Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Polyphenolic Natural Products Active In Silico Against SARS-CoV-2 Spike Receptor Binding Domains and Non-structural Proteins - A Review

Author(s): Mark Tristan Quimque, Kin Israel Notarte, Xela Amor Adviento, Mikhail Harvey Cabunoc, Von Novi de Leon, Felippe Steven Louis delos Reyes, Eiron John Lugtu, Joe Anthony Manzano, Sofia Nicole Monton, John Emmanuel Muñoz, Katherine Denise Ong, Delfin Yñigo Pilapil, Vito Roque, Sophia Morgan Tan, Justin Allen Lim and Allan Patrick Macabeo*

Volume 26, Issue 3, 2023

Published on: 11 January, 2022

Page: [459 - 488] Pages: 30

DOI: 10.2174/1386207325666210917113207

Price: $65

conference banner
Abstract

The ongoing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has been proven to be more severe than the previous coronavirus outbreaks due to the virus’ high transmissibility. With the emergence of new variants, this global phenomenon took a more dramatic turn, with many countries recently experiencing higher surges of confirmed cases and deaths. On top of this, the inadequacy of effective treatment options for COVID-19 aggravated the problem. As a way to address the unavailability of target-specific viral therapeutics, computational strategies have been employed to hasten and systematize the search. The objective of this review is to provide initial data highlighting the utility of polyphenols as potential prophylaxis or treatment for COVID-19. In particular, presented here are virtually screened polyphenolic compounds which showed potential as either antagonists to viral entry and host cell recognition through binding with various receptor-binding regions of SARS-CoV-2 spike protein or as inhibitors of viral replication and post-translational modifications through binding with essential SARS-CoV-2 non-structural proteins.

Keywords: Polyphenols, COVID-19, SARS-CoV-2, molecular docking, flavonoids, Non-structural proteins.

Graphical Abstract

[1]
Poduri, R.; Joshi, G.; Jagadeesh, G. Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treat-ment of Covid-19. Cell. Signal., 2020, 74, 109721.
[http://dx.doi.org/10.1016/j.cellsig.2020.109721] [PMID: 32711111]
[2]
Coronavirus Resource Center. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) Available from: https://coronavirus.jhu.edu/map.html
[3]
Koyama, T.; Weeraratne, D.; Snowdon, J.L.; Parida, L. Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens, 2020, 9(5), 1-7.
[http://dx.doi.org/10.3390/pathogens9050324] [PMID: 32357545]
[4]
Sadegh, S.; Matschinske, J.; Blumenthal, D.B.; Galindez, G.; Kacprowski, T.; List, M.; Nasirigerdeh, R.; Oubounyt, M.; Pichlmair, A.; Rose, T.D.; Salgado-Albarrán, M.; Späth, J.; Stukalov, A.; Wenke, N.K.; Yuan, K.; Pauling, J.K.; Baumbach, J. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat. Commun., 2020, 11(1), 3518.
[http://dx.doi.org/10.1038/s41467-020-17189-2] [PMID: 32665542]
[5]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of ther-apeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[6]
Shamsi, A.; Mohammad, T.; Anwar, S.; Amani, S.; Khan, M.S.; Husain, F.M.; Rehman, M.T.; Islam, A.; Hassan, M.I. Potential drug tar-gets of SARS-CoV-2: From genomics to therapeutics. Int. J. Biol. Macromol., 2021, 177, 1-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.071] [PMID: 33577820]
[7]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Mar-tinez, A. COVID-19. Drug Targets and Potential Treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[8]
Wouters, O.J.; Shadlen, K.C.; Salcher-Konrad, M.; Pollard, A.J.; Larson, H.J.; Teerawattananon, Y.; Jit, M. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet, 2021, 397(10278), 1023-1034.
[http://dx.doi.org/10.1016/S0140-6736(21)00306-8] [PMID: 33587887]
[9]
Iheagwam, F.N.; Rotimi, S.O. Computer-aided analysis of multiple SARS-CoV-2 therapeutic targets: identification of potent molecules from african medicinal plants. Scientifica (Cairo), 2020, 2020.
[10]
Bharti, R.; Shukla, S.K. Molecules against Covid-19: An in silico approach for drug development. J. Electron. Sci. Technol. 2021, 100095.
[11]
Yadav, M.; Dhagat, S.; Eswari, J.S. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Eur. J. Pharm. Sci., 2020, 155, 105522.
[http://dx.doi.org/10.1016/j.ejps.2020.105522] [PMID: 32827661]
[12]
Quimque, M.T.J.; Notarte, K.I.R.; Fernandez, R.A.T.; Mendoza, M.A.O.; Liman, R.A.D.; Lim, J.A.K.; Pilapil, L.A.E.; Ong, J.K.H.; Pastra-na, A.M.; Khan, A.; Wei, D.Q.; Macabeo, A.P.G. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J. Biomol. Struct. Dyn., 2020, 1-18.
[PMID: 32476574]
[13]
Quimque, M.T.; Notarte, K.I.; Letada, A.; Fernandez, R.A.; Pilapil, D.Y., IV; Pueblos, K.R.; Agbay, J.C.; Dahse, H-M.; Wenzel-Storjohann, A.; Tasdemir, D.; Khan, A.; Wei, D-Q.; Gose Macabeo, A.P. Potential Cancer- and Alzheimer’s Disease-Targeting Phosphodiesterase Inhibitors from Uvaria alba: Insights from In Vitro and Consensus Virtual Screening. ACS Omega, 2021, 6(12), 8403-8417.
[http://dx.doi.org/10.1021/acsomega.1c00137] [PMID: 33817501]
[14]
Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In vitro and in vivo antitumoral effects of combi-nations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int. J. Mol. Sci., 2015, 16(5), 9236-9282.
[http://dx.doi.org/10.3390/ijms16059236] [PMID: 25918934]
[15]
Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol., 2012, 23(2), 174-181.
[http://dx.doi.org/10.1016/j.copbio.2011.08.007] [PMID: 21925860]
[16]
Scalbert, A. Joh1nson, I.T.; Saltmarsh, M. Polyphenols: antioxidants and beyond. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 215S-217S.
[http://dx.doi.org/10.1093/ajcn/81.1.215S] [PMID: 15640483]
[17]
Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 626-659.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[18]
Fioravanti, R.; Celestino, I.; Costi, R.; Cuzzucoli Crucitti, G.; Pescatori, L.; Mattiello, L.; Novellino, E.; Checconi, P.; Palamara, A.T.; Nencioni, L.; Di Santo, R. Effects of polyphenol compounds on influenza A virus replication and definition of their mechanism of action. Bioorg. Med. Chem., 2012, 20(16), 5046-5052.
[http://dx.doi.org/10.1016/j.bmc.2012.05.062] [PMID: 22743086]
[19]
Yang, Z-F.; Bai, L-P.; Huang, W.B.; Li, X-Z.; Zhao, S-S.; Zhong, N-S.; Jiang, Z-H. Comparison of in vitro antiviral activity of tea polyphe-nols against influenza A and B viruses and structureactivity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[20]
Calland, N.; Sahuc, M-E.; Belouzard, S.; Pène, V.; Bonnafous, P.; Mesalam, A.A.; Deloison, G.; Descamps, V.; Sahpaz, S.; Wychowski, C.; Lambert, O.; Brodin, P.; Duverlie, G.; Meuleman, P.; Rosenberg, A.R.; Dubuisson, J.; Rouillé, Y.; Séron, K. Polyphenols inhibit hepatitis c virus entry by a new mechanism of action. J. Virol., 2015, 89(19), 10053-10063.
[http://dx.doi.org/10.1128/JVI.01473-15] [PMID: 26202241]
[21]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[22]
Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In vitro anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from pistachios kernels (Pistacia Vera L). Plants (Basel, Switzerland), 2020, 9(2), 267.
[23]
Hassan, S.T.S.; Švajdlenka, E.; Berchová-Bímová, K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules, 2017, 22(5), 22.
[http://dx.doi.org/10.3390/molecules22050722] [PMID: 28468298]
[24]
Vázquez-Calvo, Á.; Jiménez de Oya, N.; Martín-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J-C. Antiviral properties of the natural polyphe-nols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus. Front. Microbiol., 2017, 8, 1314.
[http://dx.doi.org/10.3389/fmicb.2017.01314] [PMID: 28744282]
[25]
Krylova, N. V; Popov, A.M.; Leonova, G.N. Antioxidants as Potential Antiviral Agents for Flavivirus Infections. Antibiot. i khimioterapiia = Antibiot. chemoterapy [sic], 2016, 61, 25-31.
[26]
Evstropov, A.N.; Burova, L.G.; Orlovskaia, I.A.; Grek, O.R.; Zakharova, L.N.; Volkhonskaia, T.A. Anti-enterovirus and immunostimulating activity of the polyphenol complex extracted from Pethaphylloides fruticosa (L.) O. Schwarz). Vopr. Virusol., 2004, 49(6), 30-33.
[PMID: 15597958]
[27]
Andrae-Marobela, K.; Ghislain, F.W.; Okatch, H.; Majinda, R.R.T. Polyphenols: a diverse class of multi-target anti-HIV-1 agents. Curr. Drug Metab., 2013, 14(4), 392-413.
[http://dx.doi.org/10.2174/13892002113149990095] [PMID: 23330927]
[28]
Hashimoto, F.; Kashiwada, Y.; Nonaka, G.; Nishioka, I.; Nohara, T.; Cosentino, L.M.; Lee, K-H. Evaluation of tea polyphenols as anti-HIV agents. Bioorg. Med. Chem. Lett., 1996, 6, 695-700.
[http://dx.doi.org/10.1016/0960-894X(96)00095-9]
[29]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[30]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. Comput. Struct. Biotechnol. J., 2016, 14, 177-184.
[http://dx.doi.org/10.1016/j.csbj.2016.04.004] [PMID: 27293534]
[31]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[32]
Kodadek, T. The rise, fall and reinvention of combinatorial chemistry. Chem. Commun. (Camb.), 2011, 47(35), 9757-9763.
[http://dx.doi.org/10.1039/c1cc12102b] [PMID: 21701754]
[33]
Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci., 2019, 20(18), 20.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[34]
Saikia, S.; Bordoloi, M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr. Drug Targets, 2019, 20(5), 501-521.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[35]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19] [PMID: 18446297]
[36]
Li, J.; Fu, A.; Zhang, L. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking. Interdiscip. Sci., 2019, 11(2), 320-328.
[http://dx.doi.org/10.1007/s12539-019-00327-w] [PMID: 30877639]
[37]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[38]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[39]
Gilson, M.K.; Zhou, H.X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct., 2007, 36, 21-42.
[http://dx.doi.org/10.1146/annurev.biophys.36.040306.132550] [PMID: 17201676]
[40]
Muratov, E.N.; Amaro, R.; Andrade, C.H.; Brown, N.; Ekins, S.; Fourches, D.; Isayev, O.; Kozakov, D.; Medina-Franco, J.L.; Merz, K.M.; Oprea, T.I.; Poroikov, V.; Schneider, G.; Todd, M.H.; Varnek, A.; Winkler, D.A.; Zakharov, A.V.; Cherkasov, A.; Tropsha, A. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem. Soc. Rev., 2021, 50(16), 9121-9151.
[http://dx.doi.org/10.1039/D0CS01065K] [PMID: 34212944]
[41]
Ganesan, A.; Coote, M.L.; Barakat, K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov. Today, 2017, 22(2), 249-269.
[http://dx.doi.org/10.1016/j.drudis.2016.11.001] [PMID: 27890821]
[42]
Magpantay, H.D.; Malaluan, I.N.; Manzano, J.A.H.; Quimque, M.T.; Pueblos, K.R.; Moor, N.; Budde, S.; Bangcaya, P.S.; Lim-Valle, D.; Dahse, H.M.; Khan, A.; Wei, D.Q.; Alejandro, G.J.D.; Macabeo, A.P.G. Antibacterial and COX-2 Inhibitory Tetrahydrobisbenzylisoquino-line Alkaloids from the Philippine Medicinal Plant Phaeanthus ophthalmicus. Plants, 2021, 10(3), 1-16.
[http://dx.doi.org/10.3390/plants10030462] [PMID: 33804446]
[43]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[44]
Padhi, A.K.; Rath, S.L.; Tripathi, T. Accelerating COVID-19 research using molecular dynamics simulation. J. Phys. Chem. B, 2021, 125(32), 9078-9091.
[http://dx.doi.org/10.1021/acs.jpcb.1c04556] [PMID: 34319118]
[45]
Arantes, P.R.; Saha, A.; Palermo, G. Fighting COVID-19 using molecular dynamics simulations. ACS Cent. Sci., 2020, 6(10), 1654-1656.
[http://dx.doi.org/10.1021/acscentsci.0c01236] [PMID: 33140032]
[46]
Heller, A.A.; Lockwood, S.Y.; Janes, T.M.; Spence, D.M. Technologies for Measuring Pharmacokinetic Profiles. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2018, 11(1), 79-100.
[http://dx.doi.org/10.1146/annurev-anchem-061417-125611] [PMID: 29324183]
[47]
Alqahtani, S. In silico ADME-Tox modeling: progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[48]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permea-bility in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[49]
Limban, C.; Nuţă, D.C.; Chiriţă, C.; Negreș, S.; Arsene, A.L.; Goumenou, M.; Karakitsios, S.P.; Tsatsakis, A.M.; Sarigiannis, D.A. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol. Rep., 2018, 5, 943-953.
[http://dx.doi.org/10.1016/j.toxrep.2018.08.017] [PMID: 30258789]
[50]
Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M.; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct Conformational States of SARS-CoV-2 Spike Protein. Science (80-. ), 2020, 369, 1586-1592.
[51]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[52]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[53]
Cao, W.; Dong, C.; Kim, S.; Hou, D.; Tai, W.; Du, L. Im, W.; Zhang, X.F. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Biophys. J., 2021, 120(6), 1011-1019.
[http://dx.doi.org/10.1016/j.bpj.2021.02.007] [PMID: 33607086]
[54]
Yi, C.; Sun, X.; Ye, J.; Ding, L.; Liu, M.; Yang, Z.; Lu, X.; Zhang, Y.; Ma, L.; Gu, W.; Qu, A.; Xu, J.; Shi, Z.; Ling, Z.; Sun, B. Key resi-dues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell. Mol. Immunol., 2020, 17(6), 621-630.
[http://dx.doi.org/10.1038/s41423-020-0458-z] [PMID: 32415260]
[55]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H.; Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S.; Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q.; Auerbach, A.; Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G.; Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80-. ), 2020, 3, 1-8.
[56]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[57]
Fernandez, R.A.; Quimque, M.T.; Notarte, K.I.; Manzano, J.A.; Pilapil, D.Y.; de Leon, V.N.; San Jose, J.J.; Villalobos, O.; Muralidharan, N.H.; Gromiha, M.M.; Brogi, S.; Macabeo, A.P.G. Myxobacterial Depsipeptide Chondramides Interrupt SARS-CoV-2 Entry by Targeting Its Broad, Cell Tropic Spike Protein. J. Biomol. Struct. Dyn., 2021, 1-12.
[58]
Messaoudi, O.; Gouzi, H.; El-Hoshoudy, A.N.; Benaceur, F.; Patel, C.; Goswami, D.; Boukerouis, D.; Bendahou, M. Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. Egypt. J. Pet., 2021, 30, 33-43.
[59]
Istifli, E.S.; Netz, P.A.; Sihoglu Tepe, A.; Husunet, M.T.; Sarikurkcu, C.; Tepe, B. In silico analysis of the interactions of certain flavo-noids with the receptor-binding domain of 2019 novel coronavirus and cellular proteases and their pharmacokinetic properties. J. Biomol. Struct. Dyn., 2020, 0, 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1840444] [PMID: 33111622]
[60]
Rameshkumar, M.R.; Indu, P.; Arunagirinathan, N.; Venkatadri, B.; El-Serehy, H.A.; Ahmad, A. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: A molecular docking study. Saudi J. Biol. Sci., 2021, 28(1), 448-458.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.028] [PMID: 33110386]
[61]
Jain, A.S.; Sushma, P.; Dharmashekar, C.; Beelagi, M.S.; Prasad, S.K.; Shivamallu, C.; Prasad, A.; Syed, A.; Marraiki, N.; Prasad, K.S. In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J. Biol. Sci., 2021, 28(1), 1040-1051.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.049] [PMID: 33424398]
[62]
Hiremath, S.; Kumar, H.D.V.; Nandan, M.; Mantesh, M.; Shankarappa, K.S.; Venkataravanappa, V.; Basha, C.R.J.; Reddy, C.N.L In silico docking analysis revealed the potential of phytochemicals present in phyllanthus amarus and andrographis paniculata , used in ayurveda medicine in inhibiting SARS - CoV - 2. 3 Biotech, 2021, 11, 1-18.
[63]
Pandey, P.; Rane, J.S.; Chatterjee, A.; Kumar, A.; Khan, R.; Prakash, A.; Ray, S. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J. Biomol. Struct. Dyn., 2020, 0, 1-11.
[PMID: 32698689]
[64]
Mhatre, S.; Naik, S.; Patravale, V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput. Biol. Med., 2021, 129, 104137.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104137] [PMID: 33302163]
[65]
Subbaiyan, A.; Ravichandran, K.; Singh, S.V.; Sankar, M.; Thomas, P.; Dhama, K.; Malik, Y.S.; Singh, R.K.; Chaudhuri, P. In silico mo-lecular docking analysis targeting SARS-CoV-2 spike protein and selected herbal constituents. J. Pure Appl. Microbiol., 2020, 14, 989-998.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.37]
[66]
Mathew, S.M.; Benslimane, F.; Althani, A.A.; Yassine, H.M. Identification of potential natural inhibitors of the receptor-binding domain of the SARS-CoV-2 Spike protein using a computational docking approach. Qatar Med. J., 2021, 2021, 1-18.
[http://dx.doi.org/10.5339/qmj.2021.12]
[67]
Bhowmik, D.; Nandi, R.; Prakash, A.; Kumar, D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon, 2021, 7(3), e06515.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06515] [PMID: 33748510]
[68]
Pandey, P.; Khan, F.; Rana, A.K.; Srivastava, Y.; Jha, S.K.; Jha, N.K. A Drug Repurposing Approach towards Elucidating the Potential of Flavonoids as Covid-19 Spike Protein Inhibitors. Biointerface Res. Appl. Chem., 2021, 11, 8482-8501.
[69]
Puttaswamy, H.; Gowtham, H.G.; Ojha, M.D.; Yadav, A.; Choudhir, G.; Raguraman, V.; Kongkham, B.; Selvaraju, K.; Shareef, S.; Gehlot, P.; Ahamed, F.; Chauhan, L. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Sci. Rep., 2020, 10(1), 20584.
[http://dx.doi.org/10.1038/s41598-020-77602-0] [PMID: 33239694]
[70]
Adem, Ş.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Zahoor, A.F.; Ali, M.; Abdalla, M.; Ibrahim, I.M.; Elfiky, A.A. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine, 2021, 85, 153310.
[http://dx.doi.org/10.1016/j.phymed.2020.153310] [PMID: 32948420]
[71]
Arokiyaraj, S.; Stalin, A.; Kannan, B.S.; Shin, H. Geranii Herba as a Potential Inhibitor of SARS-CoV-2 Main 3CLpro, Spike RBD, and Regulation of Unfolded Protein Response: An In Silico Approach. Antibiotics (Basel), 2020, 9(12), 1-16.
[http://dx.doi.org/10.3390/antibiotics9120863] [PMID: 33287311]
[72]
Patil, R.; Chikhale, R.; Khanal, P.; Gurav, N.; Ayyanar, M.; Sinha, S.; Prasad, S.; Dey, Y.N.; Wanjari, M.; Gurav, S.S. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Informatics Med. Unlocked, 2021, 22, 100504.
[http://dx.doi.org/10.1016/j.imu.2020.100504] [PMID: 33363251]
[73]
Harisna, A.H.; Nurdiansyah, R.; Syaifie, P.H.; Nugroho, D.W.; Saputro, K.E. Firdayani; Prakoso, C.D.; Rochman, N.T.; Maulana, N.N.; Noviyanto, A.; Mardliyati, E. In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochem. Biophys. Rep., 2021, 26, 100969.
[http://dx.doi.org/10.1016/j.bbrep.2021.100969] [PMID: 33681482]
[74]
Brocchieri, L.; Conway de Macario, E.; Macario, A.J.L. hsp70 genes in the human genome: Conservation and differentiation patterns pre-dict a wide array of overlapping and specialized functions. BMC Evol. Biol., 2008, 8, 19.
[http://dx.doi.org/10.1186/1471-2148-8-19] [PMID: 18215318]
[75]
Lee, A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods, 2005, 35(4), 373-381.
[http://dx.doi.org/10.1016/j.ymeth.2004.10.010] [PMID: 15804610]
[76]
Pfaffenbach, K.T.; Lee, A.S. The critical role of GRP78 in physiologic and pathologic stress. Curr. Opin. Cell Biol., 2011, 23(2), 150-156.
[http://dx.doi.org/10.1016/j.ceb.2010.09.007] [PMID: 20970977]
[77]
Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal., 2009, 11(9), 2307-2316.
[http://dx.doi.org/10.1089/ars.2009.2485] [PMID: 19309259]
[78]
Pizzo, S.V. An Historical Perspective: Cell Surface GRP78, a New Paradigm in Signal Transduction Biology; Elsevier Inc., 2018.
[http://dx.doi.org/10.1016/B978-0-12-812351-5.00001-5]
[79]
Ibrahim, I.M.; Abdelmalek, D.H.; Elshahat, M.E.; Elfiky, A.A. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect., 2020, 80(5), 554-562.
[http://dx.doi.org/10.1016/j.jinf.2020.02.026] [PMID: 32169481]
[80]
Allam, L.; Ghrifi, F.; Mohammed, H.; El Hafidi, N.; El Jaoudi, R.; El Harti, J.; Lmimouni, B.; Belyamani, L.; Ibrahimi, A. Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform. Biol. Insights, 2020, 14, 1177932220965505.
[http://dx.doi.org/10.1177/1177932220965505] [PMID: 33149560]
[81]
Banerjee, R.; Perera, L.; Tillekeratne, L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today, 2021, 26(3), 804-816.
[http://dx.doi.org/10.1016/j.drudis.2020.12.005] [PMID: 33309533]
[82]
Wu, Y.; Li, Z.; Zhao, Y.S.; Huang, Y.Y.; Jiang, M.Y.; Luo, H.B. Therapeutic targets and potential agents for the treatment of COVID-19. Med. Res. Rev., 2021, 41(3), 1775-1797.
[http://dx.doi.org/10.1002/med.21776] [PMID: 33393116]
[83]
Jin, Z.; Wang, H.; Duan, Y.; Yang, H. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem. Biophys. Res. Commun., 2021, 538, 63-71.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.091] [PMID: 33288200]
[84]
Zeng, L.; Li, D.; Tong, W.; Shi, T.; Ning, B. Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Biochem. Pharmacol., 2021, 189, 114424.
[http://dx.doi.org/10.1016/j.bcp.2021.114424] [PMID: 33482149]
[85]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discov-ery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[86]
Piccolella, S.; Crescente, G.; Faramarzi, S.; Formato, M.; Pecoraro, M.T.; Pacifico, S. Polyphenols vs. coronaviruses: how far has research moved forward? Molecules, 2020, 25(18), 25.
[http://dx.doi.org/10.3390/molecules25184103] [PMID: 32911757]
[87]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn., 2020, 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1802347 ] [PMID: 32762411]
[88]
Shode, F.O.; Idowu, A.S.K.; Uhomoibhi, O.J.; Sabiu, S. Repurposing drugs and identification of inhibitors of integral proteins (spike pro-tein and main protease) of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 0, 1-16.
[http://dx.doi.org/10.1080/07391102.2021.1886993] [PMID: 33590806]
[89]
Olubiyi, O.O.; Olagunju, M.; Keutmann, M.; Loschwitz, J.; Strodel, B. High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2. Molecules, 2020, 25(14), 1-20.
[http://dx.doi.org/10.3390/molecules25143193] [PMID: 32668701]
[90]
Vincent, S.; Arokiyaraj, S.; Saravanan, M.; Dhanraj, M. Molecular docking studies on the anti-viral effects of compounds from kabasura kudineer on SARS-CoV-2 3CLpro. Front. Mol. Biosci., 2020, 7, 613401.
[http://dx.doi.org/10.3389/fmolb.2020.613401] [PMID: 33425994]
[91]
Zhang, Y.; Xie, Y.; Yu, B.; Yuan, C.; Yuan, Z.; Hong, Z.; Wu, H.; Yang, Y. Network pharmacology integrated molecular docking analysis of potential common mechanisms of shu-feng-jie-du capsule in the treatment of SARS, MERS, and COVID-19. Nat. Prod. Commun., 2020, 1-12.
[http://dx.doi.org/10.1177/1934578X20972914]
[92]
Udrea, A.M.; Mernea, M.; Buiu, C.; Avram, S. Scutellaria baicalensis flavones as potent drugs against acute respiratory injury during sars-cov-2 infection: structural biology approaches. Processes (Basel), 2020, 8, 1-19.
[http://dx.doi.org/10.3390/pr8111468]
[93]
Fayed, M.A.A.; El-Behairy, M.F.; Abdallah, I.A.; Abdel-Bar, H.M.; Elimam, H.; Mostafa, A.; Moatasim, Y.; Abouzid, K.A.M.; Elshaier, Y.A.M.M. Structure- and ligand-based in silico studies towards the repurposing of marine bioactive compounds to target SARS-CoV-2. Arab. J. Chem., 2021, 14, 103092.
[http://dx.doi.org/10.1016/j.arabjc.2021.103092]
[94]
Bharadwaj, S.; El-Kafrawy, S.A.; Alandijany, T.A.; Bajrai, L.H.; Shah, A.A.; Dubey, A.; Sahoo, A.K.; Yadava, U.; Kamal, M.A.; Azhar, E.I.; Kang, S.G.; Dwivedi, V.D. Structure-based identification of natural products as SARS-CoV-2 Mpro antagonist from echinacea angusti-folia using computational approaches. Viruses, 2021, 13(2), 13.
[http://dx.doi.org/10.3390/v13020305] [PMID: 33672054]
[95]
da Silva, F.M.A.; da Silva, K.P.A.; de Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.F.; Pinheiro, M.L.B.; de Souza, A.Q.L.; de Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz, 2020, 115, e200207.
[http://dx.doi.org/10.1590/0074-02760200207] [PMID: 33027419]
[96]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (sars cov-2) main pro-tease (mpro) inhibitors - an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2020, 39(12), 4362-4374.
[http://dx.doi.org/10.1080/07391102.2020.1779818] [PMID: 32568613]
[97]
Swain, S.S.; Singh, S.R.; Sahoo, A.; Hussain, T.; Pati, S. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecu-lar docking-simulation base assessment. J. Biomol. Struct. Dyn., 2021, 0, 1-14.
[PMID: 33583350]
[98]
Bhardwaj, V.K.; Singh, R.; Sharma, J.; Rajendran, V.; Purohit, R.; Kumar, S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn., 2020, 0, 1-10.
[PMID: 32397940]
[99]
Gogoi, N.; Chowdhury, P.; Goswami, A.K.; Das, A.; Chetia, D.; Gogoi, B. Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease. Mol. Divers., 2020.
[PMID: 33236176]
[100]
Augustin, T.L.; Hajbabaie, R.; Harper, M.T.; Rahman, T. Molecules against the SARS coronavirus 2 main protease. Molecules, 2020, 1-19.
[101]
Swargiary, A.; Mahmud, S.; Saleh, M.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in silico approach to combat COVID-19. J. Biomol. Struct. Dyn., 2020, 0, 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1835729] [PMID: 33089730]
[102]
Chitranshi, N.; Gupta, V.K.; Rajput, R.; Godinez, A.; Pushpitha, K.; Shen, T.; Mirzaei, M.; You, Y.; Basavarajappa, D.; Gupta, V.; Graham, S.L. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CLpro targeting repurposed drug candi-dates. J. Transl. Med., 2020, 18(1), 278.
[http://dx.doi.org/10.1186/s12967-020-02448-z] [PMID: 32646487]
[103]
de Leon, V.N.O.; Manzano, J.A.H.; Pilapil, D.Y.H., IV; Fernandez, R.A.T.; Ching, J.K.A.R.; Quimque, M.T.J.; Agbay, J.C.M.; Notarte, K.I.R.; Macabeo, A.P.G. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis. J. Genet. Eng. Biotechnol., 2021, 19(1), 104.
[http://dx.doi.org/10.1186/s43141-021-00206-2] [PMID: 34272647]
[104]
Lokhande, K.; Nawani, N.; Venkateswara, K.S.; Pawar, S. Biflavonoids from Rhus Succedanea as Probable Natural Inhibitors against SARS-CoV-2: A Molecular Docking and Molecular Dynamics Approach. J. Biomol. Struct. Dyn., 2020, 0, 1-13.
[105]
Majumder, R.; Mandal, M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. J. Biomol. Struct. Dyn., 2020, 0, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1817787] [PMID: 32897138]
[106]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Hussien, T.A.; Badr, E.A.A.; Mohamed, T.A.; El-Seedi, H.R.; Pare, P.W.; Efferth, T.; Hegazy, M.F. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Comput. Biol. Med., 2020, 126, 104046.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104046] [PMID: 33065388]
[107]
Shah, S.; Chaple, D.; Arora, S.; Yende, S.; Mehta, C.; Nayak, U. Prospecting for Cressa cretica to treat COVID-19 viain silico molecular docking models of the SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 0, 1-10.
[PMID: 33446077]
[108]
Dömling, A.; Gao, L. Chemistry and biology of SARS-CoV-2. Chem, 2020, 6(6), 1283-1295.
[http://dx.doi.org/10.1016/j.chempr.2020.04.023] [PMID: 32529116]
[109]
Alves, D.R.; da Rocha, M.N.; de Sousa, D.S.; Oliveira, I.C.M.; Marinho, M.M.; de Morais, S.M.; Marinho, E.S. Virtual screening of natural curcumins and related compounds against SARS-CoV-2. J. Comput. Biophys. Chem., 2021, 20, 53-70.
[http://dx.doi.org/10.1142/S2737416521500046]
[110]
Muteeb, G.; Alshoaibi, A.; Aatif, M.; Rehman, M.T.; Qayyum, M.Z. Screening marine algae metabolites as high-affinity inhibitors of SARS-CoV-2 main protease (3CLpro): An in Silico analysis to identify novel drug candidates to combat COVID-19 pandemic. Appl. Biol. Chem., 2020, 63(1), 79.
[111]
Ngo, S.T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D.H.; Vu, V.V. Computational determination of potential inhibitors of sars-cov-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5771-5780.
[http://dx.doi.org/10.1021/acs.jcim.0c00491] [PMID: 32530282]
[112]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main prote-ase using molecular docking study. J. Biomol. Struct. Dyn., 2021, 39(9), 3347-3357.
[113]
Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079.
[http://dx.doi.org/10.3389/fmolb.2020.599079] [PMID: 33542917]
[114]
Gupta, S.; Singh, A.K.; Kushwaha, P.P.; Prajapati, K.S.; Shuaib, M.; Senapati, S.; Kumar, S. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. J. Biomol. Struct. Dyn., 2021, 39(12), 4334-4345.
[http://dx.doi.org/10.1080/07391102.2020.1776157] [PMID: 32476576]
[115]
Sharma, S.; Deep, S. In-silico drug repurposing for targeting SARS-CoV-2 main protease (Mpro). J. Biomol. Struct. Dyn., 2020, 0, 1-8.
[PMID: 33179568]
[116]
Khalifa, I.; Zhu, W.; Mohammed, H.H.H.; Dutta, K.; Li, C. Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CLpro: An in silico approach with 19 structural different hydrolysable tannins. J. Food Biochem., 2020, 44, e13432.
[http://dx.doi.org/10.1111/jfbc.13432] [PMID: 32783247]
[117]
Cetin, A. In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors. Chem. Phys. Lett., 2021, 771, 138563.
[http://dx.doi.org/10.1016/j.cplett.2021.138563] [PMID: 33776065]
[118]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J. Biomol. Struct. Dyn., 2020, 1-16.
[PMID: 33140695]
[119]
Singh, R.; Gautam, A.; Chandel, S.; Ghosh, A.; Dey, D.; Roy, S.; Ravichandiran, V.; Ghosh, D. Protease inhibitory effect of natural poly-phenolic compounds on SARS-CoV-2: an in silico study. Molecules, 2020, 25(20), 25.
[http://dx.doi.org/10.3390/molecules25204604] [PMID: 33050360]
[120]
Clementz, M.A.; Chen, Z.; Banach, B.S.; Wang, Y.; Sun, L.; Ratia, K.; Baez-Santos, Y.M.; Wang, J.; Takayama, J.; Ghosh, A.K.; Li, K.; Mesecar, A.D.; Baker, S.C. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol., 2010, 84(9), 4619-4629.
[http://dx.doi.org/10.1128/JVI.02406-09] [PMID: 20181693]
[121]
Ratia, K.; Kilianski, A.; Baez-Santos, Y.M.; Baker, S.C.; Mesecar, A. Structural Basis for the Ubiquitin-Linkage Specificity and de-ISGylating activity of SARS-CoV papain-like protease. PLoS Pathog., 2014, 10(5), e1004113.
[http://dx.doi.org/10.1371/journal.ppat.1004113] [PMID: 24854014]
[122]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARScoronavirus papain-like protease: structure, function and inhibition by de-signed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[123]
Harcourt, B.H.; Jukneliene, D.; Kanjanahaluethai, A.; Bechill, J.; Severson, K.M.; Smith, C.M.; Rota, P.A.; Baker, S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol., 2004, 78(24), 13600-13612.
[http://dx.doi.org/10.1128/JVI.78.24.13600-13612.2004] [PMID: 15564471]
[124]
Vabret, N.; Britton, G.J.; Gruber, C.; Hegde, S.; Kim, J.; Kuksin, M.; Levantovsky, R.; Malle, L.; Moreira, A.; Park, M.D.; Pia, L.; Risson, E.; Saffern, M.; Salomé, B.; Esai Selvan, M.; Spindler, M.P.; Tan, J.; van der Heide, V.; Gregory, J.K.; Alexandropoulos, K.; Bhardwaj, N.; Brown, B.D.; Greenbaum, B.; Gümüş, Z.H.; Homann, D.; Horowitz, A.; Kamphorst, A.O.; Curotto de Lafaille, M.A.; Mehandru, S.; Merad, M.; Samstein, R.M. Immunology of COVID-19: current state of the science. Immunity, 2020, 52(6), 910-941.
[http://dx.doi.org/10.1016/j.immuni.2020.05.002] [PMID: 32505227]
[125]
Hermann, M.; Bogunovic, D. ISG15: In Sickness and in health. Trends Immunol., 2017, 38(2), 79-93.
[http://dx.doi.org/10.1016/j.it.2016.11.001] [PMID: 27887993]
[126]
Perng, Y-C.; Lenschow, D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol., 2018, 16(7), 423-439.
[http://dx.doi.org/10.1038/s41579-018-0020-5] [PMID: 29769653]
[127]
Swaim, C.D.; Canadeo, L.A.; Monte, K.J.; Khanna, S.; Lenschow, D.J.; Huibregtse, J.M. Modulation of extracellular isg15 signaling by pathogens and viral effector proteins. Cell Rep., 2020, 31(11), 107772.
[http://dx.doi.org/10.1016/j.celrep.2020.107772] [PMID: 32553163]
[128]
Pitsillou, E.; Liang, J.; Hung, A.; Karagiannis, T.C. Inhibition of interferon-stimulated gene 15 and lysine 48-linked ubiquitin binding to the SARS-CoV-2 papain-like protease by small molecules: In silico studies. Chem. Phys. Lett., 2021, 771, 138468.
[http://dx.doi.org/10.1016/j.cplett.2021.138468] [PMID: 33716308]
[129]
Li, D.; Luan, J.; Zhang, L. Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors. Biochem. Biophys. Res. Commun., 2021, 538, 72-79.
[http://dx.doi.org/10.1016/j.bbrc.2020.11.083] [PMID: 33276953]
[130]
Shawky, E.; Nada, A.A.; Ibrahim, R.S. Potential Role of Medicinal Plants and Their Constituents in the mitigation of SARS-CoV-2: network pharmacology and molecular docking analyses. R. Soc. Chem. 2020, 27961-27983.
[131]
Mitra, D.; Verma, D.; Mahakur, B.; Kamboj, A.; Srivastava, R.; Gupta, S.; Pandey, A.; Arora, B.; Pant, K.; Panneerselvam, P.; Ghosh, A.; Barik, D.P.; Das Mohapatra, P.K. Molecular docking and simulation studies of natural compounds of vitex negundo l. against papain-like protease (PL(pro)) of SARS CoV-2 (Coronavirus) to conquer the pandemic situation in the world. J. Biomol. Struct. Dyn., 2022, 40(12), 5665-5686.
[132]
Shawan, M.M.A.K.; Halder, S.K.; Hasan, M.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bull. Natl. Res. Cent., 2021, 45(1), 27.
[http://dx.doi.org/10.1186/s42269-020-00479-6] [PMID: 33495684]
[133]
Sette-DE-Souza. P.H.; Costa, M.J.F.; Amaral-Machado, L.; Araújo, F.A. da C.; Almeida Filho, A.T.; Lima, L.R.A. de. Dental workers in front-line of COVID-19: an in silico evaluation targeting their prevention. J. Appl. Oral Sci., 2021, 29, e20200678.
[http://dx.doi.org/10.1590/1678-7757-2020-0678]
[134]
Gogoi, B.; Chowdhury, P.; Goswami, N.; Gogoi, N.; Naiya, T.; Chetia, P.; Mahanta, S.; Chetia, D.; Tanti, B.; Borah, P.; Handique, P.J. Iden-tification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol. Divers., 2021, 25(3), 1963-1977.
[http://dx.doi.org/10.1007/s11030-021-10211-9] [PMID: 33856591]
[135]
Meenaxi, M.M.; Akash, S. Screening of plectranthus amboinicus against COVID-19- in silico approach. J. Appl. Pharm. Sci., 2020, 10, 90-97.
[136]
Alamri, M.A.; Altharawi, A.; Alabbas, A.B.; Alossaimi, M.A.; Alqahtani, S.M. Structure-based virtual screening and molecular dynamics of phytochemicals derived from saudi medicinal plants to identify potential COVID-19 therapeutics. Arab. J. Chem., 2020, 13, 7224-7234.
[http://dx.doi.org/10.1016/j.arabjc.2020.08.004]
[137]
Surti, M.; Patel, M.; Adnan, M.; Moin, A.; Ashraf, S.A.; Siddiqui, A.J.; Snoussi, M.; Deshpande, S.; Reddy, M.N. Ilimaquinone (Marine Sponge Metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested covid-19 drugs: designing{,} docking and molecular dynamics simulation study. RSC Advances, 2020, 10, 37707-37720.
[http://dx.doi.org/10.1039/D0RA06379G]
[138]
Zhang, D-H.; Wu, K-L.; Zhang, X.; Deng, S-Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly in-hibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[139]
Amparo, T.R.; Seibert, J.B.; Almeida, T.C.; Costa, F.S.F.; Silveira, B.M.; da Silva, G.N.; dos Santos, O.D.H.; de Souza, G.H.B. In silico approach of secondary metabolites from Brazilian herbal medicines to search for potential drugs against SARS-CoV-2. Phyther. Res., 2021, 1-12.
[140]
Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med., 2020, 18(1), 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[141]
Ahmad, J.; Ikram, S.; Ahmad, F.; Rehman, I.U.; Mushtaq, M. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) - A drug repurpos-ing study. Heliyon, 2020, 6(7), e04502.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04502] [PMID: 32754651]
[142]
Venkataraman, S.; Prasad, B.V.L.S.; Selvarajan, R. RNA Dependent RNA polymerases: insights from structure, function and evolution. Viruses, 2018, 10(2), 1-23.
[http://dx.doi.org/10.3390/v10020076] [PMID: 29439438]
[143]
Rahman, F.; Tabrez, S.; Ali, R.; Alqahtani, A.S.; Ahmed, M.Z.; Rub, A. Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins. J. Tradit. Complement. Med., 2021, 11(2), 173-179.
[http://dx.doi.org/10.1016/j.jtcme.2021.01.006] [PMID: 33520682]
[144]
Zandi, K.; Musall, K.; Oo, A.; Cao, D.; Liang, B.; Hassandarvish, P.; Lan, S.; Slack, R.L.; Kirby, K.A.; Bassit, L.; Amblard, F.; Kim, B.; AbuBakar, S.; Sarafianos, S.G.; Schinazi, R.F. Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms, 2021, 9(5), 1-10.
[http://dx.doi.org/10.3390/microorganisms9050893] [PMID: 33921971]
[145]
Mahrosh, H.S.; Mustafa, G. An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phy-tochemicals. Environ. Dev. Sustain., 2021, 23(11), 16674-1668.
[PMID: 33841038]
[146]
Mosquera-Yuqui, F.; Lopez-Guerra, N.; Moncayo-Palacio, E.A. Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2022, 40(5), 2010-2023.
[http://dx.doi.org/10.1080/07391102.2020.1835716] [PMID: 33084512]
[147]
Saha, S.; Nandi, R.; Vishwakarma, P.; Prakash, A.; Kumar, D. Discovering potential RNA dependent RNA polymerase inhibitors as pro-spective Drugs Against COVID-19: An in silico approach. Front. Pharmacol., 2021, 12, 634047.
[http://dx.doi.org/10.3389/fphar.2021.634047] [PMID: 33716752]
[148]
Li, J.; Wei, B.; Li, K.; Su, X.; Zhang, Z. Screening of RdRp inhibitors against SARS-CoV-2 based on prescription mining and pharmacophore. Nat Prod Res Dev, 2020, 1981-1991.
[149]
Neves, K.O.G.; Ramos, A.S.; Bruginski, E.R.D.; Souza, A.D.L.; Nunomura, R. de C.S.; Campos, F.R.; da Silva, F.M.A.; Machado, M.B.; Lisboaeflavanonol, A. A new flavonoid glycoside obtained from amazonian eugenia lisboae. Phytochem. Lett., 2021, 43, 65-69.
[http://dx.doi.org/10.1016/j.phytol.2021.03.017]
[150]
Ogunyemi, O.M.; Gyebi, G.A.; Elfiky, A.A.; Afolabi, S.O.; Ogunro, O.B.; Adegunloye, A.P.; Ibrahim, I.M. Alkaloids and flavonoids from African phytochemicals as potential inhibitors of SARS-Cov-2 RNA-dependent RNA polymerase: an in silico perspective. Antivir. Chem. Chemother. 2020, 28, 20402066 20984076.
[http://dx.doi.org/10.1177/2040206620984076] [PMID: 33372806]
[151]
Singh, S.; Sk, M.F.; Sonawane, A.; Kar, P.; Sadhukhan, S. Plantderived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J. Biomol. Struct. Dyn., 2020, 0, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1796810] [PMID: 32720577]
[152]
Lung, J.; Lin, Y.-S.; Yang, T.-H.; Chou, Y.-L.; Shu, L.-H.; Cheng, Y.-C.; Liu, H. Te, ; Wu, C.-Y. The Potential Chemical Structure of Anti-SARS-CoV-2 RNA-Dependent RNA Polymerase. J. Med. Virulogy. Wiley. 2020, 693-697.
[153]
Sharma, A.; Vora, J.; Patel, D.; Sinha, S.; Jha, P.C.; Shrivastava, N. Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches. J. Biomol. Struct. Dyn., 2020, 0, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1846624] [PMID: 33183178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy