Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

A Green Synthesis Method to Tune the Morphology of CuO and ZnO Nanostructures

Author(s): Juan Manuel Galdopórpora, Sofia Municoy, Fátima Ibarra, Virginia Puente, Pablo Edmundo Antezana, Maria Inés Alvarez Echazú and Martín F. Desimone*

Volume 19, Issue 2, 2023

Published on: 04 January, 2022

Page: [186 - 193] Pages: 8

DOI: 10.2174/1573413717666210921152709

Price: $65

Abstract

Background: Green synthesis of nanomaterials has gained interest over the years as it has many benefits compared to conventional methods. Green methods are non-toxic and economic due to the use of aqueous extracts as reducing agents. Yerba mate is a widely used herb in South America, showing an available and economical alternative to conventional methods.

Methods: Different copper and zinc nanostructures were obtained using yerba mate extract (Ilex paraguariensis) as a reducing and capping agent. Furthermore, adjusting NaCl concentration and temperature, it was possible to successfully tune and examine the morphology of the resulting nanostructures by Scanning Electron Microscopy (SEM). Phenolic oxidation was evaluated by Raman spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR) to assess the role of yerba mate extract in the reaction. Moreover, antimicrobial activity versus Pseudomonas aeruginosa was assayed, and antioxidant activity was performed by the DPPH method.

Results and Conclusion: The present study reveals a powerful method to obtain zinc and copper nanostructures, showing a logarithmic reduction of Pseudomonas aeruginosa of 2.14 and 5.92 CFU/mL at 96 hours respectively and scavenger activity of 42% and 22%, respectively. These properties highlight the potential of the nanomaterials for applications in catalysis, textile, biomedical and agricultural fields.

Keywords: Green synthesis, copper, zinc, nanostructures, Ilex paraguariensis, antimicrobial, antioxidant.

[1]
Logaranjan, K.; Raiza, A.J.; Gopinath, S.C.B.; Chen, Y.; Pandian, K. Shape- and Size-Controlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity. Nanoscale Res. Lett., 2016, 11(1), 520.
[http://dx.doi.org/10.1186/s11671-016-1725-x ] [PMID: 27885623]
[2]
Hu, K.; Teng, F.; Zheng, L.; Yu, P.; Zhang, Z.; Chen, H. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev., 2017, 11(1), 1600257.
[http://dx.doi.org/10.1002/lpor.201600257]
[3]
Zhang, Z.; Ning, Y.; Fang, X. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(2), 223-229.
[http://dx.doi.org/10.1039/C8TC05877F]
[4]
Desimone, M.F. Fate and effects of nanomaterials. Curr. Pharm. Des., 2019, 25(37), 3903-3904.
[http://dx.doi.org/10.2174/138161282537191217101204 ] [PMID: 31889489]
[5]
Mebert, A.M.; Baglole, C.J.; Desimone, M.F.; Maysinger, D. Nanoengineered silica: Properties, applications and toxicity. Food Chem. Toxicol., 2017, 109(Pt 1), 753-770.
[http://dx.doi.org/10.1016/j.fct.2017.05.054 ] [PMID: 28578101]
[6]
Mitarotonda, R.; Giorgi, E.; Desimone, M.F.; De Marzi, M.C. Nanoparticles and immune cells. Curr. Pharm. Des., 2019, 25(37), 3960-3982.
[http://dx.doi.org/10.2174/1381612825666190926161209 ] [PMID: 31556850]
[7]
Galdopórpora, J.M.; Perez, C.J.; Tuttolomondo, M.V.; Desimone, M.F. Riboflavin-UVA gelatin crosslinking: design of a biocompatible and thermo-responsive biomaterial with enhanced mechanical properties for tissue engineering. Adv. Mater. Lett., 2019, 10(5), 324-328.
[http://dx.doi.org/10.5185/amlett.2019.2210]
[8]
Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother., 2019, 109, 2561-2572.
[http://dx.doi.org/10.1016/j.biopha.2018.11.116 ] [PMID: 30551516]
[9]
Morales, M.E.; Castán, H.; Ortega, E.; Ruiz, M.A. Silica nanoparticles: preparation, characterization and applications in biomedicine. Pharm. Chem. J., 2019, 53(4), 329-336.
[http://dx.doi.org/10.1007/s11094-019-02001-3]
[10]
Ning, Y.; Zhang, Z.; Teng, F.; Fang, X. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small, 2018, 14(13), e1703754.
[http://dx.doi.org/10.1002/smll.201703754 ] [PMID: 29383872]
[11]
Zhao, B.; Wang, F.; Chen, H.; Zheng, L.; Su, L.; Zhao, D. An ultrahigh responsivity (9.7 mA W −1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater., 2017, 27(17), 1700264.
[http://dx.doi.org/10.1002/adfm.201700264]
[12]
Ouyang, W.; Chen, J.; He, J.; Fang, X. Improved photoelectric performance of UV photodetector based on ZnO nanoparticle-decorated BiOCl nanosheet arrays onto PDMS substrate: The heterojunction and Ti3C2 Tx MXene conduction layer. Adv. Electron. Mater., 2020, 6(6), 2000168.
[http://dx.doi.org/10.1002/aelm.202000168]
[13]
Cao, J.; Wang, Y.; Li, G.; Li, K.; Ma, Y.W. Mesoporous modified red mud supported CuO nanocatalysts for carbon monoxide oxidation. Current Nanoscience, 2015, 11, 413-418.http://www.eurekaselect.com/node/128478/article
[14]
Kouhkan, M.; Ahangar, P.; Allahyari-Devin, L.A.B. Biosynthesis of copper oxide nanoparticles using lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr. Nanosci., 2020, 16, 101-111.
[http://dx.doi.org/10.2174/1573413715666190318155801]
[15]
Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour. Technol., 2017, 3(4), 406-413.
[16]
Nagar, N.; Devra, V. Green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys., 2018, 213, 44-51.
[http://dx.doi.org/10.1016/j.matchemphys.2018.04.007]
[17]
Granata, G.; Onoguchi, A.; Tokoro, C. Preparation of copper nanoparticles for metal-metal bonding by aqueous reduction with d-glucose and PVP. Chem. Eng. Sci., 2019, 209, 115210.
[http://dx.doi.org/10.1016/j.ces.2019.115210]
[18]
Kan, C.; Cai, W.; Li, C.; Zhang, L. Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions. J. Mater. Res., 2005, 20(2), 320-324.
[http://dx.doi.org/10.1557/JMR.2005.0039]
[19]
Galdopórpora, J.M.; Morcillo, M.F.; Ibar, A.; Perez, C.J.; Tuttolomondo, M.V.; Desimone, M.F. Development of Silver Nanoparticles/Gelatin Thermoresponsive Nanocomposites: Characterization and Antimicrobial Activity. Curr. Pharm. Des., 2019, 25(38), 4121-4129.
[http://dx.doi.org/10.2174/1381612825666191007163152 ] [PMID: 31589116]
[20]
Merga, G.; Wilson, R.; Lynn, G.; Milosavljevic, B.H.; Meisel, D. Redox catalysis on “naked” silver nanoparticles. J. Phys. Chem. C, 2007, 111(33), 12220-12226.
[http://dx.doi.org/10.1021/jp074257w]
[21]
Municoy, S.; Antezana, P.E.; Pérez, C.J.; Bellino, M.G.; Desimone, M.F. Tuning the antimicrobial activity of collagen biomaterials through a liposomal approach. J. Appl. Polym. Sci., 2020, (18), 50330.
[http://dx.doi.org/10.1002/app.50330]
[22]
Voigt, N.; Henrich-Noack, P.; Kockentiedt, S.; Hintz, W.; Tomas, J.; Sabel, B.A. Toxicity of polymeric nanoparticles in vivo and in vitro. J. Nanopart. Res., 2014, 16(6), 2379.
[http://dx.doi.org/10.1007/s11051-014-2379-1 ] [PMID: 26420981]
[23]
Sirisattha, S.; Momose, Y.; Kitagawa, E.; Iwahashi, H. Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res., 2004, 38(1), 61-70.
[http://dx.doi.org/10.1016/j.watres.2003.08.027 ] [PMID: 14630103]
[24]
Barbasz, A.; Oćwieja, M.; Roman, M. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60. Colloids Surf. B Biointerfaces, 2017, 156, 397-404.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.027 ] [PMID: 28551574]
[25]
Punniyakotti, P.; Panneerselvam, P.; Perumal, D.; Aruliah, R.; Angaiah, S. Anti-bacterial and anti-biofilm properties of green synthesized copper nanoparticles from Cardiospermum halicacabum leaf extract. Bioprocess Biosyst. Eng., 2020, 43(9), 1649-1657.
[http://dx.doi.org/10.1007/s00449-020-02357-x ] [PMID: 32367495]
[26]
Jahan, I.; Erci, F.; Isildak, I. Facile microwave-mediated green synthesis of non-toxic copper nanoparticles using Citrus sinensis aqueous fruit extract and their antibacterial potentials. J. Drug Deliv. Sci. Technol., 2020, (September), 102172.
[27]
Datta, A.; Patra, C.; Bharadwaj, H.; Kaur, S.; Dimri, N.; Khajuria, R. Green synthesis of zinc oxide nanoparticles using parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J. Biotechnol. Biomater., 2017, 07(03), 271.
[http://dx.doi.org/10.4172/2155-952X.1000271]
[28]
Matinise, N.; Fuku, X.G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties &; mechanism of formation. Appl. Surf. Sci., 2017, 406, 339-347.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.219]
[29]
Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev., 2019, 12(1), 19-24.
[http://dx.doi.org/10.1080/17518253.2018.1547925]
[30]
Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. The role of bromide ions in seeding growth of Au nanorods. Langmuir, 2010, 26(12), 10271-10276.
[http://dx.doi.org/10.1021/la100446q ] [PMID: 20394386]
[31]
Ruditskiy, A.; Xia, Y. Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: the roles of heterogeneous nucleation and surface capping. J. Am. Chem. Soc., 2016, 138(9), 3161-3167.
[http://dx.doi.org/10.1021/jacs.5b13163 ] [PMID: 26878423]
[32]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002 ] [PMID: 18945421]
[33]
Jin, Y.; Dong, S. One-pot synthesis and characterization of novel silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes. J. Phys. Chem. B, 2003, 107(47), 12902-12905.
[http://dx.doi.org/10.1021/jp035400y]
[34]
Yin, B.; Zhang, S.; Zheng, X.; Qu, F.; Wu, X. Cuprous chloride nanocubes grown on copper foil for pseudocapacitor electrodes. Nano-Micro Lett., 2014, 6(4), 340-346.
[http://dx.doi.org/10.1007/s40820-014-0007-3 ] [PMID: 30464945]
[35]
Catalano, P.N.; Chaudhary, R.G.; Desimone, M.F.; Santo-Orihuela, P.L. A survey on analytical methods for the characterization of green synthesized nanomaterials. Curr. Pharm. Biotechnol., 2021, Vol. 22, 1-25.http://www.eurekaselect.com/node/189876/article
[36]
Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci., 2007, 72(9), R138-R151.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00535.x ] [PMID: 18034743]
[37]
Burris, K.P.; Harte, F.M.; Michael Davidson, P.; Stewart, C.N.; Zivanovic, S. Composition and bioactive properties of Yerba Mate (Ilex paraguariensis A. St.-Hil.): A review. Chil. J. Agric. Res., 2012, 72(2), 268-274.
[http://dx.doi.org/10.4067/S0718-58392012000200016]
[38]
Berté, K.A.S.; Beux, M.R.; Spada, P.K.W.D.S.; Salvador, M.; Hoffmann-Ribani, R. Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A.St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J. Agric. Food Chem., 2011, 59(10), 5523-5527.
[http://dx.doi.org/10.1021/jf2008343 ] [PMID: 21510640]
[39]
Galdopórpora, J.M.; Ibar, A.; Tuttolomondo, M.V.; Desimone, M.F. Dual-effect core–shell polyphenol coated silver nanoparticles for tissue engineering. Nano-Structures & Nano-Objects, 2021, 26, 100716.Available from: https://www.sciencedirect.com/science/article/pii/S2352507X21000263
[40]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[41]
King, M.E.; Kent, I.A.; Personick, M.L. Halide-assisted metal ion reduction: emergent effects of dilute chloride, bromide, and iodide in nanoparticle synthesis. Nanoscale, 2019, 11(33), 15612-15621.
[http://dx.doi.org/10.1039/C9NR04647J ] [PMID: 31406971]
[42]
Chen, Z.; Balankura, T.; Fichthorn, K.A.; Rioux, R.M. Revisiting the polyol synthesis of silver nanostructures: role of chloride in nanocube formation. ACS Nano, 2019, 13(2), 1849-1860.
[http://dx.doi.org/10.1021/acsnano.8b08019 ] [PMID: 30673260]
[43]
Nalajala, N.; Chakraborty, A.; Bera, B.; Neergat, M. Chloride (Cl] (-)) ion-mediated shape control of palladium nanoparticles. Nanotechnology, 2016, 27(6), 065603.
[http://dx.doi.org/10.1088/0957-4484/27/6/065603 ] [PMID: 26762732]
[44]
Din, M.I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res. Lett., 2017, 12(1), 638.
[http://dx.doi.org/10.1186/s11671-017-2399-8 ] [PMID: 29282555]
[45]
Shankar, S.; Rhim, J.W. Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett., 2014, 132, 307-311.
[http://dx.doi.org/10.1016/j.matlet.2014.06.014]
[46]
Madras, G.; McCoy, B.J. Temperature effects on the transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci., 2004, 59(13), 2753-2765.
[http://dx.doi.org/10.1016/j.ces.2004.03.022]
[47]
Xue, X.; Penn, R.L.; Leite, E.R.; Huang, F.; Lin, Z. Crystal growth by oriented attachment: Kinetic models and control factors. CrystEngComm, 2014, 16(8), 1419-1429.
[http://dx.doi.org/10.1039/c3ce42129e]
[48]
Sánchez-Cortés, S.; García-Ramos, J. Photoinduced coupling and adsorption of caffeic acid on silver surface studied by surface-enhanced Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1999, 55(14), 2935-2941.
[http://dx.doi.org/10.1016/S1386-1425(99)00195-X]
[49]
Aguilar-Hernández, I.; Afseth, N.K.; López-Luke, T.; Contreras-Torres, F.F.; Wold, J.P.; Ornelas-Soto, N. Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid, p -coumaric acid, caffeic acid and sinapic acid. Vib. Spectrosc., 2017, 89, 113-122.
[http://dx.doi.org/10.1016/j.vibspec.2017.02.002]
[50]
Mohan Kumar, K.; Mandal, B.K.; Siva Kumar, K.; Sreedhara Reddy, P.; Sreedhar, B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 128-133.
[http://dx.doi.org/10.1016/j.saa.2012.10.015 ] [PMID: 23220527]
[51]
Grasel, F dos S.; Ferrão, M.F.; Wolf, C.R. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 94-101.
[http://dx.doi.org/10.1016/j.saa.2015.08.020 ] [PMID: 26296253]
[52]
Das, R.K.; Borthakur, B.B.; Bora, U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Mater. Lett., 2010, 64(13), 1445-1447.
[http://dx.doi.org/10.1016/j.matlet.2010.03.051]
[53]
Arrieta, M.P.; Peponi, L.; López, D.; Fernández-García, M. Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Ind. Crops Prod., 2018, 111, 317-328.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.042]
[54]
Fang, M.; Chen, J.H.; Xu, X.L.; Yang, P.H.; Hildebrand, H.F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents, 2006, 27(6), 513-517.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.01.008 ] [PMID: 16713190]
[55]
Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ahmad, R.; Ashraf, M. Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. J. Mol. Struct., 2019, 1189, 315-327.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.060]
[56]
Pormohammad, A.; Turner, R.J. Silver antibacterial synergism activities with eight other metal(loid)-based antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiotics (Basel), 2020, 9(12), 853.
[http://dx.doi.org/10.3390/antibiotics9120853 ] [PMID: 33260495]
[57]
Top, A.; Ülkü, S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci., 2004, 27(1–2), 13-19.
[http://dx.doi.org/10.1016/j.clay.2003.12.002]
[58]
Chohan, Z.H.; Supuran, C.T.; Scozzafava, A. Metalloantibiotics: synthesis and antibacterial activity of cobalt(II), copper(II), nickel(II) and zinc(II) complexes of kefzol. J. Enzyme Inhib. Med. Chem., 2004, 19(1), 79-84.
[http://dx.doi.org/10.1080/14756360310001624939 ] [PMID: 15202497]
[59]
Tran, C.D.; Makuvaza, J.; Munson, E.; Bennett, B. Biocompatible copper oxide nanoparticle composites from cellulose and chitosan: facile synthesis, unique structure, and antimicrobial activity. ACS Appl. Mater. Interfaces, 2017, 9(49), 42503-42515.
[http://dx.doi.org/10.1021/acsami.7b11969 ] [PMID: 29152974]
[60]
Potbhare, A.K.; Chaudhary, R.G.; Chouke, P.B.; Yerpude, S.; Mondal, A.; Sonkusare, V.N.; Rai, A.R.; Juneja, H.D. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater. Sci. Eng. C, 2019, 99, 783-793.
[http://dx.doi.org/10.1016/j.msec.2019.02.010 ] [PMID: 30889753]
[61]
Municoy, S.; Álvarez Echazú, M.I.; Antezana, P.E.; Galdopórpora, J.M.; Olivetti, C.; Mebert, A.M.; Foglia, M.L.; Tuttolomondo, M.V.; Alvarez, G.S.; Hardy, J.G.; Desimone, M.F. Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci., 2020, 21(13), 1-39.
[http://dx.doi.org/10.3390/ijms21134724 ] [PMID: 32630690]
[62]
Karcz, D.; Matwijczuk, A.; Kamiński, D.; Creaven, B.; Ciszkowicz, E.; Lecka-Szlachta, K.; Starzak, K. Structural features of 1,3,4-thiadiazole-derived ligands and their Zn(II) and Cu(II) complexes which demonstrate synergistic antibacterial effects with kanamycin. Int. J. Mol. Sci., 2020, 21(16), 5735.
[http://dx.doi.org/10.3390/ijms21165735 ] [PMID: 32785125]
[63]
Qi, Y.; Ye, J.; Ren, S.; Lv, J.; Zhang, S.; Che, Y.; Ning, G. In-situ synthesis of metal nanoparticles@metal-organic frameworks: Highly effective catalytic performance and synergistic antimicrobial activity. J. Hazard. Mater., 2020, 387, 121687.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121687 ] [PMID: 31784130]
[64]
Kumar, A.; Mishra, B.; Tripathi, B.P. Polydopamine assisted synthesis of ultrafine silver nanoparticles for heterogeneous catalysis and water remediation. Nano-Struct. Nano-Objects, 2020, 23, 100489.Available from: http://www.sciencedirect.com/science/article/pii/S2352507X2030041Xf
[65]
Akash, N.; Arivarasu, L.; Rajeshkumar, S. Anti-inflammatory and antioxidant potential of hyaluronic acid mediated zinc nanoparticles. J. Pharm. Res. Int., 2020, (Aug), 33-37.
[http://dx.doi.org/10.9734/jpri/2020/v32i2030727]
[66]
Bandeira, M.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.; da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharm., 2020, 15, 100223.
[http://dx.doi.org/10.1016/j.scp.2020.100223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy