Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Probiotic Properties of a Spaceflight-induced Mutant Lactobacillus Plant- arum SS18-50 in Mice

Author(s): Dan Wang, Tiehua Zhang, Hongwei Hao, Hongxing Zhang, Haiqing Ye* and Changhui Zhao*

Volume 22, Issue 5, 2022

Published on: 03 February, 2022

Page: [525 - 531] Pages: 7

DOI: 10.2174/1871530321666210917163719

Price: $65

conference banner
Abstract

Background: Probiotics are a group of bacteria that play a critical role in intestinal microbiota homeostasis and may help adjunctively treat certain diseases like metabolic and immune disorders.

Objective: We recently generated a space-flight mutated Lactobacillus plantarum SS18-50 with good in vitro probiotic characteristics. In the current research, we designed two in vivo experiments to evaluate whether L. plantarum SS18-50 had the ability to increase beneficial gut bacteria, regulate oxidative status and ameliorate inflammation in mice.

Methods: Experiments I: the ICR mice were gavaged with L. plantarum SS18-50 or its wild type L. plantarum GS18 at 107 or 109 CFU/kg BW daily for one month, during which the body weight was recorded weekly. The feces were collected to determine the abundance of two main beneficial bacterial groups including Lactobacillus and Bifidobacterium by selective culturing, while the total triglycerides and cholesterols in sera were determined using commercial kits. Experiment II: the mice were gavaged with loperamide hydrochloride (Lop) to develop oxidative stress and inflammation phenotypes. At the same time, the experimental mice were gavaged with L. plantarum SS18-50 or wild type L. plantarum GS18 at 107 or 109 CFU/kg BW daily for one month. At the end of the experiment, oxidative indicators (SOD and MDA) and inflammatory cytokines (IL-17A and IL-10) were measured by commercial kits.

Results: Results showed that L. plantarum SS18-50 increased the abundance of Lactobacillus and Bifidobacterium in mice after one month’s administration. L. plantarum SS18-50 also showed the anti-oxidant activity by increasing SOD and decreasing MDA and exerted the anti-inflammatory effect by increasing IL-10 and decreasing IL-17A in Lop treated mice. Both the wild type stain and the space mutant had such biomedical effects, but L. plantarum SS18-50 was better in increasing gut beneficial bacteria and oxidative regulation than the wild type (P<0.05).

Conclusion: We conclude that L. plantarum SS18-50 has a great potential to serve as a dietary functional probiotic supplement and/or adjunctive treatment strategy.

Keywords: L. plantarum, probiotics, ROS, inflammation, gut health, inflammatory cytokines.

Graphical Abstract

[1]
Wilkins, T.; Sequoia, J. Probiotics for gastrointestinal conditions: a summary of the evidence. Am. Fam. Physician, 2017, 96(3), 170-178.
[PMID: 28762696]
[2]
Albuquerque-Souza, E.; Balzarini, D.; Ando-Suguimoto, E.S.; Ishikawa, K.H.; Simionato, M.R.L.; Holzhausen, M.; Mayer, M.P.A. Probiotics alter the immune response of gingival epithelial cells challenged by Porphyromonas gingivalis. J. Periodontal Res., 2019, 54(2), 115-127.
[http://dx.doi.org/10.1111/jre.12608] [PMID: 30284741]
[3]
Spacova, I.; Ceuppens, J.L.; Seys, S.F.; Petrova, M.I.; Lebeer, S. Probiotics against airway allergy: host factors to consider. Dis. Model. Mech., 2018, 11(7), dmm034314.
[http://dx.doi.org/10.1242/dmm.034314] [PMID: 30037806]
[4]
Harper, A.; Naghibi, M.M.; Garcha, D. The role of bacteria, probiotics and diet in irritable bowel syndrome. Foods, 2018, 7(2), 13.
[http://dx.doi.org/10.3390/foods7020013] [PMID: 29373532]
[5]
Jia, L.; Shigwedha, N.; Mwandemele, O.D. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity. J. Food Sci., 2010, 75(1), M14-M18.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01398.x] [PMID: 20492180]
[6]
Salminen, S.; Isolauri, E. Intestinal colonization, microbiota, and probiotics. J. Pediatrics, 2006, 149(5), 115-120.
[http://dx.doi.org/10.1016/j.jpeds.2006.06.062]
[7]
Coman, M.M.; Mazzotti, L.; Silvi, S.; Scalise, A.; Orpianesi, C.; Cresci, A.; Verdenelli, M.C. Antimicrobial activity of SYNBIO® probiotic formulation in pathogens isolated from chronic ulcerative lesions: In vitro studies. J. Appl. Microbiol., 2020, 128(2), 584-597.
[http://dx.doi.org/10.1111/jam.14482] [PMID: 31602730]
[8]
Yeo, S.K.; Liong, M.T. Growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus upon ultraviolet radiation. Int. J. Food Sci. Nutr., 2012, 63(7), 821-831.
[http://dx.doi.org/10.3109/09637486.2011.652942] [PMID: 22264088]
[9]
Chunli, M.A.; Zhang, L. Screening of high acid-producing lactic acid bacteria by UV/NTG mutation. China Brewing, 2010, 8, 122-124.
[10]
Zhang, X.; Fang, X.; Liu, C. Genomic and proteomic analysis of escherichia coli after spaceflight reveals changes involving metabolic pathways. Arch. Med. Res., 2015, 46(3), 181-185.
[http://dx.doi.org/10.1016/j.arcmed.2015.03.007] [PMID: 25846064]
[11]
Sun, M.C.; Hou, P.P.; Wang, X.Y.; Zhao, C.H.; Cheng, B.J.; Wang, Y.L.; Hao, H.W.; Zhang, T.H.; Ye, H.Q. Pretreatment with Lactobacillus reuteri F-9-35 attenuates ethanol-induced gastric injury in rats. Food Nutr. Res., 2018, 62, 1469.
[http://dx.doi.org/10.29219/fnr.v62.1469] [PMID: 30574053]
[12]
Sun, M.C.; Zhang, F.C.; Yin, X.; Cheng, B.J.; Zhao, C.H.; Wang, Y.L.; Zhang, Z.Z.; Hao, H.W.; Zhang, T.H.; Ye, H.Q. Lactobacillus reuteri F-9-35 prevents DSS-induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci., 2018, 83(10), 2645-2652.
[http://dx.doi.org/10.1111/1750-3841.14326] [PMID: 30216448]
[13]
Jiang, Z. Effect of ultrasound on the structure and functional properties of transglutaminase-crosslinked whey protein isolate exposed to prior heat treatment. Int. Dairy J., 2018, 88, 79-88.
[http://dx.doi.org/10.1016/j.idairyj.2018.08.007]
[14]
Foysal, M.J.; Fotedar, R.; Siddik, M.A.B.; Tay, A. Lactobacillus acidophilus and L. plantarum improve health status, modulate gut microbiota and innate immune response of marron (Cherax cainii). Sci. Rep., 2020, 10(1), 5916.
[http://dx.doi.org/10.1038/s41598-020-62655-y] [PMID: 32246011]
[15]
Li, C.; Nie, S.P.; Zhu, K.X.; Ding, Q.; Li, C.; Xiong, T.; Xie, M.Y. Lactobacillus plantarum NCU116 improves liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease. Food Funct., 2014, 5(12), 3216-3223.
[http://dx.doi.org/10.1039/C4FO00549J] [PMID: 25317840]
[16]
Paszti-Gere, E.; Szeker, K.; Csibrik-Nemeth, E.; Csizinszky, R.; Marosi, A.; Palocz, O.; Farkas, O.; Galfi, P. Metabolites of Lactobacillus plantarum 2142 prevent oxidative stress-induced overexpression of proinflammatory cytokines in IPEC-J2 cell line. Inflammation, 2012, 35(4), 1487-1499.
[http://dx.doi.org/10.1007/s10753-012-9462-5] [PMID: 22476971]
[17]
Kim, S.; Huang, E.; Park, S.; Holzapfel, W.; Lim, S.D. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Han-gug Chugsan Sigpum Hag-hoeji, 2018, 38(3), 554-569.
[PMID: 30018499]
[18]
Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; He, X. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Sci. Nutr., 2019, 7(4), 1295-1301.
[http://dx.doi.org/10.1002/fsn3.962] [PMID: 31024702]
[19]
Sakai, T. Lactobacillus plantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J. Nutr. Sci. Vitaminol., 2013, 59(2), 144-147.
[20]
Wang, L.X.; Liu, K.; Gao, D.W.; Hao, J.K. Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice. World J. Gastroenterol., 2013, 19(20), 3150-3156.
[http://dx.doi.org/10.3748/wjg.v19.i20.3150] [PMID: 23716997]
[21]
Dumlu, E.G.; Tokaç, M.; Bozkurt, B.; Yildirim, M.B.; Ergin, M.; Yalçin, A.; Kiliç, M. Correlation between the serum and tissue levels of oxidative stress markers and the extent of inflammation in acute appendicitis. Clinics (São Paulo), 2014, 69(10), 677-682.
[http://dx.doi.org/10.6061/clinics/2014(10)05] [PMID: 25518019]
[22]
He, X.; Zheng, S.; Sheng, Y.; Miao, T.; Xu, J.; Xu, W.; Huang, K.; Zhao, C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. J. Sci. Food Agric., 2021, 101(2), 631-637.
[http://dx.doi.org/10.1002/jsfa.10675] [PMID: 32683698]
[23]
Zhang, T.; Yang, Y.; Liang, Y.; Jiao, X.; Zhao, C. Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients, 2018, 10(8), 1055.
[http://dx.doi.org/10.3390/nu10081055] [PMID: 30096921]
[24]
Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut, 2018, 67(2), 226-236.
[http://dx.doi.org/10.1136/gutjnl-2017-314205] [PMID: 29102920]
[25]
Kalliomäki, M.; Salminen, S.; Isolauri, E. Positive interactions with the microbiota: probiotics. Adv. Exp. Med. Biol., 2008, 635, 57-66.
[http://dx.doi.org/10.1007/978-0-387-09550-9_5] [PMID: 18841703]
[26]
Moré, M.I.; Swidsinski, A. Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis - a review. Clin. Exp. Gastroenterol., 2015, 8, 237-255.
[http://dx.doi.org/10.2147/CEG.S85574] [PMID: 26316791]
[27]
Corr, S.C.; Gahan, C.G.M.; Hill, C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol., 2007, 50(3), 380-388.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00264.x] [PMID: 17537177]
[28]
Rinne, M.; Kalliomaki, M.; Arvilommi, H.; Salminen, S.; Isolauri, E. Effect of probiotics and breastfeeding on the bifidobacterium and lactobacillus/enterococcus microbiota and humoral immune responses. J. Pediatr., 2005, 147(2), 186-191.
[http://dx.doi.org/10.1016/j.jpeds.2005.03.053] [PMID: 16126047]
[29]
Pärtty, A.; Kalliomäki, M.; Endo, A.; Salminen, S.; Isolauri, E. Compositional development of Bifidobacterium and Lactobacillus microbiota is linked with crying and fussing in early infancy. PLoS One, 2012, 7(3), e32495.
[http://dx.doi.org/10.1371/journal.pone.0032495] [PMID: 22403665]
[30]
Daugherty, L.M. Loperamide hydrochloride. Am. Pharm., 1990, NS30(12), 45-48.
[http://dx.doi.org/10.1016/S0160-3450(15)31396-9] [PMID: 2275455]
[31]
Katz, J.P.; Sturmann, K.M. Appendicitis associated with loperamide hydrochloride abuse. Ann. Pharmacother., 1993, 27(3), 369-370.
[http://dx.doi.org/10.1177/106002809302700324] [PMID: 8453179]
[32]
Brembilla, N.C.; Senra, L.; Boehncke, W-H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front. Immunol., 2018, 9(9), 1682-1682.
[http://dx.doi.org/10.3389/fimmu.2018.01682] [PMID: 30127781]
[33]
Hohenberger, M.; Cardwell, L.A.; Oussedik, E.; Feldman, S.R. Interleukin-17 inhibition: role in psoriasis and inflammatory bowel disease. J. Dermatolog. Treat., 2018, 29(1), 13-18.
[http://dx.doi.org/10.1080/09546634.2017.1329511] [PMID: 28521565]
[34]
Gouda, M.M.; Bhandary, Y.P. Acute lung injury: IL-17A-mediated inflammatory pathway and its regulation by curcumin. Inflammation, 2019, 42(4), 1160-1169.
[http://dx.doi.org/10.1007/s10753-019-01010-4] [PMID: 31011925]
[35]
Engelhardt, K.R.; Grimbacher, B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms. Curr. Top. Microbiol. Immunol., 2014, 380, 1-18.
[http://dx.doi.org/10.1007/978-3-662-43492-5_1] [PMID: 25004811]
[36]
Li, M.C.; He, S.H. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J. Gastroenterol., 2004, 10(5), 620-625.
[http://dx.doi.org/10.3748/wjg.v10.i5.620] [PMID: 14991925]
[37]
Lee, C.S.; Kim, S.H. Anti-inflammatory and anti-osteoporotic potential of Lactobacillus plantarum A41 and L. fermentum SRK414 as probiotics. Probiotics Antimicrob. Proteins, 2020, 12(2), 623-634.
[http://dx.doi.org/10.1007/s12602-019-09577-y] [PMID: 31372901]
[38]
Han, K.J.; Lee, J.E.; Lee, N.K.; Paik, H.D. Antioxidant and anti-inflammatory effect of probiotic Lactobacillus plantarum KU15149 derived from Korean homemade diced-radish Kimchi. J. Microbiol. Biotechnol., 2020, 30(4), 591-598.
[http://dx.doi.org/10.4014/jmb.2002.02052] [PMID: 32238771]
[39]
Prete, R.; Garcia-Gonzalez, N.; Di Mattia, C.D.; Corsetti, A.; Battista, N. Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis. Sci. Rep., 2020, 10(1), 16340.
[http://dx.doi.org/10.1038/s41598-020-73201-1] [PMID: 33004903]
[40]
Jones, S.E.; Paynich, M.L.; Kearns, D.B.; Knight, K.L. Protection from intestinal inflammation by bacterial exopolysaccharides. J. Immunol., 2014, 192(10), 4813-4820.
[http://dx.doi.org/10.4049/jimmunol.1303369] [PMID: 24740503]
[41]
Nes, I.F.; Holo, H. Class II antimicrobial peptides from lactic acid bacteria. Biopolymers, 2000, 55(1), 50-61.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<50::AID-BIP50>3.0.CO;2-3] [PMID: 10931441]
[42]
Ohno, H. Gut microbial short-chain fatty acids in host defense and immune regulation. Inflamm. Regen., 2015, 35(3), 114-121.
[http://dx.doi.org/10.2492/inflammregen.35.114]
[43]
Le, B.; Yang, S.H. Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicol. Rep., 2018, 5(3), 314-317.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.007] [PMID: 29854599]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy