Abstract
Background: Proteins are biomolecules that consist of sequences of amino acids (primary structure) which can further interact and cause the backbone to fold into more complex arrangements (secondary and tertiary structures). Any chemical alterations of the molecules after the translation of the messenger RNA code into a protein primary sequence are known as posttranslational modifications (PTMs). PTMs may affect the protein’s functionality; thus it is necessary to identify them. PTMs of particular interest to the pharmaceutical industry include deamidation, oxidation, deglycosylation and isomerization, which may occur due to environmental stressors. However, they have proved challenging to identify quickly. Electronic and vibrational spectroscopies have proved valuable tools for studying higher-order structure and stability of proteins.
Methods: In this work, circular dichroism (CD), infrared absorbance (IR) and Raman spectroscopies were applied to characterize antibody (mAb NIP 228) PTMs as a result of different stressors. Mass spectrometry was used to confirm the identity of modifications including the targeted ones.
Results: Room temperature CD showed that the secondary structure was the same after all treatments, and temperature-controlled CD showed how protein stability was affected by modifications. Both Raman and IR analysis detected small differences between the reference and deglycosylated proteins, and clearly indicated the presence of other PTMs.
Conclusion: This work required some novel computational approaches to pre-process Raman and IR spectra and a review of the band assignments for proteins existing in the literature.
Keywords: Post translational modifications, biopharmaceuticals, protein secondary structure, spectroscopy, raman, circular dichroism, mass spectrometry, infrared absorbance.
Graphical Abstract