Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Natural Inhibitors against Potential Targets of Cyclooxygenase, Lipoxygenase and Leukotrienes

Author(s): Rishita Dey, Sudatta Dey, Asmita Samadder, Anil Kumar Saxena* and Sisir Nandi*

Volume 25, Issue 14, 2022

Published on: 03 January, 2022

Page: [2341 - 2357] Pages: 17

DOI: 10.2174/1386207325666210917111847

Price: $65

Abstract

Background: Cyclooxygenase (COX) and Lipoxygenase (LOX) enzymes catalyze the production of pain mediators like Prostaglandins (PGs) and Leukotrienes (LTs), respectively from arachidonic acid.

Introduction: The COX and LOX enzyme modulators are responsible for the major PGs and LTs mediated complications like asthma, osteoarthritis, rheumatoid arthritis, cancer, Alzheimer’s disease, neuropathy and Cardiovascular Syndromes (CVS). Many synthetic Nonsteroidal Anti- Inflammatory Drugs (NSAIDs) used in the treatment have serious side effects like nausea, vomiting, hyperacidity, gastrointestinal ulcers, CVS, etc.

Methods: The natural inhibitors of pain mediators have great acceptance worldwide due to fewer side effects on long-term uses. The present review is an extensive study of the advantages of plantbased vs synthetic inhibitors.

Results: These natural COX and LOX inhibitors control inflammatory response without causing side-effect-related complicacy.

Conclusion: Therefore, the natural COX and LOX inhibitors may be used as alternative medicines for the management of pain and inflammation due to their less toxicity and resistivity.

Keywords: Pain and inflammation mediators, COX, LOX, leukotrienes (LTs), natural inhibitors, alternative medicine.

Graphical Abstract

[1]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2017, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[2]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[PMID: 17223962]
[3]
Punchard, N.A.; Whelan, C.J.; Adcock, I.J. Inlam. (Lond), 2004, 1(1), 1.
[http://dx.doi.org/10.1186/1476-9255-1-1]
[4]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[5]
Taylor, J.L.S.; van Staden, J.; Jäger, A.K. COX-1 and COX-2 inhibitory activity in extracts prepared from Eucomis species, with further reference to extracts from E. autumnalis autumnalis. S. Afr. J. Bot., 2002, 68(1), 80-85.
[http://dx.doi.org/10.1016/S0254-6299(16)30460-4]
[6]
Goetzl, E.J.; An, S.; Smith, W.L. Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J., 1995, 9(11), 1051-1058.
[http://dx.doi.org/10.1096/fasebj.9.11.7649404] [PMID: 7649404]
[7]
Maier, J.A.; Hla, T.; Maciag, T. Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. J. Biol. Chem., 1990, 265(19), 10805-10808.
[http://dx.doi.org/10.1016/S0021-9258(19)38515-1] [PMID: 1694171]
[8]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[http://dx.doi.org/10.1096/fasebj.12.12.1063] [PMID: 9737710]
[9]
Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA, 1993, 90(24), 11693-11697.
[http://dx.doi.org/10.1073/pnas.90.24.11693] [PMID: 8265610]
[10]
Vane, J.R.; Botting, R.M. New insights into the mode of action of anti-inflammatory drugs. Inflamm. Res., 1995, 44(1), 1-10.
[http://dx.doi.org/10.1007/BF01630479] [PMID: 7664022]
[11]
Eberhart, C.E.; Coffey, R.J.; Radhika, A.; Giardiello, F.M.; Ferrenbach, S.; DuBois, R.N. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994, 107(4), 1183-1188.
[http://dx.doi.org/10.1016/0016-5085(94)90246-1] [PMID: 7926468]
[12]
Fujita, T.; Matsui, M.; Takaku, K.; Uetake, H.; Ichikawa, W.; Taketo, M.M.; Sugihara, K. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res., 1998, 58(21), 4823-4826.
[PMID: 9809985]
[13]
Jo-Watanabe, A.; Okuno, T.; Yokomizo, T. The role of leukotrienes as potential therapeutic targets in allergic disorders. Int. J. Mol. Sci., 2019, 20(14), 3580.
[http://dx.doi.org/10.3390/ijms20143580] [PMID: 31336653]
[14]
Funk, C.D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[15]
Rich, M.R. Conformational analysis of arachidonic and related fatty acids using molecular dynamics simulations. Biochim. Biophys. Acta, 1993, 1178(1), 87-96.
[http://dx.doi.org/10.1016/0167-4889(93)90113-4] [PMID: 8329458]
[16]
Wlodawer, P.; Samuelsson, B. On the organization and mechanism of prostaglandin synthetase. J. Biol. Chem., 1973, 248(16), 5673-5678.
[http://dx.doi.org/10.1016/S0021-9258(19)43558-8] [PMID: 4723909]
[17]
Smith, W.L.; Song, I. The enzymology of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat., 2002, 68-69, 115-128.
[http://dx.doi.org/10.1016/S0090-6980(02)00025-4] [PMID: 12432913]
[18]
Brash, A.R. Arachidonic acid as a bioactive molecule. J. Clin. Invest., 2001, 107(11), 1339-1345.
[http://dx.doi.org/10.1172/JCI13210] [PMID: 11390413]
[19]
Powell, W.S.; Rokach, J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim. Biophys. Acta, 2015, 1851(4), 340-355.
[http://dx.doi.org/10.1016/j.bbalip.2014.10.008] [PMID: 25449650]
[20]
Soberman, R.J.; Christmas, P. The organization and consequences of eicosanoid signaling. J. Clin. Invest., 2003, 111(8), 1107-1113.
[http://dx.doi.org/10.1172/JCI200318338] [PMID: 12697726]
[21]
Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol., 2015, 15(8), 511-523.
[http://dx.doi.org/10.1038/nri3859] [PMID: 26139350]
[22]
Montuschi, P.; Kharitonov, S.A.; Ciabattoni, G.; Barnes, P.J. Exhaled leukotrienes and prostaglandins in COPD. Thorax, 2003, 58(7), 585-588.
[http://dx.doi.org/10.1136/thorax.58.7.585] [PMID: 12832671]
[23]
Chen, Y.; Chen, P.; Hanaoka, M.; Droma, Y.; Kubo, K. Enhanced levels of prostaglandin E2 and matrix metalloproteinase-2 correlate with the severity of airflow limitation in stable COPD. Respirology, 2008, 13(7), 1014-1021.
[PMID: 18699805]
[24]
Dagouassat, M.; Gagliolo, J.M.; Chrusciel, S.; Bourin, M.C.; Duprez, C.; Caramelle, P.; Boyer, L.; Hue, S.; Stern, J.B.; Validire, P.; Longrois, D.; Norel, X.; Dubois-Randé, J.L.; Le Gouvello, S.; Adnot, S.; Boczkowski, J. The cyclooxygenase-2-prostaglandin E2 pathway maintains senescence of chronic obstructive pulmonary disease fibroblasts. Am. J. Respir. Crit. Care Med., 2013, 187(7), 703-714.
[http://dx.doi.org/10.1164/rccm.201208-1361OC] [PMID: 23328527]
[25]
Dahlén, B.; Kumlin, M.; Ihre, E.; Zetterström, O.; Dahlén, S.E. Inhibition of allergen-induced airway obstruction and leukotriene generation in atopic asthmatic subjects by the leukotriene biosynthesis inhibitor BAYx 1005. Thorax, 1997, 52(4), 342-347.
[http://dx.doi.org/10.1136/thx.52.4.342] [PMID: 9196517]
[26]
Liu, M.; Yokomizo, T. The role of leukotrienes in allergic diseases. Allergol. Int., 2015, 64(1), 17-26.
[http://dx.doi.org/10.1016/j.alit.2014.09.001] [PMID: 25572555]
[27]
Samitas, K.; Chorianopoulos, D.; Vittorakis, S.; Zervas, E.; Economidou, E.; Papatheodorou, G.; Loukides, S.; Gaga, M. Exhaled cysteinyl-leukotrienes and 8-isoprostane in patients with asthma and their relation to clinical severity. Respir. Med., 2009, 103(5), 750-756.
[http://dx.doi.org/10.1016/j.rmed.2008.11.009] [PMID: 19110408]
[28]
Sun, X.; Li, Q. Prostaglandin EP2 receptor: Novel therapeutic target for human cancers. (Review). Int. J. Mol. Med., 2018, 42(3), 1203-1214.
[http://dx.doi.org/10.3892/ijmm.2018.3744] [PMID: 29956743]
[29]
Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut, 2006, 55(1), 115-122.
[http://dx.doi.org/10.1136/gut.2004.047100] [PMID: 16118353]
[30]
Chell, S.; Kaidi, A.; Williams, A.C.; Paraskeva, C. Mediators of PGE2 synthesis and signalling downstream of COX-2 represent potential targets for the prevention/treatment of colorectal cancer. Biochim. Biophys. Acta, 2006, 1766(1), 104-119.
[PMID: 16859832]
[31]
Cui, F.B.; Huang, D.F.; Zhang, F.L.; Gao, E.Y.; Zhang, Y.; Cao, Y.M.; Ding, S.; Wang, Y.; Cao, Q.S.; Cao, X.M. Investigation on the regulatory effect of PGE2 on ESCC cells through the trans-activation of EGFR by EP2 and the relevant mechanism. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(24), 5668-5676.
[PMID: 29272001]
[32]
Wang, D.; Dubois, R.N. Eicosanoids and Cancer. Nat. Rev. Cancer, 2010, 10(3), 181-193.
[33]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[34]
Jala, V.R.; Bodduluri, S.R.; Satpathy, S.R.; Chheda, Z.; Sharma, R.K.; Haribabu, B. The yin and yang of leukotriene B4 mediated inflammation in cancer. Semin. Immunol., 2017, 33, 58-64.
[http://dx.doi.org/10.1016/j.smim.2017.09.005] [PMID: 28982616]
[35]
Laufer, S. Role of eicosanoids in structural degradation in osteoarthritis. Curr. Opin. Rheumatol., 2003, 15(5), 623-627.
[http://dx.doi.org/10.1097/00002281-200309000-00017] [PMID: 12960491]
[36]
Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage, 2013, 21(1), 16-21.
[http://dx.doi.org/10.1016/j.joca.2012.11.012] [PMID: 23194896]
[37]
Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet, 2015, 386(9991), 376-387.
[http://dx.doi.org/10.1016/S0140-6736(14)60802-3] [PMID: 25748615]
[38]
Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet, 2016, 388(10055), 2023-2038.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[39]
Crofford, L.J.; Wilder, R.L.; Ristimäki, A.P.; Sano, H.; Remmers, E.F.; Epps, H.R.; Hla, T. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids. J. Clin. Invest., 1994, 93(3), 1095-1101.
[http://dx.doi.org/10.1172/JCI117060] [PMID: 8132748]
[40]
Hulkower, K.I.; Wertheimer, S.J.; Levin, W.; Coffey, J.W.; Anderson, C.M.; Chen, T.; DeWitt, D.L.; Crowl, R.M.; Hope, W.C.; Morgan, D.W. Interleukin-1 beta induces cytosolic phospholipase A2 and prostaglandin H synthase in rheumatoid synovial fibroblasts. Evidence for their roles in the production of prostaglandin E2. Arthritis Rheum., 1994, 37(5), 653-661.
[http://dx.doi.org/10.1002/art.1780370508] [PMID: 8185692]
[41]
Griffiths, R.J.; Pettipher, E.R.; Koch, K.; Farrell, C.A.; Breslow, R.; Conklyn, M.J.; Smith, M.A.; Hackman, B.C.; Wimberly, D.J.; Milici, A.J. Leukotriene B4 plays a critical role in the progression of collagen-induced arthritis. Proc. Natl. Acad. Sci. USA, 1995, 92(2), 517-521.
[http://dx.doi.org/10.1073/pnas.92.2.517] [PMID: 7831322]
[42]
Haroon, N. Ankylosis in ankylosing spondylitis: current concepts. Clin. Rheumatol., 2015, 34(6), 1003-1007.
[http://dx.doi.org/10.1007/s10067-015-2956-4] [PMID: 25935456]
[43]
Baumann Kreuziger, L.; Slaughter, M.S.; Sundareswaran, K.; Mast, A.E. Clinical relevance of histopathologic analysis of heartmate II thrombi. ASAIO J., 2018, 64(6), 754-759.
[http://dx.doi.org/10.1097/MAT.0000000000000759] [PMID: 29461277]
[44]
Gryglewski, R.J.; Dembínska-Kieć, A.; Korbut, R. A possible role of thromboxane A2 (TXA2) and prostacyclin (PGI2) in circulation. Acta Biol. Med. Ger., 1978, 37(5-6), 715-723.
[PMID: 369254]
[45]
Kristensen, M.O. Neurotransmitters in Alzheimer’s disease. Ugeskr. Laeger, 1990, 152(30), 2165-2168.
[PMID: 1975961]
[46]
Klafki, H.W.; Staufenbiel, M.; Kornhuber, J.; Wiltfang, J. Therapeutic approaches to Alzheimer’s disease. Brain, 2006, 129(Pt 11), 2840-2855.
[http://dx.doi.org/10.1093/brain/awl280] [PMID: 17018549]
[47]
Cummings, J.L.; Doody, R.; Clark, C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology, 2007, 69(16), 1622-1634.
[http://dx.doi.org/10.1212/01.wnl.0000295996.54210.69] [PMID: 17938373]
[48]
Biringer, R.G. The Role of Eicosanoids in Alzheimer’s Disease. Int. J. Environ. Res. Public Health, 2019, 16(14), 2560.
[http://dx.doi.org/10.3390/ijerph16142560] [PMID: 31323750]
[49]
Liu, J.; Seibold, S.A.; Rieke, C.J.; Song, I.; Cukier, R.I.; Smith, W.L. Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation. J. Biol. Chem., 2007, 282(25), 18233-18244.
[http://dx.doi.org/10.1074/jbc.M701235200] [PMID: 17462992]
[50]
Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079.
[http://dx.doi.org/10.1021/bi1003298] [PMID: 20669977]
[51]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[52]
Saxena, A.; Balaramnavar, V.M.; Hohlfeld, T.; Saxena, A.K. Drug/drug interaction of common NSAIDs with antiplatelet effect of aspirin in human platelets. Eur. J. Pharmacol., 2013, 721(1-3), 215-224.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.032] [PMID: 24075938]
[53]
Tripathi, K.D. Essential of Medical Pharmacology, 6th ed; Jaypee Brothers: New Delhi, 2008.
[http://dx.doi.org/10.5005/jp/books/10282]
[54]
Bishayee, K.; Khuda-Bukhsh, A.R. 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim. Biophys. Sin. (Shanghai), 2013, 45(9), 709-719.
[http://dx.doi.org/10.1093/abbs/gmt064] [PMID: 23752617]
[55]
Steinhilber, D.; Hofmann, B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin. Pharmacol. Toxicol., 2014, 114(1), 70-77.
[http://dx.doi.org/10.1111/bcpt.12114] [PMID: 23953428]
[56]
Schieferdecker, S.; König, S.; Koeberle, A.; Dahse, H.M.; Werz, O.; Nett, M. Myxochelins target human 5-lipoxygenase. J. Nat. Prod., 2015, 78(2), 335-338.
[http://dx.doi.org/10.1021/np500909b] [PMID: 25686392]
[57]
Sester, A.; Winand, L.; Pace, S.; Hiller, W.; Werz, O.; Nett, M. Myxochelin- and pseudochelin-derived lipoxygenase inhibitors from a genetically engineered. Myxococcus xanthus Strain. J. Nat. Prod., 2019, 82(9), 2544-2549.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00403] [PMID: 31465225]
[58]
Ducharme, Y.; Blouin, M.; Brideau, C.; Châteauneuf, A.; Gareau, Y.; Grimm, E.L.; Juteau, H.; Laliberté, S.; MacKay, B.; Massé, F.; Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R.W. The discovery of setileuton, a potent and selective 5-lipoxygenase inhibitor. ACS Med. Chem. Lett., 2010, 1(4), 170-174.
[http://dx.doi.org/10.1021/ml100029k] [PMID: 24900191]
[59]
Masferrer, J.L.; Zweifel, B.S.; Hardy, M.; Anderson, G.D.; Dufield, D.; Cortes-Burgos, L.; Pufahl, R.A.; Graneto, M. Pharmacology of PF-4191834, a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain. J. Pharmacol. Exp. Ther., 2010, 334(1), 294-301.
[http://dx.doi.org/10.1124/jpet.110.166967] [PMID: 20378715]
[60]
Bennamane, N.; Nedjar-Kolli, B.; Geronikaki, A.A.; Eleftheriou, P.T.; Kaoua, R.; Boubekeur, K.; Hoffman, P.; Chaudhary, S.S.; Saxena, A.K. N-substituted phenyl-pyrazolo -oxazin-2-thiones as cox-lox inhibitors: influence of the replacement of the oxo -group with thioxo- group on the cox inhibition activity of n-substituted pyrazolo-oxazin-2-ones. ARKIVOC, 2011, (ii), 69-82.
[61]
Saxena, A.K. 3D QSAR studies on 5,6-diarylimidazo(2,1-b)thiazole: Selective COX-2 inhibitors. In: The Chemistry and Biological Activity of Synthetic and Natural Compounds: Oxygen- and Sulfur containing Heterocycles; Kartsev, V.G., Ed.; IBS Press: Moscow, Russia, 2003; Vol. 1, pp. 93-103.
[62]
Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J. Med. Chem., 2008, 51(6), 1601-1609.
[http://dx.doi.org/10.1021/jm701496h] [PMID: 18311898]
[63]
Arockia Babu, M.; Shakya, N.; Prathipati, P.; Kaskhedikar, S.G.; Saxena, A.K. Development of 3D-QSAR models for 5-lipoxygenase antagonists: chalcones. Bioorg. Med. Chem., 2002, 10(12), 4035-4041.
[http://dx.doi.org/10.1016/S0968-0896(02)00313-9] [PMID: 12413856]
[64]
Eleftheriou, P.; Geronikaki, A.; Hadjipavlou-Litina, D.; Vicini, P.; Filz, O.; Filimonov, D.; Poroikov, V.; Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 47(1), 111-124.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.029] [PMID: 22119153]
[65]
Tsolaki, E.; Eleftheriou, P.; Kartsev, V.; Geronikaki, A.; Saxena, A.K. Application of docking analysis in the prediction and biological evaluation of the lipoxygenase inhibitory action of thiazolyl derivatives of mycophenolic acid. Molecules, 2018, 23(7), 1621.
[http://dx.doi.org/10.3390/molecules23071621] [PMID: 29970872]
[66]
Cho, K.J.; Yun, C.H.; Yoon, D.Y.; Cho, Y.S.; Rimbach, G.; Packer, L.; Chung, A.S. Effect of bioflavonoids extracted from the bark of Pinus maritima on proinflammatory cytokine interleukin-1 production in lipopolysaccharide-stimulated RAW 264.7. Toxicol. Appl. Pharmacol., 2000, 168(1), 64-71.
[http://dx.doi.org/10.1006/taap.2000.9001] [PMID: 11000101]
[67]
Vankemmelbeke, M.N.; Jones, G.C.; Fowles, C.; Ilic, M.Z.; Handley, C.J.; Day, A.J.; Knight, C.G.; Mort, J.S.; Buttle, D.J. Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters. Eur. J. Biochem., 2003, 270(11), 2394-2403.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03607.x] [PMID: 12755694]
[68]
Maroon, J.C.; Bost, J.W.; Maroon, A. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int., 2010, 1, 80.
[http://dx.doi.org/10.4103/2152-7806.73804] [PMID: 21206541]
[69]
Schäfer, A.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Duracková, Z.; Högger, P. Inhibition of COX-1 and COX-2 activity by plasma of human volunteers after ingestion of French maritime pine bark extract (Pycnogenol). Biomed. Pharmacother., 2006, 60(1), 5-9.
[http://dx.doi.org/10.1016/j.biopha.2005.08.006] [PMID: 16330178]
[70]
Grimm, T.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Duracková, Z.; Högger, P. Inhibition of NF-kappaB activation and MMP-9 secretion by plasma of human volunteers after ingestion of maritime pine bark extract (Pycnogenol). J. Inflamm. (Lond.), 2006, 3, 1.
[http://dx.doi.org/10.1186/1476-9255-3-1] [PMID: 16441890]
[71]
Desai, G.J.; Dowling, D.J.; Harbaugh, J.W. Carpal Tunnel Syndrome: in In: Integrative Medicine, 4th ed.; , 2018.
[http://dx.doi.org/10.1016/B978-0-323-35868-2.00070-0]
[72]
Smithson, J.; Kellick, K.A.; Mergenhagen, K. Nutritional Modulators of Pain in the Aging Population, 1st ed; Academic Press: Elsevier, 2017, pp. 191-198.
[http://dx.doi.org/10.1016/B978-0-12-805186-3.00016-3]
[73]
Vlachojannis, J.; Magora, F.; Chrubasik, S. Willow species and aspirin: different mechanism of actions. Phytother. Res., 2011, 25(7), 1102-1104.
[http://dx.doi.org/10.1002/ptr.3386] [PMID: 21226125]
[74]
Cerella, C.; Sobolewski, C.; Dicato, M.; Diederich, M. Targeting COX-2 expression by natural compounds: a promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem. Pharmacol., 2010, 80(12), 1801-1815.
[http://dx.doi.org/10.1016/j.bcp.2010.06.050] [PMID: 20615394]
[75]
Vitale, P.; Panella, A.; Scilimati, A.; Perrone, M.G. COX-1 inhibitors: beyond structure toward therapy. Med. Res. Rev., 2016, 36(4), 641-671.
[http://dx.doi.org/10.1002/med.21389] [PMID: 27111555]
[76]
Gong, W-H.; Zhao, N.; Zhang, Z.M.; Zhang, Y-X.; Yan, L.; Li, J-B. The inhibitory effect of resveratrol on COX-2 expression in human colorectal cancer: a promising therapeutic strategy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(5), 1136-1143.
[PMID: 28338176]
[77]
Xiao, X.; Shi, D.; Liu, L.; Wang, J.; Xie, X.; Kang, T.; Deng, W. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One, 2011, 6(8), e22934.
[http://dx.doi.org/10.1371/journal.pone.0022934] [PMID: 21857970]
[78]
Moreno, J.; Krishnan, A.V.; Peehl, D.M.; Feldman, D. Mechanisms of vitamin D-mediated growth inhibition in prostate cancer cells: inhibition of the prostaglandin pathway. Anticancer Res., 2006, 26(4A), 2525-2530.
[PMID: 16886660]
[79]
Lee, J-H.; Zhou, H.Y.; Cho, S.Y.; Kim, Y.S.; Lee, Y.S.; Jeong, C.S. Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res., 2007, 30(10), 1318-1327.
[http://dx.doi.org/10.1007/BF02980273] [PMID: 18038911]
[80]
Shukla, R.; Pandey, V.; Vadnere, G.P.; Lodhi, S. Role of Flavonoids in Management of Inflammatory Disorders. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, Second Edition; Academic Press: USA, 2019; pp. 293-322.
[http://dx.doi.org/10.1016/B978-0-12-813820-5.00018-0]
[81]
Peng, G.; Dixon, D.A.; Muga, S.J.; Smith, T.J.; Wargovich, M.J. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog., 2006, 45(5), 309-319.
[http://dx.doi.org/10.1002/mc.20166] [PMID: 16508969]
[82]
Sandoval, M.; Okuhama, N.N.; Zhang, X.J.; Condezo, L.A.; Lao, J.; Angeles’, F.M.; Musah, R.A.; Bobrowski, P.; Miller, M.J. Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine, 2002, 9(4), 325-337.
[http://dx.doi.org/10.1078/0944-7113-00117] [PMID: 12120814]
[83]
Zhou, K.; Raffoul, J.J. Potential anticancer properties of grape antioxidants. J. Oncol., 2012, 2012, 803294.
[http://dx.doi.org/10.1155/2012/803294] [PMID: 22919383]
[84]
Chandel, M.; Kumar, M.; Sharma, U.; Singh, B.; Kaur, S. Investigations on antioxidant, antiproliferative and COX-2 inhibitory potential of alkaloids from Anthocephalus cadamba (Roxb.) Miq. Leaves. Chem. Biodivers., 2017, 14(4), e1600376.
[http://dx.doi.org/10.1002/cbdv.201600376] [PMID: 27973724]
[85]
Sharma, V.; Bhatia, P.; Alam, O.; Javed Naim, M.; Nawaz, F.; Ahmad Sheikh, A.; Jha, M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008-2019). Bioorg. Chem., 2019, 89, 103007.
[http://dx.doi.org/10.1016/j.bioorg.2019.103007] [PMID: 31132600]
[86]
Zou, J.; Jin, D.; Chen, W.; Wang, J.; Liu, Q.; Zhu, X.; Zhao, W. Selective cyclooxygenase-2 inhibitors from Calophyllum membranaceum. J. Nat. Prod., 2005, 68(10), 1514-1518.
[http://dx.doi.org/10.1021/np0502342] [PMID: 16252917]
[87]
Revankar, H.M.; Bukhari, S.N.A.; Kumar, G.B.; Qin, H-L. Coumarins scaffolds as COX inhibitors. Bioorg. Chem., 2017, 71(71), 146-159.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.001] [PMID: 28222891]
[88]
Werz, O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Med., 2007, 73(13), 1331-1357.
[http://dx.doi.org/10.1055/s-2007-990242] [PMID: 17939102]
[89]
Traeger, A.; Voelker, S.; Shkodra-Pula, B.; Kretzer, C.; Schubert, S.; Gottschaldt, M.; Schubert, U.S.; Werz, O. Improved bioactivity of the natural product 5-lipoxygenase inhibitor hyperforin by encapsulation into polymeric nanoparticles. Mol. Pharm., 2020, 17(3), 810-816.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01051] [PMID: 31967843]
[90]
Feisst, C.; Pergola, C.; Rakonjac, M.; Rossi, A.; Koeberle, A.; Dodt, G.; Hoffmann, M.; Hoernig, C.; Fischer, L.; Steinhilber, D.; Franke, L.; Schneider, G.; Rådmark, O.; Sautebin, L.; Werz, O. Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cell. Mol. Life Sci., 2009, 66(16), 2759-2771.
[http://dx.doi.org/10.1007/s00018-009-0078-3] [PMID: 19579006]
[91]
Son, K.H.; Kwon, S.J.; Chang, H.W.; Kim, H.P.; Kang, S.S. Papyriflavonol A, a new prenylated flavonol from Broussonetia papyrifera. Fitoterapia, 2001, 72(4), 456-458.
[http://dx.doi.org/10.1016/S0367-326X(00)00329-4] [PMID: 11395279]
[92]
Kwak, W.J.; Moon, T.C.; Lin, C.X.; Rhyn, H.G.; Jung, H.; Lee, E.; Kwon, D.Y.; Son, K.H.; Kim, H.P.; Kang, S.S.; Murakami, M.; Kudo, I.; Chang, H.W. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol. Pharm. Bull., 2003, 26(3), 299-302.
[http://dx.doi.org/10.1248/bpb.26.299] [PMID: 12612436]
[93]
Chi, Y.S.; Jong, H.G.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: cyclooxygenases and lipoxygenases. Biochem. Pharmacol., 2001, 62(9), 1185-1191.
[http://dx.doi.org/10.1016/S0006-2952(01)00773-0] [PMID: 11705451]
[94]
Abourashed, E.A.; Muhammad, I.; Resch, M.; Bauer, R.; el-Feraly, F.S.; Hufford, C.D. Inhibitory effects of maesanin and analogs on arachidonic acid metabolizing enzymes. Planta Med., 2001, 67(4), 360-361.
[http://dx.doi.org/10.1055/s-2001-14316] [PMID: 11458456]
[95]
Saul, D.; Kling, J.H.; Kosinsky, R.L.; Hoffmann, D.B.; Komrakova, M.; Wicke, M.; Menger, B.; Sehmisch, S. Effect of the lipoxygenase inhibitor baicalein on muscles in ovariectomized rats. J. Nutr. Metab., 2016, 2016, 3703216.
[http://dx.doi.org/10.1155/2016/3703216] [PMID: 28050282]
[96]
Woźniak, D.; Dryś, A.; Matkowski, A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat. Prod. Res., 2015, 29(16), 1567-1570.
[http://dx.doi.org/10.1080/14786419.2014.983920] [PMID: 25427178]
[97]
Stavniichuk, R.; Drel, V.R.; Shevalye, H.; Maksimchyk, Y.; Kuchmerovska, T.M.; Nadler, J.L.; Obrosova, I.G. Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation. Exp. Neurol., 2011, 230(1), 106-113.
[http://dx.doi.org/10.1016/j.expneurol.2011.04.002] [PMID: 21515260]
[98]
Czubowicz, K.; Czapski, G.A.; Cieślik, M.; Strosznajder, R.P. Lipoxygenase inhibitors protect brain cortex macromolecules against oxidation evoked by nitrosative stress. Folia Neuropathol., 2010, 48(4), 283-292.
[PMID: 21225511]
[99]
Cui, L.; Zhang, X.; Yang, R.; Liu, L.; Wang, L.; Li, M.; Du, W. Baicalein is neuroprotective in rat MCAO model: role of 12/15-lipoxygenase, mitogen-activated protein kinase and cytosolic phospholipase A2. Pharmacol. Biochem. Behav., 2010, 96(4), 469-475.
[http://dx.doi.org/10.1016/j.pbb.2010.07.007] [PMID: 20637223]
[100]
Koshihara, Y.; Neichi, T.; Murota, S.; Lao, A.; Fujimoto, Y.; Tatsuno, T. Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim. Biophys. Acta, 1984, 792(1), 92-97.
[http://dx.doi.org/10.1016/0005-2760(84)90287-X] [PMID: 6318834]
[101]
Kim, S.; Jeong, K-J.; Cho, S.K.; Park, J-W.; Park, W.J. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway. Mol. Med. Rep., 2016, 14(5), 4454-4460.
[http://dx.doi.org/10.3892/mmr.2016.5766] [PMID: 27665716]
[102]
Lim, H.; Son, K.H.; Bae, K.H.; Hung, T.M.; Kim, Y.S.; Kim, H.P. 5-lipoxygenase-inhibitory constituents from Schizandra fructus and Magnolia flos. Phytother. Res., 2009, 23(10), 1489-1492.
[http://dx.doi.org/10.1002/ptr.2783] [PMID: 19277963]
[103]
Zschocke, S.; Lehner, M.; Bauer, R. 5-Lipoxygenase and cyclooxygenase inhibitory active constituents from Qianghuo (Notopterygium incisum). Planta Med., 1997, 63(3), 203-206.
[http://dx.doi.org/10.1055/s-2006-957653] [PMID: 9265192]
[104]
Schneider, I.; Bucar, F. Lipoxygenase inhibitors from natural plant sources. Part 2: medicinal plants with inhibitory activity on arachidonate 12-lipoxygenase, 15-lipoxygenase and leukotriene receptor antagonists. Phytother. Res., 2005, 19(4), 263-272.
[http://dx.doi.org/10.1002/ptr.1604] [PMID: 16041764]
[105]
Mustafa, E.H.; Abu Zarga, M.; Abdalla, S. Effects of cirsiliol, a flavone isolated from Achillea fragrantissima, on rat isolated ileum. Gen. Pharmacol., 1992, 23(3), 555-560.
[http://dx.doi.org/10.1016/0306-3623(92)90127-6] [PMID: 1511863]
[106]
Yoshimoto, T.; Furukawa, M.; Yamamoto, S.; Horie, T.; Watanabe-Kohno, S. Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase. Biochem. Biophys. Res. Commun., 1983, 116(2), 612-618.
[http://dx.doi.org/10.1016/0006-291X(83)90568-5] [PMID: 6418162]
[107]
Kwon, O.S.; Choi, J.S.; Islam, M.N.; Kim, Y.S.; Kim, H.P. Inhibition of 5-lipoxygenase and skin inflammation by the aerial parts of Artemisia capillaris and its constituents. Arch. Pharm. Res., 2011, 34(9), 1561-1569.
[http://dx.doi.org/10.1007/s12272-011-0919-0] [PMID: 21975819]
[108]
Neichi, T.; Koshihara, Y.; Murota, S. Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis. Biochim. Biophys. Acta, 1983, 753(1), 130-132.
[http://dx.doi.org/10.1016/0005-2760(83)90106-6] [PMID: 6411127]
[109]
Kutil, Z.; Kvasnicova, M.; Temml, V.; Schuster, D.; Marsik, P.; Cusimamani, E.F.; Lou, J-D.; Vanek, T.; Landa, P. Effect of Dietary Stilbenes on 5-Lipoxygenase and Cyclooxygenases Activities in vitro. Int. J. Food Prop., 2015, 18(7), 1471-1477.
[http://dx.doi.org/10.1080/10942912.2014.903416]
[110]
McCormack, D.; McFadden, D. A review of pterostilbene antioxidant activity and disease modification. Oxid. Med. Cell. Longev., 2013, 2013, 575482.
[http://dx.doi.org/10.1155/2013/575482] [PMID: 23691264]
[111]
Reddy, G.R.; Ueda, N.; Hada, T.; Sackeyfio, A.C.; Yamamoto, S.; Hano, Y.; Aida, M.; Nomura, T. A prenylflavone, artonin E, as arachidonate 5-lipoxygenase inhibitor. Biochem. Pharmacol., 1991, 41(1), 115-118.
[http://dx.doi.org/10.1016/0006-2952(91)90018-Z] [PMID: 1986735]
[112]
Raghavenra, H.; Diwakr, B.T.; Lokesh, B.R.; Naidu, K.A. Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells. Prostaglandins Leukot. Essent. Fatty Acids, 2006, 74(1), 23-27.
[http://dx.doi.org/10.1016/j.plefa.2005.08.006] [PMID: 16216483]
[113]
Rubbo, H.; Wood, I. 5-LOX inhibition by natural products. Nat. Chem. Biol., 2020, 16(7), 714-715.
[http://dx.doi.org/10.1038/s41589-020-0568-z] [PMID: 32572258]
[114]
Gulati, K.; Rai, N.; Chaudhary, S.; Ray, A. Nutraceuticals in Respiratory Disorders; Nutraceuticals, 2016, pp. 75-86.
[115]
Siemoneit, U.; Hofmann, B.; Kather, N.; Lamkemeyer, T.; Madlung, J.; Franke, L.; Schneider, G.; Jauch, J.; Poeckel, D.; Werz, O. Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochem. Pharmacol., 2008, 75(2), 503-513.
[http://dx.doi.org/10.1016/j.bcp.2007.09.010] [PMID: 17945191]
[116]
Gayathri, B.; Manjula, N.; Vinaykumar, K.S.; Lakshmi, B.S.; Balakrishnan, A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFalpha, IL-1β, NO and MAP kinases. Int. Immunopharmacol., 2007, 7(4), 473-482.
[http://dx.doi.org/10.1016/j.intimp.2006.12.003] [PMID: 17321470]
[117]
Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Borner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. The structure of Stable-5-Lipoxygenase bound to AKBA. Nat. Chem. Biol., 2020, 16, 783-790.
[http://dx.doi.org/10.1038/s41589-020-0544-7] [PMID: 32393899]
[118]
Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[119]
Hoque, A.; Lippman, S.M.; Wu, T.T.; Xu, Y.; Liang, Z.D.; Swisher, S.; Zhang, H.; Cao, L.; Ajani, J.A.; Xu, X.C. Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: a potential target for prevention. Carcinogenesis, 2005, 26(4), 785-791.
[http://dx.doi.org/10.1093/carcin/bgi026] [PMID: 15661803]
[120]
Bitto, A.; Minutoli, L.; David, A.; Irrera, N.; Rinaldi, M.; Venuti, F.S.; Squadrito, F.; Altavilla, D. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit. Care, 2012, 16(1), R32.
[http://dx.doi.org/10.1186/1364-8535-16-R32] [PMID: 22356547]
[121]
Burnett, B.P.; Bitto, A.; Altavilla, D.; Squadrito, F.; Levy, R.M.; Pillai, L. Flavocoxid inhibits phospholipase A2, peroxidase moieties of the cyclooxygenases (COX), and 5-lipoxygenase, modifies COX-2 gene expression, and acts as an antioxidant. Mediators Inflamm., 2011, 2011, 385780.
[http://dx.doi.org/10.1155/2011/385780] [PMID: 21765617]
[122]
Altavilla, D.; Squadrito, F.; Bitto, A.; Polito, F.; Burnett, B.P.; Di Stefano, V.; Minutoli, L. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages. Br. J. Pharmacol., 2009, 157(8), 1410-1418.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00322.x] [PMID: 19681869]
[123]
Altavilla, D.; Minutoli, L.; Polito, F.; Irrera, N.; Arena, S.; Magno, C.; Rinaldi, M.; Burnett, B.P.; Squadrito, F.; Bitto, A. Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia. Br. J. Pharmacol., 2012, 167(1), 95-108.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01969.x] [PMID: 22471974]
[124]
Reddy, D.B.; Reddy, T.C.M.; Jyotsna, G.; Sharan, S.; Priya, N.; Lakshmipathi, V.; Reddanna, P. Chebulagic acid, a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., induces apoptosis in COLO-205 cell line. J. Ethnopharmacol., 2009, 124(3), 506-512.
[http://dx.doi.org/10.1016/j.jep.2009.05.022] [PMID: 19481594]
[125]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[126]
Ng, C.H.; Rullah, K.; Abas, F.; Lam, K.W.; Ismail, I.S.; Jamaludin, F.; Shaari, K. Hits-to-lead optimization of the natural compound 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) as a potent LOX inhibitor: synthesis, structure-activity relationship (SAR) study, and computational assignment. Molecules, 2018, 23(10), 2509.
[http://dx.doi.org/10.3390/molecules23102509] [PMID: 30274341]
[127]
Badria, F.A.; Mohammed, E.A.; El-Badrawy, M.K.; El-Desouky, M. Natural Leukotriene Inhibitor from Boswellia: A potential new alternative for treating bronchial asthma. Altern. Complement. Ther., 2004, 10(5), 257-265.
[http://dx.doi.org/10.1089/act.2004.10.257]
[128]
Safayhi, M.; Sailer, E.R.; Ammon, H.P.T. 5-Lipoxygenase inhibition by acetyl-11 keto-b-boswellic acid. Phytomedicine, 1996, 3(1), 71-72.
[http://dx.doi.org/10.1016/S0944-7113(96)80013-4] [PMID: 23194864]
[129]
Badria, F.A.; Mikhaeil, B.R.; Maatooq, G.T.; Amer, M.M. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Z. Naturforsch. C J. Biosci., 2003, 58(7-8), 505-516.
[http://dx.doi.org/10.1515/znc-2003-7-811] [PMID: 12939036]
[130]
Balasubramanyam, M.; Koteswari, A.A.; Kumar, R.S.; Monickaraj, S.F.; Maheswari, J.U.; Mohan, V. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J. Biosci., 2003, 28(6), 715-721.
[http://dx.doi.org/10.1007/BF02708432] [PMID: 14660871]
[131]
Pan, M.H.; Lin-Shiau, S.Y.; Lin, J.K. Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem. Pharmacol., 2000, 60(11), 1665-1676.
[http://dx.doi.org/10.1016/S0006-2952(00)00489-5] [PMID: 11077049]
[132]
Joe, B.; Vijaykumar, M.; Lokesh, B.R. Biological properties of curcumin-cellular and molecular mechanisms of action. Crit. Rev. Food Sci. Nutr., 2004, 44(2), 97-111.
[http://dx.doi.org/10.1080/10408690490424702] [PMID: 15116757]
[133]
Houssen, M.E.; Ragab, A.; Mesbah, A.; El-Samanoudy, A.Z.; Othman, G.; Moustafa, A.F.; Badria, F.A. Natural anti-inflammatory products and leukotriene inhibitors as complementary therapy for bronchial asthma. Clin. Biochem., 2010, 43(10-11), 887-890.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.04.061] [PMID: 20430018]
[134]
Shiki, Y.; Ishikawa, Y.; Shirai, K.; Saito, Y.; Yoshida, S. Effect of glycyrrhizin on lysosomes labilization by phospholipase A2. Am. J. Chin. Med., 1986, 14(3-4), 131-137.
[http://dx.doi.org/10.1142/S0192415X86000211] [PMID: 3799529]
[135]
Kroes, B.H.; Beukelman, C.J.; van den Berg, A.J.; Wolbink, G.J.; van Dijk, H.; Labadie, R.P. Inhibition of human complement by beta-glycyrrhetinic acid. Immunology, 1997, 90(1), 115-120.
[http://dx.doi.org/10.1046/j.1365-2567.1997.00131.x] [PMID: 9038721]
[136]
Ambati, G.G.; Jachak, S.M. Natural product inhibitors of cyclooxygenase (COX) enzyme: A review on current status and future perspectives. Curr. Med. Chem., 2021, 28(10), 1877-1905.
[http://dx.doi.org/10.2174/0929867327666200602131100] [PMID: 32484764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy