Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Mini-Review Article

The Epigenetic Mechanisms Involved in Chronic Pain in Rodents: A Mini- Review

Author(s): Ting Xu, Cui-Cui Liu and Wen-Jun Xin*

Volume 20, Issue 6, 2022

Published on: 17 March, 2022

Page: [1011 - 1021] Pages: 11

DOI: 10.2174/1570159X19666210924104757

Price: $65

Abstract

Chronic pain is a common distressing neurological disorder and about 30% of the global population suffers from it. In addition to being highly prevalent, chronic pain causes a heavy economic and social burden. Although substantial progress has been achieved to dissect the underlying mechanism of chronic pain in the past few decades, the incidence and treatment of this neurological illness is yet not properly managed in clinical practice. While nerve injury-, chemotherapy- or inflammation-induced functional regulation of gene expression in the dorsal root ganglion and spinal cord are extensively reported to be involved in the pathogenic process of chronic pain, the specific mechanism of these altered transcriptional profile still remains unclear. Recent studies have shown that epigenetic mechanisms, including DNA/RNA methylation, histone modification and circular RNAs regulation, are involved in the occurrence and development of chronic pain. In this review, we provide a description of research on the role of epigenetic mechanism in chronic pain, summarize the latest clinical and preclinical advance in this field, and propose the potential directions for further research to elucidate the molecular mechanism underlying the pathogenesis of chronic pain.

Keywords: Chronic pain, DNA methylation, RNA N6-methyladenosine modification, histone acetylation, circular RNA, dorsal root ganglion, spinal cord.

Graphical Abstract

[1]
Dansie, E.J.; Turk, D.C. Assessment of patients with chronic pain. Br. J. Anaesth., 2013, 111(1), 19-25.
[http://dx.doi.org/10.1093/bja/aet124] [PMID: 23794641]
[2]
Fayaz, A.; Croft, P.; Langford, R.M.; Donaldson, L.J.; Jones, G.T. Prevalence of chronic pain in the UK: A systematic review and meta-analysis of population studies. BMJ Open, 2016, 6(6), e010364.
[http://dx.doi.org/10.1136/bmjopen-2015-010364] [PMID: 27324708]
[3]
Souza Monteiro de Araujo, D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets, 2020, 24(10), 997-1008.
[http://dx.doi.org/10.1080/14728222.2020.1815191] [PMID: 32838583]
[4]
Blyth, F.M. Global burden of neuropathic pain. Pain, 2018, 159(3), 614-617.
[http://dx.doi.org/10.1097/j.pain.0000000000001127] [PMID: 29447139]
[5]
Reddi, D.; Curran, N. Chronic pain after surgery: Pathophysiology, risk factors and prevention. Postgrad. Med. J., 2014, 90(1062), 222-227.
[http://dx.doi.org/10.1136/postgradmedj-2013-132215] [PMID: 24572639]
[6]
Hou, S.; Huh, B.; Kim, H.K.; Kim, K.H.; Abdi, S. Treatment of chemotherapy-induced peripheral neuropathy: Systematic review and recommendations. Pain Physician, 2018, 21(6), 571-592.
[PMID: 30508986]
[7]
Nees, T.A.; Rosshirt, N.; Reiner, T.; Schiltenwolf, M.; Moradi, B. [Inflammation and osteoarthritis-related pain]. Schmerz, 2019, 33(1), 4-12.
[http://dx.doi.org/10.1007/s00482-018-0346-y] [PMID: 30560495]
[8]
Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain, 2009, 10(9), 895-926.
[http://dx.doi.org/10.1016/j.jpain.2009.06.012] [PMID: 19712899]
[9]
Benyamin, R.; Trescot, A.M.; Datta, S.; Buenaventura, R.; Adlaka, R.; Sehgal, N.; Glaser, S.E.; Vallejo, R. Opioid complications and side effects. Pain Physician, 2008, 11(2)(Suppl.), S105-S120.
[http://dx.doi.org/10.36076/ppj.2008/11/S105] [PMID: 18443635]
[10]
Chou, R.; Deyo, R.; Friedly, J.; Skelly, A.; Weimer, M.; Fu, R.; Dana, T.; Kraegel, P.; Griffin, J.; Grusing, S. Systemic pharmacologic therapies for low back pain: A systematic review for an American college of physicians clinical practice guideline. Ann. Intern. Med., 2017, 166(7), 480-492.
[http://dx.doi.org/10.7326/M16-2458] [PMID: 28192790]
[11]
Campbell, J.N.; Meyer, R.A. Mechanisms of neuropathic pain. Neuron, 2006, 52(1), 77-92.
[http://dx.doi.org/10.1016/j.neuron.2006.09.021] [PMID: 17015228]
[12]
Khoutorsky, A.; Price, T.J. Translational control mechanisms in persistent pain. Trends Neurosci., 2018, 41(2), 100-114.
[http://dx.doi.org/10.1016/j.tins.2017.11.006] [PMID: 29249459]
[13]
Crow, M.; Denk, F.; McMahon, S.B. Genes and epigenetic processes as prospective pain targets. Genome Med., 2013, 5(2), 12.
[http://dx.doi.org/10.1186/gm416] [PMID: 23409739]
[14]
Denk, F.; McMahon, S.B. Chronic pain: Emerging evidence for the involvement of epigenetics. Neuron, 2012, 73(3), 435-444.
[http://dx.doi.org/10.1016/j.neuron.2012.01.012] [PMID: 22325197]
[15]
Descalzi, G.; Ikegami, D.; Ushijima, T.; Nestler, E.J.; Zachariou, V.; Narita, M. Epigenetic mechanisms of chronic pain. Trends Neurosci., 2015, 38(4), 237-246.
[http://dx.doi.org/10.1016/j.tins.2015.02.001] [PMID: 25765319]
[16]
Zhang, L.; Lu, Q.; Chang, C. Epigenetics in health and disease. Adv. Exp. Med. Biol., 2020, 1253, 3-55.
[http://dx.doi.org/10.1007/978-981-15-3449-2_1] [PMID: 32445090]
[17]
Niederberger, E. Epigenetics and pain. Anaesthesist, 2014, 63(1), 63-69.
[http://dx.doi.org/10.1007/s00101-013-2274-7] [PMID: 24337072]
[18]
Zhang, W.; Spector, T.D.; Deloukas, P.; Bell, J.T.; Engelhardt, B.E. Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements. Genome. Biol., 2015, 16(14)
[http://dx.doi.org/10.1186/s13059-015-0581-9]
[19]
Bogdanovic, O.; Lister, R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev., 2017, 46, 9-14.
[http://dx.doi.org/10.1016/j.gde.2017.06.007] [PMID: 28651214]
[20]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[21]
Lyko, F. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat. Rev. Genet., 2018, 19(2), 81-92.
[http://dx.doi.org/10.1038/nrg.2017.80] [PMID: 29033456]
[22]
Bird, A. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem. Soc. Trans., 2008, 36(Pt 4), 575-583.
[http://dx.doi.org/10.1042/BST0360575] [PMID: 18631120]
[23]
Chahrour, M.; Jung, S.Y.; Shaw, C.; Zhou, X.; Wong, S.T.; Qin, J.; Zoghbi, H.Y. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 2008, 320(5880), 1224-1229.
[http://dx.doi.org/10.1126/science.1153252] [PMID: 18511691]
[24]
Ginder, G.D. Williams, D.C.Jr., Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther., 2018, 184, 98-111.
[http://dx.doi.org/10.1016/j.pharmthera.2017.11.002] [PMID: 29128342]
[25]
Garriga, J.; Laumet, G.; Chen, S.R.; Zhang, Y.; Madzo, J.; Issa, J.J.; Pan, H.L.; Jelinek, J. Nerve injury-induced chronic pain is associated with persistent DNA methylation reprogramming in dorsal root ganglion. J. Neurosci., 2018, 38(27), 6090-6101.
[http://dx.doi.org/10.1523/JNEUROSCI.2616-17.2018] [PMID: 29875269]
[26]
Gölzenleuchter, M.; Kanwar, R.; Zaibak, M.; Al Saiegh, F.; Hartung, T.; Klukas, J.; Smalley, R.L.; Cunningham, J.M.; Figueroa, M.E.; Schroth, G.P.; Therneau, T.M.; Banck, M.S.; Beutler, A.S. Plasticity of DNA methylation in a nerve injury model of pain. Epigenetics, 2015, 10(3), 200-212.
[http://dx.doi.org/10.1080/15592294.2015.1006493] [PMID: 25621511]
[27]
Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[28]
Wang, Y.; Liu, C.; Guo, Q.L.; Yan, J.Q.; Zhu, X.Y.; Huang, C.S.; Zou, W.Y. Intrathecal 5-azacytidine inhibits global DNA methylation and methyl- CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Res., 2011, 1418, 64-69.
[http://dx.doi.org/10.1016/j.brainres.2011.08.040] [PMID: 21925646]
[29]
Pollema-Mays, S.L.; Centeno, M.V.; Apkarian, A.V.; Martina, M. Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front. Cell Neurosci., 2014, 8, 217.
[http://dx.doi.org/10.3389/fncel.2014.00217] [PMID: 25152711]
[30]
Sun, L.; Zhao, J.Y.; Gu, X.; Liang, L.; Wu, S.; Mo, K.; Feng, J.; Guo, W.; Zhang, J.; Bekker, A.; Zhao, X.; Nestler, E.J.; Tao, Y.X. Nerve injury-induced epigenetic silencing of opioid receptors controlled by DNMT3a in primary afferent neurons. Pain, 2017, 158(6), 1153-1165.
[http://dx.doi.org/10.1097/j.pain.0000000000000894] [PMID: 28267064]
[31]
Shao, C.; Gao, Y.; Jin, D.; Xu, X.; Tan, S.; Yu, H.; Zhao, Q.; Zhao, L.; Wang, W.; Wang, D. DNMT3a methylation in neuropathic pain. J. Pain Res., 2017, 10, 2253-2262.
[http://dx.doi.org/10.2147/JPR.S130654] [PMID: 29075135]
[32]
Jiang, B.C.; Zhang, W.W.; Yang, T.; Guo, C.Y.; Cao, D.L.; Zhang, Z.J.; Gao, Y.J. Demethylation of G-protein-coupled receptor 151 promoter facilitates the binding of Krüppel-like factor 5 and enhances neuropathic pain after nerve injury in mice. J. Neurosci., 2018, 38(49), 10535-10551.
[http://dx.doi.org/10.1523/JNEUROSCI.0702-18.2018] [PMID: 30373770]
[33]
Zhang, X.Z.; Luo, D.X.; Bai, X.H.; Ding, H.H.; Liu, M.; Deng, J.; Mai, J.W.; Yang, Y.L.; Zhang, S.B.; Ruan, X.C.; Zhang, X.Q.; Xin, W.J.; Xu, T. Upregulation of TRPC6 mediated by PAX6 hypomethylation is involved in the mechanical allodynia induced by chemotherapeutics in dorsal root ganglion. Int. J. Neuropsychopharmacol., 2020, 23(4), 257-267.
[http://dx.doi.org/10.1093/ijnp/pyaa014] [PMID: 32124922]
[34]
Mao, Q.; Wu, S.; Gu, X.; Du, S.; Mo, K.; Sun, L.; Cao, J.; Bekker, A.; Chen, L.; Tao, Y.X. DNMT3a-triggered downregulation of K2p 1.1 gene in primary sensory neurons contributes to paclitaxel-induced neuropathic pain. Int. J. Cancer, 2019, 145(8), 2122-2134.
[http://dx.doi.org/10.1002/ijc.32155] [PMID: 30684388]
[35]
Pastor, W.A.; Aravind, L.; Rao, A. TETonic shift: Biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol., 2013, 14(6), 341-356.
[http://dx.doi.org/10.1038/nrm3589] [PMID: 23698584]
[36]
Chamessian, A.G.; Qadri, Y.J.; Cummins, M.; Hendrickson, M.; Berta, T.; Buchheit, T.; Van de Ven, T. 5-Hydroxymethylcytosine (5hmC) and Ten-eleven translocation 1-3 (TET1-3) proteins in the dorsal root ganglia of mouse: Expression and dynamic regulation in neuropathic pain. Somatosens. Mot. Res., 2017, 34(2), 72-79.
[http://dx.doi.org/10.1080/08990220.2017.1292237] [PMID: 28276837]
[37]
Wu, Q.; Wei, G.; Ji, F.; Jia, S.; Wu, S.; Guo, X.; He, L.; Pan, Z.; Miao, X.; Mao, Q.; Yang, Y.; Cao, M.; Tao, Y.X. TET1 overexpression mitigates neuropathic pain through rescuing the expression of μ-opioid receptor and Kv1.2 in the primary sensory neurons. Neurotherapeutics, 2019, 16(2), 491-504.
[http://dx.doi.org/10.1007/s13311-018-00689-x] [PMID: 30515739]
[38]
Hsieh, M.C.; Lai, C.Y.; Ho, Y.C.; Wang, H.H.; Cheng, J.K.; Chau, Y.P.; Peng, H.Y. Tet1-dependent epigenetic modification of BDNF expression in dorsal horn neurons mediates neuropathic pain in rats. Sci Rep, 2016, 6, 37411.
[http://dx.doi.org/10.1038/srep37411]
[39]
Deng, J.; Ding, H.H.; Long, J.L.; Lin, S.Y.; Liu, M.; Zhang, X.Q.; Xin, W.J.; Ruan, X. Oxaliplatin-induced neuropathic pain involves HOXA6 via a TET1-dependent demethylation of the SOX10 promoter. Int. J. Cancer, 2020, 147(9), 2503-2514.
[http://dx.doi.org/10.1002/ijc.33106] [PMID: 32428246]
[40]
Hsieh, M.C.; Ho, Y.C.; Lai, C.Y.; Chou, D.; Wang, H.H.; Chen, G.D.; Lin, T.B.; Peng, H.Y. Melatonin impedes Tet1-dependent mGluR5 promoter demethylation to relieve pain. J. Pineal Res., 2017, 63(4), e12436.
[http://dx.doi.org/10.1111/jpi.12436] [PMID: 28718992]
[41]
Géranton, S.M.; Morenilla-Palao, C.; Hunt, S.P. A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J. Neurosci., 2007, 27(23), 6163-6173.
[http://dx.doi.org/10.1523/JNEUROSCI.1306-07.2007] [PMID: 17553988]
[42]
Manners, M.T.; Tian, Y.; Zhou, Z.; Ajit, S.K. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Bio., 2015, 5, 733-740.
[http://dx.doi.org/10.1016/j.fob.2015.08.010] [PMID: 26448907]
[43]
Zhang, R.; Huang, M.; Cao, Z.; Qi, J.; Qiu, Z.; Chiang, L.Y. MeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway. Mol. Pain, 2015, 11, 19.
[http://dx.doi.org/10.1186/s12990-015-0015-4] [PMID: 25885346]
[44]
Mo, K.; Wu, S.; Gu, X.; Xiong, M.; Cai, W.; Atianjoh, F.E.; Jobe, E.E.; Zhao, X.; Tu, W.F.; Tao, Y.X. MBD1 contributes to the genesis of acute pain and neuropathic pain by epigenetic silencing of Oprm1 and Kcna2 genes in primary sensory neurons. J. Neurosci., 2018, 38(46), 9883-9899.
[http://dx.doi.org/10.1523/JNEUROSCI.0880-18.2018] [PMID: 30266739]
[45]
Wang, Y.; Lin, Z.P.; Zheng, H.Z.; Zhang, S.; Zhang, Z.L.; Chen, Y.; You, Y.S.; Yang, M.H. Abnormal DNA methylation in the lumbar spinal cord following chronic constriction injury in rats. Neurosci. Lett., 2016, 10, 1-5.
[http://dx.doi.org/10.1016/j.neulet.2015.10.048] [PMID: 26515497]
[46]
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[47]
Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 2012, 149(7), 1635-1646.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[48]
Fu, Y.; Dominissini, D.; Rechavi, G.; He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet., 2014, 15(5), 293-306.
[http://dx.doi.org/10.1038/nrg3724] [PMID: 24662220]
[49]
Meyer, K.D.; Jaffrey, S.R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol., 2014, 15(5), 313-326.
[http://dx.doi.org/10.1038/nrm3785] [PMID: 24713629]
[50]
Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 2015, 518(7540), 560-564.
[http://dx.doi.org/10.1038/nature14234] [PMID: 25719671]
[51]
Adhikari, S.; Xiao, W.; Zhao, Y.L.; Yang, Y.G. m(6)A: Signaling for mRNA splicing. RNA Biol., 2016, 13(9), 756-759.
[http://dx.doi.org/10.1080/15476286.2016.1201628] [PMID: 27351695]
[52]
Genenncher, B.; Durdevic, Z.; Hanna, K.; Zinkl, D.; Mobin, M.B.; Senturk, N.; Da Silva, B.; Legrand, C.; Carré, C.; Lyko, F.; Schaefer, M. Mutations in cytosine-5 tRNA methyltransferases impact mobile element expression and genome stability at specific DNA repeats. Cell Rep., 2018, 22(7), 1861-1874.
[http://dx.doi.org/10.1016/j.celrep.2018.01.061] [PMID: 29444437]
[53]
Wang, X.; Lu, Z.; Gomez, A.; Hon, G.C.; Yue, Y.; Han, D.; Fu, Y.; Parisien, M.; Dai, Q.; Jia, G.; Ren, B.; Pan, T.; He, C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014, 505(7481), 117-120.
[http://dx.doi.org/10.1038/nature12730] [PMID: 24284625]
[54]
Weng, Y.L.; Wang, X.; An, R.; Cassin, J.; Vissers, C.; Liu, Y.; Liu, Y.; Xu, T.; Wang, X.; Wong, S.Z.H.; Joseph, J.; Dore, L.C.; Dong, Q.; Zheng, W.; Jin, P.; Wu, H.; Shen, B.; Zhuang, X.; He, C.; Liu, K.; Song, H.; Ming, G.L. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron, 2018, 97(2), 313-325.e6.
[http://dx.doi.org/10.1016/j.neuron.2017.12.036] [PMID: 29346752]
[55]
Zhang, C.; Wang, Y.; Peng, Y.; Xu, H.; Zhou, X. METTL3 regulates inflammatory pain by modulating m6A-dependent pri-miR-365-3p processing. FASEB J., 2020, 34(1), 122-132.
[http://dx.doi.org/10.1096/fj.201901555R] [PMID: 31914601]
[56]
Pan, Z.; Zhang, Q.; Liu, X.; Zhou, H.; Jin, T.; Hao, L.Y.; Xie, L.; Zhang, M.; Yang, X.X.; Sun, M.L.; Xue, Z.Y.; Tao, Y.; Ye, X.C.; Shen, W.; Cao, J.L. Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain, 2021, 162(7), 1960-1976.
[http://dx.doi.org/10.1097/j.pain.0000000000002218] [PMID: 34130310]
[57]
Li, Y.; Guo, X.; Sun, L.; Xiao, J.; Su, S.; Du, S.; Li, Z.; Wu, S.; Liu, W.; Mo, K.; Xia, S.; Chang, Y.J.; Denis, D.; Tao, Y.X.N. N6-methyladenosine demethylase FTO contributes to neuropathic pain by stabilizing G9a expression in primary sensory neurons. Adv. Sci. (Weinh.), 2020, 7(13), 1902402.
[http://dx.doi.org/10.1002/advs.201902402] [PMID: 32670741]
[58]
Ma, L.; Huang, Y.; Zhang, F.; Gao, D.S.; Sun, N.; Ren, J.; Xia, S.; Li, J.; Peng, X.; Yu, L.; Jiang, B.C.; Yan, M. MMP24 contributes to neuropathic pain in an FTO-dependent manner in the spinal cord neurons. Front Pharmacol., 2021, 12, 673831.
[http://dx.doi.org/10.3389/fphar.2021.673831] [PMID: 33995105]
[59]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[60]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[61]
Pham, T.X.; Lee, J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients, 2012, 4(12), 1868-1886.
[http://dx.doi.org/10.3390/nu4121868] [PMID: 23363995]
[62]
Kuo, M.H.; Allis, C.D. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays, 1998, 20(8), 615-626.
[http://dx.doi.org/10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H] [PMID: 9780836]
[63]
Zhu, X.; Li, Q.; Chang, R.; Yang, D.; Song, Z.; Guo, Q.; Huang, C. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014, 9(3), e91303.
[http://dx.doi.org/10.1371/journal.pone.0091303] [PMID: 24603592]
[64]
Zhu, X.Y.; Huang, C.S.; Li, Q.; Chang, R.M.; Song, Z.B.; Zou, W.Y.; Guo, Q.L. p300 exerts an epigenetic role in chronic neuropathic pain through its acetyltransferase activity in rats following chronic constriction injury (CCI). Mol Pain., 2012, 8, 84.
[http://dx.doi.org/10.1186/1744-8069-8-84] [PMID: 23176208]
[65]
Zhu, X.Y.; Huang, C.S.; Li, Q.; Guo, Q.L.; Wang, Y.; He, X.; Liao, J. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell. Mol. Neurobiol., 2013, 33(2), 197-204.
[http://dx.doi.org/10.1007/s10571-012-9885-4] [PMID: 23129231]
[66]
Xu, T.; Zhang, X.L.; Ou-Yang, H.D.; Li, Z.Y.; Liu, C.C.; Huang, Z.Z.; Xu, J.; Wei, J.Y.; Nie, B.L.; Ma, C.; Wu, S.L.; Xin, W.J. Epigenetic upregulation of CXCL12 expression mediates antitubulin chemotherapeutics-induced neuropathic pain. Pain, 2017, 158(4), 637-648.
[http://dx.doi.org/10.1097/j.pain.0000000000000805] [PMID: 28072604]
[67]
Li, D.; Huang, Z.Z.; Ling, Y.Z.; Wei, J.Y.; Cui, Y.; Zhang, X.Z.; Zhu, H.Q.; Xin, W.J. Up-regulation of CX3CL1 via nuclear factor-κB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology, 2015, 122(5), 1142-1151.
[http://dx.doi.org/10.1097/ALN.0000000000000560] [PMID: 25494456]
[68]
Liu, C.C.; Huang, Z.X.; Li, X.; Shen, K.F.; Liu, M.; Ouyang, H.D.; Zhang, S.B.; Ruan, Y.T.; Zhang, X.L.; Wu, S.L.; Xin, W.J.; Ma, C. Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib. Exp Neurol., 2018, 302, 104-111.
[http://dx.doi.org/10.1016/j.expneurol.2018.01.011] [PMID: 29339053]
[69]
Ding, H.H.; Zhang, S.B.; Lv, Y.Y.; Ma, C.; Liu, M.; Zhang, K.B.; Ruan, X.C.; Wei, J.Y.; Xin, W.J.; Wu, S.L. TNF-α/STAT3 pathway epigenetically upregulates Nav1.6 expression in DRG and contributes to neuropathic pain induced by L5-VRT. J. Neuroinflammation, 2019, 16(1), 29.
[http://dx.doi.org/10.1186/s12974-019-1421-8] [PMID: 30736806]
[70]
Li, H.; Li, C.; Dai, R.; Shi, X.; Xu, J.; Zhang, J.; Zhou, X.; Li, Z.; Luo, X. Expression of acetylated histone 3 in the spinal cord and the effect of morphine on inflammatory pain in rats. Neural Regen. Res., 2012, 7(7), 517-522.
[PMID: 25745438]
[71]
Cherng, C.H.; Lee, K.C.; Chien, C.C.; Chou, K.Y.; Cheng, Y.C.; Hsin, S.T.; Lee, S.O.; Shen, C.H.; Tsai, R.Y.; Wong, C.S. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J. Formos. Med. Assoc., 2014, 113(8), 513-520.
[http://dx.doi.org/10.1016/j.jfma.2013.04.007] [PMID: 23684218]
[72]
Haberland, M.; Montgomery, R.L.; Olson, E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet., 2009, 10(1), 32-42.
[http://dx.doi.org/10.1038/nrg2485] [PMID: 19065135]
[73]
Li, Z.; Guo, Y.; Ren, X.; Rong, L.; Huang, M.; Cao, J.; Zang, W. HDAC2, but not HDAC1, regulates Kv1.2 expression to mediate neuropathic pain in CCI rats. Neuroscience., 2019, 408, 339-348.
[http://dx.doi.org/10.1016/j.neuroscience.2019.03.033] [PMID: 31022463]
[74]
Yin, Q.; Lu, F.F.; Zhao, Y.; Cheng, M.Y.; Fan, Q.; Cui, J.; Liu, L.; Cheng, W.; Yan, C.D. Resveratrol facilitates pain attenuation in a rat model of neuropathic pain through the activation of spinal Sirt1. Reg. Anesth. Pain Med., 2013, 38(2), 93-99.
[http://dx.doi.org/10.1097/AAP.0b013e3182795b23] [PMID: 23337935]
[75]
Gu, P.; Pan, Z.; Wang, X.M.; Sun, L.; Tai, L.W.; Cheung, C.W. Histone deacetylase 5 (HDAC5) regulates neuropathic pain through SRY-related HMG-box 10 (SOX10)-dependent mechanism in mice. Pain, 2018, 159(3), 526-539.
[http://dx.doi.org/10.1097/j.pain.0000000000001125] [PMID: 29447134]
[76]
Lin, C.R.; Cheng, J.K.; Wu, C.H.; Chen, K.H.; Liu, C.K. Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund’s adjuvant (CFA). Eur. J. Pain, 2017, 21(2), 309-321.
[http://dx.doi.org/10.1002/ejp.925] [PMID: 27506893]
[77]
Krukowski, K.; Ma, J.; Golonzhka, O.; Laumet, G.O.; Gutti, T.; van Duzer, J.H.; Mazitschek, R.; Jarpe, M.B.; Heijnen, C.J.; Kavelaars, A. HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain, 2017, 158(6), 1126-1137.
[http://dx.doi.org/10.1097/j.pain.0000000000000893] [PMID: 28267067]
[78]
Sanna, M.D.; Guandalini, L.; Romanelli, M.N.; Galeotti, N. The new HDAC1 inhibitor LG325 ameliorates neuropathic pain in a mouse model. Pharmacol. Biochem. Behav., 2017, 160, 70-75.
[http://dx.doi.org/10.1016/j.pbb.2017.08.006] [PMID: 28821396]
[79]
Bai, G.; Wei, D.; Zou, S.; Ren, K.; Dubner, R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain, 2010, 6, 51.
[http://dx.doi.org/10.1186/1744-8069-6-51] [PMID: 20822541]
[80]
Denk, F.; Huang, W.; Sidders, B.; Bithell, A.; Crow, M.; Grist, J.; Sharma, S.; Ziemek, D.; Rice, A.S.C.; Buckley, N.J.; McMahon, S.B. HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain, 2013, 154(9), 1668-1679.
[http://dx.doi.org/10.1016/j.pain.2013.05.021] [PMID: 23693161]
[81]
Eddy, S.R. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet., 2001, 2(12), 919-929.
[http://dx.doi.org/10.1038/35103511] [PMID: 11733745]
[82]
Guttman, M.; Russell, P.; Ingolia, N.T.; Weissman, J.S.; Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1), 240-251.
[http://dx.doi.org/10.1016/j.cell.2013.06.009] [PMID: 23810193]
[83]
Fu, X.D. Non-coding RNA: A new frontier in regulatory biology. Natl. Sci. Rev., 2014, 1(2), 190-204.
[http://dx.doi.org/10.1093/nsr/nwu008] [PMID: 25821635]
[84]
Zhang, Y.; Tao, Y.; Liao, Q. Long noncoding RNA: A crosslink in biological regulatory network. Brief. Bioinform., 2018, 19(5), 930-945.
[http://dx.doi.org/10.1093/bib/bbx042] [PMID: 28449042]
[85]
Huang, Z.Z.; Wei, J.Y.; Ou-Yang, H.D.; Li, D.; Xu, T.; Wu, S.L.; Zhang, X.L.; Liu, C.C.; Ma, C.; Xin, W.J. mir-500-mediated GAD67 downregulation contributes to neuropathic pain. J. Neurosci., 2016, 36(23), 6321-6331.
[http://dx.doi.org/10.1523/JNEUROSCI.0646-16.2016] [PMID: 27277808]
[86]
Jiangpan, P.; Qingsheng, M.; Zhiwen, Y.; Tao, Z. Emerging role of microRNA in neuropathic pain. Curr. Drug Metab., 2016, 17(4), 336-344.
[http://dx.doi.org/10.2174/1389200216666151015113400] [PMID: 26467071]
[87]
Tang, S.; Zhou, J.; Jing, H.; Liao, M.; Lin, S.; Huang, Z.; Huang, T.; Zhong, J.; HanbingWang, Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin. Epigenetics, 2019, 11(1), 78.
[http://dx.doi.org/10.1186/s13148-019-0671-8] [PMID: 31092294]
[88]
Yu, W.; Zhao, G.Q.; Cao, R.J.; Zhu, Z.H.; Li, K. LncRNA NONRATT021972 was associated with neuropathic pain scoring in patients with type 2 diabetes. Behav. Neurol., 2017, 2017, 2941297.
[http://dx.doi.org/10.1155/2017/2941297] [PMID: 28928602]
[89]
Aldrich, B.T.; Frakes, E.P.; Kasuya, J.; Hammond, D.L.; Kitamoto, T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience, 2009, 164(2), 711-723.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.033] [PMID: 19699278]
[90]
von Schack, D.; Agostino, M.J.; Murray, B.S.; Li, Y.; Reddy, P.S.; Chen, J.; Choe, S.E.; Strassle, B.W.; Li, C.; Bates, B.; Zhang, L.; Hu, H.; Kotnis, S.; Bingham, B.; Liu, W.; Whiteside, G.T.; Samad, T.A.; Kennedy, J.D.; Ajit, S.K. Dynamic changes in the microRNA expression profile reveal multiple regulatory mechanisms in the spinal nerve ligation model of neuropathic pain. PLoS One, 2011, 6(3), e17670.
[http://dx.doi.org/10.1371/journal.pone.0017670] [PMID: 21423802]
[91]
Ebbesen, K.K.; Hansen, T.B.; Kjems, J. Insights into circular RNA biology. RNA Biol., 2017, 14(8), 1035-1045.
[http://dx.doi.org/10.1080/15476286.2016.1271524] [PMID: 27982727]
[92]
Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circRNAs. EMBO J., 2019, 38(16), e100836.
[http://dx.doi.org/10.15252/embj.2018100836] [PMID: 31343080]
[93]
Zhou, J.; Xiong, Q.; Chen, H.; Yang, C.; Fan, Y. Identification of the spinal expression profile of non-coding RNAs involved in neuropathic pain following spared nerve injury by sequence analysis. Front. Mol. Neurosci., 2017, 10, 91.
[http://dx.doi.org/10.3389/fnmol.2017.00091] [PMID: 28420964]
[94]
Cao, S.; Deng, W.; Li, Y.; Qin, B.; Zhang, L.; Yu, S.; Xie, P.; Xiao, Z.; Yu, T. Chronic constriction injury of sciatic nerve changes circular RNA expression in rat spinal dorsal horn. J. Pain Res., 2017, 10, 1687-1696.
[http://dx.doi.org/10.2147/JPR.S139592] [PMID: 28761373]
[95]
Cai, W.; Zhang, Y.; Su, Z. ciRS-7 targeting miR-135a-5p promotes neuropathic pain in CCI rats via inflammation and autophagy. Gene, 2020, 736, 144386.
[http://dx.doi.org/10.1016/j.gene.2020.144386] [PMID: 31978512]
[96]
Zhang, S.B.; Lin, S.Y.; Liu, M.; Liu, C.C.; Ding, H.H.; Sun, Y.; Ma, C.; Guo, R.X.; Lv, Y.Y.; Wu, S.L.; Xu, T.; Xin, W.J. CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat. Commun., 2019, 10(1), 4119.
[http://dx.doi.org/10.1038/s41467-019-12049-0] [PMID: 31511520]
[97]
Pan, Z.; Li, G.F.; Sun, M.L.; Xie, L.; Liu, D.; Zhang, Q.; Yang, X.X.; Xia, S.; Liu, X.; Zhou, H.; Xue, Z.Y.; Zhang, M.; Hao, L.Y.; Zhu, L.J.; Cao, J.L. MicroRNA-1224 splicing circularRNA-filip1l in an Ago2-dependent manner regulates chronic inflammatory pain via targeting Ubr5. J. Neurosci., 2019, 39(11), 2125-2143.
[http://dx.doi.org/10.1523/JNEUROSCI.1631-18.2018] [PMID: 30651325]
[98]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691.
[http://dx.doi.org/10.1038/nrd4360] [PMID: 25131830]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy