Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

硫酸葡聚糖通过调节胃癌中的 EZH2 抑制细胞增殖并诱导细胞凋亡

卷 21, 期 11, 2021

发表于: 22 September, 2021

页: [953 - 964] 页: 12

弟呕挨: 10.2174/1568009621666210922112039

价格: $65

摘要

背景:胃癌(GC)是最常见的胃肠道恶性肿瘤之一。据报道,zeste homolog 2 (EZH2) 的增强子在多种癌症中表现出致癌作用。因此,EZH2可能是治疗人类癌症的潜在治疗靶点。大分子葡聚糖硫酸盐 (DS) 已被证明在肿瘤抑制中起关键作用。然而,DS介导这种作用的分子机制尚不清楚。 目的:本研究探讨DS对胃癌增殖和凋亡的影响及相关机制。细胞增殖和计数分析以及细胞集落形成分析表明,DS 抑制了 GC 细胞的增殖和肿瘤发生。此外,流式细胞仪分析显示DS阻断GC细胞在G1/S期的细胞周期,促进其凋亡。 方法:应用生物信息学分析、酶联免疫吸附试验、免疫组织化学等方法检测人胃癌细胞和组织中 EZH2 的表达。 结果与讨论:进一步的研究表明,DS治疗可以降低GC细胞中增殖细胞核抗原(PCNA)的表达,提高Bax:Bcl-2蛋白的比值水平。此外,DS 在体外和体内均降低了 EZH2 水平并增加了 CXXC 指蛋白 4 水平。此外,用 EZH2 抑制剂下调 EZH2 可逆转 DS 对胃癌细胞的抑制作用。 结论:总的来说,我们的工作表明 DS 通过调节 EZH2 抑制增殖并促进 GC 细胞的凋亡。我们的研究表明,DS 是一种有前途的治疗 GC 的化合物。

关键词: 硫酸葡聚糖,胃癌,EZH2,CXXC4,增殖,凋亡。

图形摘要

[1]
Huang, K.K.; Ramnarayanan, K.; Zhu, F.; Srivastava, S.; Xu, C.; Tan, A.L.K.; Lee, M.; Tay, S.; Das, K.; Xing, M.; Fatehullah, A.; Alkaff, S.M.F.; Lim, T.K.H.; Lee, J.; Ho, K.Y.; Rozen, S.G.; Teh, B.T.; Barker, N.; Chia, C.K.; Khor, C.; Ooi, C.J.; Fock, K.M.; So, J.; Lim, W.C.; Ling, K.L.; Ang, T.L.; Wong, A.; Rao, J.; Rajnakova, A.; Lim, L.G.; Yap, W.M.; Teh, M.; Yeoh, K.G.; Tan, P. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer. Cancer Cell, 2018, 33(1), 137-150.e5.
[http://dx.doi.org/10.1016/j.ccell.2017.11.018] [PMID: 29290541]
[2]
Rugge, M.; Genta, R.M.; Di Mario, F.; El-Omar, E.M.; El-Serag, H.B.; Fassan, M.; Hunt, R.H.; Kuipers, E.J.; Malfertheiner, P.; Sugano, K.; Graham, D.Y. Gastric cancer as preventable disease. Clin. Gastroenterol. Hepatol., 2017, 15(12), 1833-1843.
[http://dx.doi.org/10.1016/j.cgh.2017.05.023] [PMID: 28532700]
[3]
Hagiwara, A.; Sawai, K.; Sakakura, C.; Shirasu, M.; Ohgaki, M.; Imanishi, T.; Yamasaki, J.; Togawa, T.; Takahashi, T. Prevention of peritoneal metastasis of cancer with dextran sulfate- an experimental study in mice. Anticancer Drugs, 1997, 8(9), 894-897.
[http://dx.doi.org/10.1097/00001813-199710000-00011] [PMID: 9402317]
[4]
Xu, Y.; Jin, X.; Huang, Y.; Wang, J.; Wang, X.; Wang, H. Dextran sulfate inhibition on human gastric cancer cells invasion, migration and epithelial-mesenchymal transformation. Oncol. Lett., 2018, 16(4), 5041-5049.
[http://dx.doi.org/10.3892/ol.2018.9251] [PMID: 30250571]
[5]
Xu, Y.; Wang, X.; Huang, Y.; Ma, Y.; Jin, X.; Wang, H.; Wang, J. Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int. J. Mol. Med., 2018, 42(5), 2737-2749.
[PMID: 30226558]
[6]
Sparmann, A.; van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer, 2006, 6(11), 846-856.
[http://dx.doi.org/10.1038/nrc1991] [PMID: 17060944]
[7]
Jung, H.Y.; Jun, S.; Lee, M.; Kim, H.C.; Wang, X.; Ji, H.; McCrea, P.D.; Park, J.I. PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation. Mol. Cell, 2013, 52(2), 193-205.
[http://dx.doi.org/10.1016/j.molcel.2013.08.028] [PMID: 24055345]
[8]
Bachmann, I.M.; Halvorsen, O.J.; Collett, K.; Stefansson, I.M.; Straume, O.; Haukaas, S.A.; Salvesen, H.B.; Otte, A.P.; Akslen, L.A. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol., 2006, 24(2), 268-273.
[http://dx.doi.org/10.1200/JCO.2005.01.5180] [PMID: 16330673]
[9]
Yuan, J.B.; Yang, L.Y.; Tang, Z.Y.; Zu, X.B.; Qi, L. Down-regulation of EZH2 by RNA interference inhibits proliferation and invasion of ACHN cells via the Wnt/β- catenin pathway. Asian Pac. J. Cancer Prev., 2012, 13(12), 6197-6201.
[http://dx.doi.org/10.7314/APJCP.2012.13.12.6197] [PMID: 23464430]
[10]
Arai, Y.; Honda, S.; Haruta, M.; Kasai, F.; Fujiwara, Y.; Ohshima, J.; Sasaki, F.; Nakagawara, A.; Horie, H.; Yamaoka, H.; Hiyama, E.; Kaneko, Y. Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer, 2010, 49(7), 596-609.
[PMID: 20461752]
[11]
Brosens, R.P.; Belt, E.J.; Haan, J.C.; Buffart, T.E.; Carvalho, B.; Grabsch, H.; Quirke, P.; Cuesta, M.A.; Engel, A.F.; Ylstra, B.; Meijer, G.A. Deletion of chromosome 4q predicts outcome in stage II colon cancer patients. Cell Oncol. (Dordr.), 2011, 34(3), 215-223.
[http://dx.doi.org/10.1007/s13402-011-0042-8] [PMID: 21717218]
[12]
Kojima, T.; Shimazui, T.; Hinotsu, S.; Joraku, A.; Oikawa, T.; Kawai, K.; Horie, R.; Suzuki, H.; Nagashima, R.; Yoshikawa, K.; Michiue, T.; Asashima, M.; Akaza, H.; Uchida, K. Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling. Oncogene, 2009, 28(2), 297-305.
[http://dx.doi.org/10.1038/onc.2008.391] [PMID: 18931698]
[13]
Stewart, D.J.; Chang, D.W.; Ye, Y.; Spitz, M.; Lu, C.; Shu, X.; Wampfler, J.A.; Marks, R.S.; Garces, Y.I.; Yang, P.; Wu, X. Wnt signaling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J., 2014, 14(6), 509-522.
[http://dx.doi.org/10.1038/tpj.2014.21] [PMID: 24980784]
[14]
Ko, M.; An, J.; Bandukwala, H.S.; Chavez, L.; Aijö, T.; Pastor, W.A.; Segal, M.F.; Li, H.; Koh, K.P.; Lähdesmäki, H.; Hogan, P.G.; Aravind, L.; Rao, A. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature, 2013, 497(7447), 122-126.
[http://dx.doi.org/10.1038/nature12052] [PMID: 23563267]
[15]
Lu, H.; Sun, J.; Wang, F.; Feng, L.; Ma, Y.; Shen, Q.; Jiang, Z.; Sun, X.; Wang, X.; Jin, H. Enhancer of zeste homolog 2 activates wnt signaling through downregulating CXXC finger protein 4. Cell Death Dis., 2013, 4, e776.
[http://dx.doi.org/10.1038/cddis.2013.293] [PMID: 23949225]
[16]
Waddell, T.; Verheij, M.; Allum, W.; Cunningham, D.; Cervantes, A.; Arnold, D. Gastric cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Radiother. Oncol., 2014, 110(1), 189-194.
[http://dx.doi.org/10.1016/j.radonc.2013.09.015] [PMID: 24636158]
[17]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. Timer: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[18]
Li, B.; Severson, E.; Pignon, J.C.; Zhao, H.; Li, T.; Novak, J.; Jiang, P.; Shen, H.; Aster, J.C.; Rodig, S.; Signoretti, S.; Liu, J.S.; Liu, X.S. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol., 2016, 17(1), 174.
[http://dx.doi.org/10.1186/s13059-016-1028-7] [PMID: 27549193]
[19]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[20]
Miranda, T.B.; Cortez, C.C.; Yoo, C.B.; Liang, G.; Abe, M.; Kelly, T.K.; Marquez, V.E.; Jones, P.A. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther., 2009, 8(6), 1579-1588.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0013] [PMID: 19509260]
[21]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[22]
Kohi, S.; Sato, N.; Cheng, X.B.; Koga, A.; Hirata, K. Increased expression of HYAL1 in pancreatic ductal adenocarcinoma. Pancreas, 2016, 45(10), 1467-1473.
[http://dx.doi.org/10.1097/MPA.0000000000000670] [PMID: 27622341]
[23]
Wu, M.; Cao, M.; He, Y.; Liu, Y.; Yang, C.; Du, Y.; Wang, W.; Gao, F. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J., 2015, 29(4), 1290-1298.
[http://dx.doi.org/10.1096/fj.14-259978] [PMID: 25550464]
[24]
Zhou, L.; Wei, E.; Zhou, B.; Bi, G.; Gao, L.; Zhang, T.; Huang, J.; Wei, Y.; Ge, B. Anti-proliferative benefit of curcumol on human bladder cancer cells via inactivating EZH2 effector. Biomed. Pharmacother., 2018, 104, 798-805.
[http://dx.doi.org/10.1016/j.biopha.2018.05.101] [PMID: 29852354]
[25]
Chen, Z.; Yang, P.; Li, W.; He, F.; Wei, J.; Zhang, T.; Zhong, J.; Chen, H.; Cao, J. Expression of EZH2 is associated with poor outcome in colorectal cancer. Oncol. Lett., 2018, 15(3), 2953-2961.
[PMID: 29435024]
[26]
Jones, B.A.; Varambally, S.; Arend, R.C. Histone Methyltransferase EZH2: A Therapeutic Target for Ovarian Cancer. Mol. Cancer Ther., 2018, 17(3), 591-602.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0437] [PMID: 29726819]
[27]
Lu, F.; Xu, H.; Wang, Q.; Li, M.; Meng, J.; Kuang, Y. Inhibition of enhancer of zeste homolog 2 increases the expression of p16 and suppresses the proliferation and migration of ovarian carcinoma cells in vitro and in vivo. Oncol. Lett., 2018, 15(3), 3233-3239.
[PMID: 29435063]
[28]
Zhang, L.; Fang, F.; He, X. Long noncoding RNA TP73-AS1 promotes non-small cell lung cancer progression by competitively sponging miR-449a/EZH2. Biomed. Pharmacother., 2018, 104, 705-711.
[http://dx.doi.org/10.1016/j.biopha.2018.05.089] [PMID: 29803931]
[29]
Chien, Y.C.; Liu, L.C.; Ye, H.Y.; Wu, J.Y.; Yu, Y.L. EZH2 promotes migration and invasion of triple-negative breast cancer cells via regulating TIMP2-MMP-2/-9 pathway. Am. J. Cancer Res., 2018, 8(3), 422-434.
[PMID: 29636998]
[30]
Yin, Y.; Qiu, S.; Li, X.; Huang, B.; Xu, Y.; Peng, Y. EZH2 suppression in glioblastoma shifts microglia toward M1 phenotype in tumor microenvironment. J. Neuroinflammation, 2017, 14(1), 220.
[http://dx.doi.org/10.1186/s12974-017-0993-4] [PMID: 29132376]
[31]
Zhang, J.; Chen, L.; Han, L.; Shi, Z.; Zhang, J.; Pu, P.; Kang, C. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma. Cancer Lett., 2015, 356(2 Pt B), 929-936.
[http://dx.doi.org/10.1016/j.canlet.2014.11.003] [PMID: 25444902]
[32]
Han, M.; Dai, D.; Yousafzai, N.A.; Wang, F.; Wang, H.; Zhou, Q.; Lu, H.; Xu, W.; Feng, L.; Jin, H.; Wang, X. CXXC4 activates apoptosis through up-regulating GDF15 in gastric cancer. Oncotarget, 2017, 8(61), 103557-103567.
[http://dx.doi.org/10.18632/oncotarget.21581] [PMID: 29262584]
[33]
Chen, L.; Wu, Y.; Wu, Y.; Wang, Y.; Sun, L.; Li, F. The inhibition of EZH2 ameliorates osteoarthritis development through the Wnt/β-catenin pathway. Sci. Rep., 2016, 6, 29176.
[http://dx.doi.org/10.1038/srep29176] [PMID: 27539752]
[34]
Chen, Q.; Zheng, P.S.; Yang, W.T. EZH2-mediated repression of GSK-3β and TP53 promotes Wnt/β-catenin signaling-dependent cell expansion in cervical carcinoma. Oncotarget, 2016, 7(24), 36115-36129.
[http://dx.doi.org/10.18632/oncotarget.8741] [PMID: 27092879]
[35]
Moon, R.T.; Kohn, A.D.; De Ferrari, G.V.; Kaykas, A. WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet., 2004, 5(9), 691-701.
[http://dx.doi.org/10.1038/nrg1427] [PMID: 15372092]
[36]
Barker, N.; Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov., 2006, 5(12), 997-1014.
[http://dx.doi.org/10.1038/nrd2154] [PMID: 17139285]
[37]
Dihlmann, S.; von Knebel Doeberitz, M. Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int. J. Cancer, 2005, 113(4), 515-524.
[http://dx.doi.org/10.1002/ijc.20609] [PMID: 15472907]
[38]
Cheng, A.S.; Lau, S.S.; Chen, Y.; Kondo, Y.; Li, M.S.; Feng, H.; Ching, A.K.; Cheung, K.F.; Wong, H.K.; Tong, J.H.; Jin, H.; Choy, K.W.; Yu, J.; To, K.F.; Wong, N.; Huang, T.H.; Sung, J.J. EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis. Cancer Res., 2011, 71(11), 4028-4039.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3342] [PMID: 21512140]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy