Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Therapeutic Targets for Phenolic Compounds from Agro-industrial By-products against Obesity

Author(s): María de la Luz Cádiz-Gurrea*, Álvaro Fernández-Ochoa, María del Carmen Villegas-Aguilar, David Arráez-Román and Antonio Segura-Carretero

Volume 29, Issue 6, 2022

Published on: 10 January, 2022

Page: [1083 - 1098] Pages: 16

DOI: 10.2174/0929867328666210920103815

Price: $65

conference banner
Abstract

Background: Obesity is considered a global epidemic. This disorder is associated with several health effects, such as metabolic disturbances that need both prevention and treatment actions. In this sense, bioactive secondary metabolites can be obtained from cheap sources such as agro-industrial waste, providing a sustainable alternative against obesity. Among these secondary metabolites, phenolic compounds present a common chemical structure core with different substitutions that provide them with biological properties such as antioxidant, inflammatory, and anti-aging capacities.

Objective: The aim of this review is to compile anti-obesity therapeutic targets for phenolic compounds from agro-industrial by-products.

Method: Scientific information has been obtained from different databases, such as Scopus, PubMed and Google Scholar, in order to select the available full-text studies conducted in the last few years.

Results: This review shows that peel, seed, pomace and other by-products from agro-industry have different effects inhibiting enzymes related to lipid or glucose metabolism and modulating biomarkers, genes and gut microbiota in animal models.

Conclusion: Revalorizing actions of agro-industrial byproducts in the prevention or treatment of obesity or associated disorders can be considered to develop new high value products that act on lipid, glucose and energy metabolisms, oxidative stress, inflammation, adipose tissue or gut microbiota. However, further human studies are needed in order to establish the optimal administration parameters.

Keywords: Phenolic compounds, agro-industry, by-products, food waste, obesity, metabolism.

[1]
World Health Organization (WHO) Obesity and overweight Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[2]
de Freitas Junior, L.M.; de Almeida, E.B., Jr Medicinal plants for the treatment of obesity: ethnopharmacological approach and chemical and biological studies. Am. J. Transl. Res., 2017, 9(5), 2050-2064.
[PMID: 28559960]
[3]
Meldrum, D.R.; Morris, M.A.; Gambone, J.C. Obesity pandemic: causes, consequences, and solutions-but do we have the will? Fertil. Steril., 2017, 107(4), 833-839.
[http://dx.doi.org/10.1016/j.fertnstert.2017.02.104] [PMID: 28292617]
[4]
Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Curr. Obes. Rep., 2015, 4(3), 363-370.
[http://dx.doi.org/10.1007/s13679-015-0169-4] [PMID: 26627494]
[5]
Palou, A.; Bonet, M.L. Challenges in obesity research. Nutr. Hosp., 2013, 28(Suppl. 5), 144-153.
[http://dx.doi.org/10.3305/nh.2013.28.sup5.6930] [PMID: 24010755]
[6]
Rodríguez-Pérez, C.; Segura-Carretero, A.; Del Mar Contreras, M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit. Rev. Food Sci. Nutr., 2019, 59(8), 1212-1229.
[http://dx.doi.org/10.1080/10408398.2017.1399859] [PMID: 29156939]
[7]
Egbuna, C.; Dable-Tupas, G. Functional Foods and Nutraceuticals; Egbuna, C.; Dable-Tupas, G., Eds.; Springer International Publishing: Cham, 2020. 978-3-030-42318-6.
[http://dx.doi.org/10.1007/978-3-030-42319-3]
[8]
Venkatakrishnan, K.; Chiu, H.F.; Wang, C.K. Impact of functional foods and nutraceuticals on high blood pressure with a special focus on meta-analysis: review from a public health perspective. Food Funct., 2020, 11(4), 2792-2804.
[http://dx.doi.org/10.1039/D0FO00357C] [PMID: 32248209]
[9]
Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci., 2020, 21(16), 1-24.
[http://dx.doi.org/10.3390/ijms21165642] [PMID: 32781724]
[10]
Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. In: Advances in Food and Nutrition Research; Academic Press Inc., 2020; Vol. 91, pp. 157-225.9780128204702.
[11]
Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. Di High-value compounds in fruit, vegetable and cereal byproducts: An overview of potential sustainable reuse and exploitation. Molecules, 2020, 25(13), 2987.
[http://dx.doi.org/10.3390/molecules25132987] [PMID: 32629805]
[12]
Karri, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother., 2019, 110, 224-238.
[http://dx.doi.org/10.1016/j.biopha.2018.11.076] [PMID: 30481727]
[13]
Jack, B.U.; Malherbe, C.J.; Mamushi, M.; Muller, C.J.F.; Joubert, E.; Louw, J.; Pheiffer, C. Adipose tissue as a possible therapeutic target for polyphenols: A case for Cyclopia extracts as anti-obesity nutraceuticals. Biomed. Pharmacother., 2019, 120, 109439.
[http://dx.doi.org/10.1016/j.biopha.2019.109439] [PMID: 31590126]
[14]
Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: Molecular mechanisms. Molecules, 2021, 26(4), 985.
[http://dx.doi.org/10.3390/molecules26040985] [PMID: 33673390]
[15]
Shi, M.; Loftus, H.; McAinch, A.J.; Su, X.Q. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J. Funct. Foods, 2017, 30, 16-29.
[http://dx.doi.org/10.1016/j.jff.2016.12.036]
[16]
Nakajima, V.M.; Macedo, G.A.; Macedo, J.A. Citrus bioactive phenolics: Role in the obesity treatment. Lebensm. Wiss. Technol., 2014, 59, 1205-1212.
[http://dx.doi.org/10.1016/j.lwt.2014.02.060]
[17]
Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 2017, 34, 29-46.
[http://dx.doi.org/10.1016/j.nut.2016.09.006] [PMID: 28063510]
[18]
Villacís-Chiriboga, J.; Elst, K.; Van Camp, J.; Vera, E.; Ruales, J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 405-447.
[http://dx.doi.org/10.1111/1541-4337.12542] [PMID: 33325169]
[19]
Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. J. Sci. Food Agric., 2018, 98(4), 1271-1279.
[http://dx.doi.org/10.1002/jsfa.8619] [PMID: 28799642]
[20]
Kong, L.; Zhang, Y.; Feng, Z.; Dong, J.; Zhang, H. Phenolic compounds of propolis alleviate lipid metabolism disorder. Evid. Based Complement. Alternat. Med., 2021, 2021, 7615830.
[http://dx.doi.org/10.1155/2021/7615830] [PMID: 33688365]
[21]
Buchholz, T.; Melzig, M.F. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med., 2015, 81(10), 771-783.
[http://dx.doi.org/10.1055/s-0035-1546173] [PMID: 26132857]
[22]
Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Ahmadi Gavlighi, H. Tannin fraction of pistachio green hull extract with pancreatic lipase inhibitory and antioxidant activity. J. Food Biochem., 2020, 44(6), e13208.
[http://dx.doi.org/10.1111/jfbc.13208] [PMID: 32189358]
[23]
Ferreira Fernandes, A.C.; Mateus Martins, I.; Taketa Moreira, K.D.; Alves Macedo, G. Use of agro-industrial residues as potent antioxidant, antiglycation agents, and α -amylase and pancreatic lipase inhibitory activity. J. Food Process. Preserv., 2020, 44, 1-12.
[http://dx.doi.org/10.1111/jfpp.14397]
[24]
Fabroni, S.; Ballistreri, G.; Amenta, M.; Romeo, F.V.; Rapisarda, P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. J. Sci. Food Agric., 2016, 96(14), 4713-4723.
[http://dx.doi.org/10.1002/jsfa.7708] [PMID: 26970531]
[25]
Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M.A.; Gonzalez de Mejia, E. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food Chem. Toxicol., 2019, 132, 110672.
[http://dx.doi.org/10.1016/j.fct.2019.110672] [PMID: 31306686]
[26]
Sung, J.; Suh, J.H.; Wang, Y. Effects of heat treatment of mandarin peel on flavonoid profiles and lipid accumulation in 3T3-L1 adipocytes. J. Food Drug Anal., 2019, 27(3), 729-735.
[http://dx.doi.org/10.1016/j.jfda.2019.05.002] [PMID: 31324288]
[27]
Rico, D.; Martín-Diana, A.B.; Martínez-Villaluenga, C.; Aguirre, L.; Silván, J.M.; Dueñas, M.; De Luis, D.A.; Lasa, A. Invitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon, 2019, 5(1), e01175.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01175] [PMID: 30775572]
[28]
Rusu, M.E.; Fizesan, I.; Pop, A.; Mocan, A.; Gheldiu, A.M.; Babota, M.; Vodnar, D.C.; Jurj, A.; Berindan-Neagoe, I.; Vlase, L.; Popa, D.S. Walnut (Juglans regia L.) septum: Assessment of bioactive molecules and in vitro biological effects. Molecules, 2020, 25(9), 2187.
[http://dx.doi.org/10.3390/molecules25092187] [PMID: 32392837]
[29]
Ontawong, A.; Duangjai, A.; Muanprasat, C.; Pasachan, T.; Pongchaidecha, A.; Amornlerdpison, D.; Srimaroeng, C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine, 2019, 52, 187-197.
[http://dx.doi.org/10.1016/j.phymed.2018.06.021] [PMID: 30599898]
[30]
Lestari, S.R.; Djati, M.S.; Rudijanto, A.; Fatchiyah, F. PPARγ expression by rambutan peel extract in obesity rat model-induced high-calorie diet. Asian Pac. J. Trop. Biomed., 2015, 5, 852-857.
[http://dx.doi.org/10.1016/j.apjtb.2015.01.030]
[31]
Kang, S.; Song, S.; Lee, J.; Chang, H.; Lee, S. Clinical investigations of the effect of citrus unshiu peel pellet on obesity and lipid profile. Evid. Based Complement. Alternat. Med., 2018, 2018, 4341961.
[http://dx.doi.org/10.1155/2018/4341961] [PMID: 30327679]
[32]
Kamel, I.H.; Salib, J.Y.; El-toumy, S.A.; Awad, A.H.; Elmenabbawy, M.K. Citrus reticulata peel extract: an Anti-obesity therapy for adolescents. Middle East J. Appl. Sci., 2019, 09, 117-124.
[33]
Pascual-Serrano, A.; Bladé, C.; Suárez, M.; Arola-Arnal, A. Grape seed proanthocyanidins improve white adipose tissue expansion during diet-induced obesity development in rats. Int. J. Mol. Sci., 2018, 19(9), 2632.
[http://dx.doi.org/10.3390/ijms19092632] [PMID: 30189642]
[34]
León-Flores, P.; Nájera, N.; Pérez, E.; Pardo, B.; Jimenez, F.; Diaz-Chiguer, D.; Villarreal, F.; Hidalgo, I.; Ceballos, G.; Meaney, E. Effects of cacao by-products and a modest weight loss intervention on the concentration of serum triglycerides in overweight subjects: Proof of concept. J. Med. Food, 2020, 23(7), 745-749.
[http://dx.doi.org/10.1089/jmf.2019.0201] [PMID: 32286894]
[35]
Song, H.; Chu, Q.; Xu, D.; Xu, Y.; Zheng, X. Purified betacyanins from hylocereus undatus peel ameliorate obesity and insulin resistance in high-fat-diet-fed mice. J. Agric. Food Chem., 2016, 64(1), 236-244.
[http://dx.doi.org/10.1021/acs.jafc.5b05177] [PMID: 26653843]
[36]
Lenquiste, S.A.; de Almeida Lamas, C.; da Silva Marineli, R.; Moraes, É.A.; Borck, P.C.; Camargo, R.L.; Quitete, V.H.A.C.; Carneiro, E.M.; Junior, M.R.M. Jaboticaba peel powder and jaboticaba peel aqueous extract reduces obesity, insulin resistance and hepatic fat accumulation in rats. Food Res. Int., 2019, 120, 880-887.
[http://dx.doi.org/10.1016/j.foodres.2018.11.053] [PMID: 31000309]
[37]
Mushtaq, Z.; Imran, M.; Salim-ur-Rehman, ; Zahoor, T.; Ahmad, R.S.; Arshad, M.U. Biochemical perspectives of xylitol extracted from indigenous agricultural by-product mung bean (Vigna radiata) hulls in a rat model. J. Sci. Food Agric., 2014, 94(5), 969-974.
[http://dx.doi.org/10.1002/jsfa.6346] [PMID: 24757723]
[38]
Amaya-Cruz, D.; Peréz-Ramírez, I.F.; Pérez-Jiménez, J.; Nava, G.M.; Reynoso-Camacho, R. Comparison of the bioactive potential of Roselle (Hibiscus sabdariffa L.) calyx and its by-product: Phenolic characterization by UPLC-QTOF MSE and their anti-obesity effect in vivo. Food Res. Int., 2019, 126, 108589.
[http://dx.doi.org/10.1016/j.foodres.2019.108589] [PMID: 31732028]
[39]
Lee, J.S.; Cha, Y.J.; Lee, K.H.; Yim, J.E. Onion peel extract reduces the percentage of body fat in overweight and obese subjects: a 12-week, randomized, double-blind, placebo-controlled study. Nutr. Res. Pract., 2016, 10(2), 175-181.
[http://dx.doi.org/10.4162/nrp.2016.10.2.175] [PMID: 27087901]
[40]
Martinez-Saez, N.; Ullate, M.; Martin-Cabrejas, M.A.; Martorell, P.; Genovés, S.; Ramon, D.; del Castillo, M.D. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem., 2014, 150, 227-234.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.100] [PMID: 24360444]
[41]
Qu, L.; Liu, Q.; Zhang, Q.; Tuo, X.; Fan, D.; Deng, J.; Yang, H. Kiwifruit seed oil prevents obesity by regulating inflammation, thermogenesis, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. Food Chem. Toxicol., 2019, 125, 85-94.
[http://dx.doi.org/10.1016/j.fct.2018.12.046] [PMID: 30597221]
[42]
Moura, M.H.C.; Donado-Pestana, C.M.; Rodrigues, L.; Pessoa, E.V.M.; Rossi E Silva, R.; Festuccia, W.T.; Genovese, M.I. Long-term supplementation with phenolic compounds from jaboticaba (Plinia jaboticaba (Vell.) Berg) reduces adiposophaty and improves glucose, lipid, and energy metabolism. Food Res. Int., 2021, 143, 110302.
[http://dx.doi.org/10.1016/j.foodres.2021.110302] [PMID: 33992322]
[43]
Becraft, A.R.; Sturm, M.L.; Mendez, R.L.; Park, S.H.; Lee, S.I.; Shay, N.F. Intake of watermelon or its byproducts alters glucose metabolism, the microbiome, and hepatic proinflammatory metabolites in High-Fat-Fed male C57BL/6J Mice. J. Nutr., 2020, 150(3), 434-442.
[http://dx.doi.org/10.1093/jn/nxz267] [PMID: 31711172]
[44]
Perpétuo, G.F.; Salgado, J.M. Effect of mango (mangifera indica, L.) ingestion on blood glucose levels of normal and diabetic rats. Plant Foods Hum. Nutr., 2003, 58, 1-12.
[http://dx.doi.org/10.1023/B:QUAL.0000040336.38013.83]
[45]
Harzallah, A.; Hammami, M.; Kępczyńska, M.A.; Hislop, D.C.; Arch, J.R.S.; Cawthorne, M.A.; Zaibi, M.S. Comparison of potential preventive effects of pomegranate flower, peel and seed oil on insulin resistance and inflammation in high-fat and high-sucrose diet-induced obesity mice model. Arch. Physiol. Biochem., 2016, 122(2), 75-87.
[http://dx.doi.org/10.3109/13813455.2016.1148053] [PMID: 26822470]
[46]
Moreira, M.E. de C.; Natal, D.I.G.; Toledo, R.C.L.; Ramirez, N.M.; Ribeiro, S.M.R.; Benjamin, L. dos A.; de Oliveira, L.L.; Rodrigues, D.A.; Antônio, J.D.; Veloso, M.P. Bacupari peel extracts (Garcinia brasiliensis) reduce high-fat diet-induced obesity in rats. J. Funct. Foods, 2017, 29, 143-153.
[http://dx.doi.org/10.1016/j.jff.2016.11.001]
[47]
Lenquiste, S.A.; Marineli, R. da S.; Moraes, É.A.; Dionísio, A.P.; de Brito, E.S.; Maróstica, M.R. Jaboticaba peel and jaboticaba peel aqueous extract shows in vitro and in vivo antioxidant properties in obesity model. Food Res. Int., 2015, 77, 162-170.
[http://dx.doi.org/10.1016/j.foodres.2015.07.023]
[48]
Hogan, S.; Canning, C.; Sun, S.; Sun, X.; Zhou, K. Effects of grape pomace antioxidant extract on oxidative stress and inflammation in diet induced obese mice. J. Agric. Food Chem., 2010, 58(21), 11250-11256.
[http://dx.doi.org/10.1021/jf102759e] [PMID: 20929236]
[49]
Zhao, R.; Long, X.; Yang, J.; Du, L.; Zhang, X.; Li, J.; Hou, C. Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food Funct., 2019, 10(12), 8273-8285.
[http://dx.doi.org/10.1039/C9FO02077B] [PMID: 31720661]
[50]
Lee, S.G.; Parks, J.S.; Kang, H.W. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J. Nutr. Biochem., 2017, 42, 62-71.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.018] [PMID: 28131896]
[51]
Echeverria, F.; Jimenez Patino, P.A.; Castro-Sepulveda, M.; Bustamante, A.; Garcia Concha, P.A.; Poblete-Aro, C.; Valenzuela, R.; Garcia-Diaz, D.F. Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet. Br. J. Nutr., 2020, 1-12.
[http://dx.doi.org/10.1017/S000711452000481X] [PMID: 33256858]
[52]
Serra, A.; Bladé, C.; Arola, L.; Macià, A.; Motilva, M.J. Flavanol metabolites distribute in visceral adipose depots after a long-term intake of grape seed proanthocyanidin extract in rats. Br. J. Nutr., 2013, 110(8), 1411-1420.
[http://dx.doi.org/10.1017/S0007114513000706] [PMID: 23507440]
[53]
Li, X.; Sui, Y.; Wu, Q.; Xie, B.; Sun, Z. Attenuated mTOR signaling and enhanced glucose homeostasis by dietary supplementation with lotus seedpod oligomeric procyanidins in streptozotocin (STZ)-induced diabetic mice. J. Agric. Food Chem., 2017, 65(19), 3801-3810.
[http://dx.doi.org/10.1021/acs.jafc.7b00233] [PMID: 28314100]
[54]
Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. (Lond.), 2016, 13, 27.
[http://dx.doi.org/10.1186/s12986-016-0080-3] [PMID: 27069498]
[55]
Kilany, O.E.; Abdelrazek, H.M.A.; Aldayel, T.S.; Abdo, S.; Mahmoud, M.M.A. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J. Biol. Sci., 2020, 27(10), 2733-2746.
[http://dx.doi.org/10.1016/j.sjbs.2020.06.026] [PMID: 32994733]
[56]
Abdulmalek, S.A.; Fessal, M.; El-Sayed, M. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. J. Ethnopharmacol., 2021, 266, 113439.
[http://dx.doi.org/10.1016/j.jep.2020.113439] [PMID: 33017634]
[57]
Díaz-de-Cerio, E.; Rodríguez-Nogales, A.; Algieri, F.; Romero, M.; Verardo, V.; Segura-Carretero, A.; Duarte, J.; Galvez, J. The hypoglycemic effects of guava leaf (Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res. Int., 2017, 96, 64-71.
[http://dx.doi.org/10.1016/j.foodres.2017.03.019] [PMID: 28528109]
[58]
Aborehab, N.M.; El Bishbishy, M.H.; Waly, N.E. Resistin mediates tomato and broccoli extract effects on glucose homeostasis in high fat diet-induced obesity in rats. BMC Complement. Altern. Med., 2016, 16, 225.
[http://dx.doi.org/10.1186/s12906-016-1203-0] [PMID: 27430475]
[59]
Kiritsakis, K.; Melliou, E.; Magiatis, P.; Gerasopoulos, D. Enhancement of bioactive phenols and quality values of olive oil by recycling olive mill waste water. JAOCS. J. Am. Oil Chem. Soc., 2017, 94, 1077-1085.
[http://dx.doi.org/10.1007/s11746-017-3011-1]
[60]
Peroulis, N.; Androutsopoulos, V.P.; Notas, G.; Koinaki, S.; Giakoumaki, E.; Spyros, A.; Manolopoulou, Ε.; Kargaki, S.; Tzardi, M.; Moustou, E.; Stephanou, E.G.; Bakogeorgou, E.; Malliaraki, N.; Niniraki, M.; Lionis, C.; Castanas, E.; Kampa, M. Significant metabolic improvement by a water extract of olives: animal and human evidence. Eur. J. Nutr., 2019, 58(6), 2545-2560.
[http://dx.doi.org/10.1007/s00394-018-1807-x] [PMID: 30094646]
[61]
Choi, E.Y.; Lee, H.; Woo, J.S.; Jang, H.H.; Hwang, S.J.; Kim, H.S.; Kim, W.S.; Kim, Y.S.; Choue, R.; Cha, Y.J.; Yim, J.E.; Kim, W. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition, 2015, 31(9), 1131-1135.
[http://dx.doi.org/10.1016/j.nut.2015.04.020] [PMID: 26233871]
[62]
Żyżelewicz, D.; Zakłos-Szyda, M.; Juśkiewicz, J.; Bojczuk, M.; Oracz, J.; Budryn, G.; Miśkiewicz, K.; Krysiak, W.; Zduńczyk, Z.; Jurgoński, A. Cocoa bean (Theobroma cacao L.) phenolic extracts as PTP1B inhibitors, hepatic HepG2 and pancreatic β-TC3 cell cytoprotective agents and their influence on oxidative stress in rats. Food Res. Int., 2016, 89, 946-957.
[http://dx.doi.org/10.1016/j.foodres.2016.01.009]
[63]
Qu, L.; Liu, Q.; Zhang, Q.; Liu, D.; Zhang, C.; Fan, D.; Deng, J.; Yang, H. Kiwifruit seed oil ameliorates inflammation and hepatic fat metabolism in high-fat diet-induced obese mice. J. Funct. Foods, 2019, 52, 715-723.
[http://dx.doi.org/10.1016/j.jff.2018.12.003]
[64]
Elkahoui, S.; Bartley, G.E.; Yokoyama, W.H.; Friedman, M. Dietary supplementation of potato peel powders prepared from conventional and organic russet and non-organic gold and red potatoes reduces weight gain in mice on a high-fat diet. J. Agric. Food Chem., 2018, 66(24), 6064-6072.
[http://dx.doi.org/10.1021/acs.jafc.8b01987] [PMID: 29877090]
[65]
Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]
[66]
Di Stefano, E.; Oliviero, T.; Udenigwe, C.C. Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Curr. Opin. Food Sci., 2018, 20, 7-12.
[http://dx.doi.org/10.1016/j.cofs.2018.02.008]
[67]
Sultana, R.; Alashi, A.M.; Islam, K.; Saifullah, M.; Haque, C.E.; Aluko, R.E. Inhibitory activities of polyphenolic extracts of bangladeshi vegetables against α-amylase, α-glucosidase, pancreatic lipase, renin, and angiotensin-converting enzyme. Foods, 2020, 9(7), 844.
[http://dx.doi.org/10.3390/foods9070844] [PMID: 32610462]
[68]
Nowicka, P.; Wojdyło, A.; Laskowski, P. Inhibitory potential against digestive enzymes linked to obesity and type 2 diabetes and content of bioactive compounds in 20 cultivars of the peach fruit grown in Poland. Plant Foods Hum. Nutr., 2018, 73(4), 314-320.
[http://dx.doi.org/10.1007/s11130-018-0688-8] [PMID: 30284108]
[69]
Ranilla, L.G.; Huamán-Alvino, C.; Flores-Báez, O.; Aquino-Méndez, E.M.; Chirinos, R.; Campos, D.; Sevilla, R.; Fuentealba, C.; Pedreschi, R.; Sarkar, D.; Shetty, K. Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. J. Food Sci. Technol., 2019, 56(6), 2909-2924.
[http://dx.doi.org/10.1007/s13197-019-03748-z] [PMID: 31205346]
[70]
Colantuono, A.; Ferracane, R.; Vitaglione, P. In vitro bioaccessibility and functional properties of polyphenols from pomegranate peels and pomegranate peels-enriched cookies. Food Funct., 2016, 7(10), 4247-4258.
[http://dx.doi.org/10.1039/C6FO00942E] [PMID: 27722370]
[71]
de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Biasoto, A.C.T.; Shahidi, F. Enzyme-assisted extraction of phenolics from winemaking by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. Food Chem., 2016, 212, 395-402.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.047] [PMID: 27374548]
[72]
Maffeis, C.; Pinelli, L.; Brambilla, P.; Banzato, C.; Valzolgher, L.; Ulmi, D.; Di Candia, S.; Cammarata, B.; Morandi, A. Fasting plasma glucose (FPG) and the risk of impaired glucose tolerance in obese children and adolescents. Obesity (Silver Spring), 2010, 18(7), 1437-1442.
[http://dx.doi.org/10.1038/oby.2009.355] [PMID: 19851301]
[73]
Guo, J.; Tao, H.; Cao, Y.; Ho, C.T.; Jin, S.; Huang, Q. Prevention of obesity and type 2 diabetes with aged citrus peel (Chenpi) extract. J. Agric. Food Chem., 2016, 64(10), 2053-2061.
[http://dx.doi.org/10.1021/acs.jafc.5b06157] [PMID: 26912037]
[74]
Tripathi, D.; Kant, S.; Pandey, S.; Ehtesham, N.Z. Resistin in metabolism, inflammation, and disease. FEBS J., 2020, 287(15), 3141-3149.
[http://dx.doi.org/10.1111/febs.15322] [PMID: 32255270]
[75]
Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci., 2018, 14(11), 1483-1496.
[http://dx.doi.org/10.7150/ijbs.27173] [PMID: 30263000]
[76]
Mao, Z.; Zhang, W. Role of mTOR in glucose and lipid metabolism. Int. J. Mol. Sci., 2018, 19(7), 2043.
[http://dx.doi.org/10.3390/ijms19072043] [PMID: 30011848]
[77]
Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A therapeutic agent for obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866.
[http://dx.doi.org/10.2147/DDDT.S227499] [PMID: 32009777]
[78]
Liu, C.; Ma, J.; Sun, J.; Cheng, C.; Feng, Z.; Jiang, H.; Yang, W. Flavonoid-rich extract of paulownia fortunei flowers attenuates diet-induced hyperlipidemia, hepatic steatosis and insulin resistance in obesity mice by ampk pathway. Nutrients, 2017, 9(9), 1-15.
[http://dx.doi.org/10.3390/nu9090959] [PMID: 28867797]
[79]
Song, M.; Yang, G.; Hoa, T.Q.; Hieu, H.D.; Amin, A.S.M.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J.; Ha, J. Anti-obesity effect of fermented persimmon extracts via activation of AMP-activated protein kinase. Biol. Pharm. Bull., 2020, 43(3), 440-449.
[http://dx.doi.org/10.1248/bpb.b19-00777] [PMID: 32115502]
[80]
Lin, S.; Wang, Z.; Lin, Y.; Ge, S.; Hamzah, S.S.; Hu, J. Bound phenolics from fresh lotus seeds exert anti-obesity effects in 3T3-L1 adipocytes and high-fat diet-fed mice by activation of AMPK. J. Funct. Foods, 2019, 58, 74-84.
[http://dx.doi.org/10.1016/j.jff.2019.04.054]
[81]
You, M.K.; Go, G.W.; Kim, H.J.; Rhyu, J.; Kim, H-A. Pear pomace water extract reduces adiposity in vivo and in vitro by activating the AMPK-dependent pathway. Asian Pac. J. Trop. Biomed., 2020, 10, 208-215.
[http://dx.doi.org/10.4103/2221-1691.281464]
[82]
Cádiz-Gurrea, M. de la L.; Olivares-Vicente, M.; Herranz-López, M.; Román-Arráez, D.; Fernández-Arroyo, S.; Micol, V.; Segura-Carretero, A. Bioassay-guided purification of Lippia citriodora polyphenols with AMPK modulatory activity. J. Funct. Foods, 2018, 46, 514-520.
[http://dx.doi.org/10.1016/j.jff.2018.05.026]
[83]
Agrawal, N.; Singh, S.K. Obesity: an independent risk factor for oxidative stress. Int. J. Adv. Med., 2017, 4, 718.
[http://dx.doi.org/10.18203/2349-3933.ijam20172260]
[84]
Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, A.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci., 2011, 12(5), 3117-3132.
[http://dx.doi.org/10.3390/ijms12053117] [PMID: 21686173]
[85]
Noratto, G.D.; Lage, N.N.; Chew, B.P.; Mertens-Talcott, S.U.; Talcott, S.T.; Pedrosa, M.L. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chem., 2018, 266, 405-414.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.020] [PMID: 30381205]
[86]
Mabrouki, L.; Rjeibi, I.; Taleb, J.; Zourgui, L. Cardiac ameliorative effect of Moringa oleifera leaf extract in high-fat diet-induced obesity in rat model. BioMed Res. Int., 2020, 2020, 6583603.
[http://dx.doi.org/10.1155/2020/6583603] [PMID: 32190675]
[87]
Guo, F.; Xiong, H.; Wang, X.; Jiang, L.; Yu, N.; Hu, Z.; Sun, Y.; Tsao, R. Phenolics of green pea (Pisum sativum L.) hulls, their plasma and urinary metabolites, bioavailability, and in vivo antioxidant activities in a rat model. J. Agric. Food Chem., 2019, 67(43), 11955-11968.
[http://dx.doi.org/10.1021/acs.jafc.9b04501] [PMID: 31595748]
[88]
Nemes, A.; Homoki, J.R.; Kiss, R.; Hegedűs, C.; Kovács, D.; Peitl, B.; Gál, F.; Stündl, L.; Szilvássy, Z.; Remenyik, J. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients, 2019, 11(9), 1966.
[http://dx.doi.org/10.3390/nu11091966] [PMID: 31438590]
[89]
Kim, B.; Lee, S.G.; Park, Y.K.; Ku, C.S.; Pham, T.X.; Wegner, C.J.; Yang, Y.; Koo, S.I.; Chun, O.K.; Lee, J.Y. Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice. Nutr. Res. Pract., 2016, 10(5), 494-500.
[http://dx.doi.org/10.4162/nrp.2016.10.5.494] [PMID: 27698956]
[90]
Noratto, G.D.; Chew, B.P.; Atienza, L.M. Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem., 2017, 227, 305-314.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.097] [PMID: 28274436]
[91]
Peixoto, T.C.; Moura, E.G.; de Oliveira, E.; Soares, P.N.; Guarda, D.S.; Bernardino, D.N.; Ai, X.X.; Rodrigues, V.D.S.T.; de Souza, G.R.; da Silva, A.J.R.; Figueiredo, M.S.; Manhães, A.C.; Lisboa, P.C. Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur. J. Nutr., 2018, 57(5), 1829-1844.
[http://dx.doi.org/10.1007/s00394-017-1467-2] [PMID: 28501921]
[92]
Zhang, Y.; Wen, M.; Zhou, P.; Tian, M.; Zhou, J.; Zhang, L. Analysis of chemical composition in Chinese olive leaf tea by UHPLC-DAD-Q-TOF-MS/MS and GC-MS and its lipid-lowering effects on the obese mice induced by high-fat diet. Food Res. Int., 2020, 128, 108785.
[http://dx.doi.org/10.1016/j.foodres.2019.108785] [PMID: 31955756]
[93]
Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative study on beneficial effects of hydroxytyrosol- and oleuropein-rich olive leaf extracts on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. BioMed Res. Int., 2020, 2020, 1315202.
[http://dx.doi.org/10.1155/2020/1315202] [PMID: 31998777]
[94]
Seo, K.H.; Kim, H.; Chon, J.W.; Kim, D.H.; Nah, S.Y.; Arvik, T.; Yokoyama, W. Flavonoid-rich Chardonnay grape seed flour supplementation ameliorates diet-induced visceral adiposity, insulin resistance, and glucose intolerance via altered adipose tissue gene expression. J. Funct. Foods, 2015, 17, 881-891.
[http://dx.doi.org/10.1016/j.jff.2015.06.039]
[95]
Tung, Y.C.; Chang, W.T.; Li, S.; Wu, J.C.; Badmeav, V.; Ho, C.T.; Pan, M.H. Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity. Food Funct., 2018, 9(6), 3363-3373.
[http://dx.doi.org/10.1039/C7FO02066J] [PMID: 29855643]
[96]
Luna-Vital, D.; Luzardo-Ocampo, I.; Cuellar-Nuñez, M.L.; Loarca-Piña, G.; Gonzalez de Mejia, E. Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways. J. Nutr. Biochem., 2020, 79, 108343.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108343] [PMID: 32007662]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy