https://www.fda.gov/medical-devices/device-advice-comprehen-sive-regulatory-assistance/overview-device-regulation (Accessed Feb 23, 2021).
[222]
Medical Device Exemptions 510(k) and GMP Requirements (accessed Feb 23, 2021).
[223]
Zaulyanov, L.; Kirsner, R.S. A review of a bi-layered living cell treatment (Apligraf) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin. Interv. Aging, 2007, 2(1), 93-98.
[http://dx.doi.org/10.2147/ciia.2007.2.1.93] [PMID: 18044080]
[224]
Turcheniuk, V.; Raks, V.; Issa, R.; Cooper, I.R.; Cragg, P.J.; Jijie, R.; Dumitrascu, N.; Mikhalovska, L.I.; Barras, A.; Zaitsev, V.; Boukherroub, R.; Szunerits, S. Antimicrobial activity of menthol modified nanodiamond particles. Diamond Related Materials, 2015, 57, 2-8.
[http://dx.doi.org/10.1016/j.diamond.2014.12.002]
[225]
Reina, G.; Gismondi, A.; Carcione, R.; Nanni, V.; Peruzzi, C.; Angjellari, M.; Chau, N.D.Q.; Canini, A.; Terranova, M.L.; Tamburri, E. oxidized and amino-functionalized nanodiamonds as shuttle for delivery of plant secondary metabolites: interplay between chemical affinity and bioactivity. Appl. Surf. Sci., 2019, 470, 744-754.
[http://dx.doi.org/10.1016/j.apsusc.2018.11.161]
[226]
Yakovlev, R.Y.; Mingalev, P.G.; Leonidov, N.B.; Lisichkin, G.V. detonation nanodiamonds as promising drug carriers. Pharm. Chem. J., 2020, 54(4), 389-403.
[http://dx.doi.org/10.1007/s11094-020-02210-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy