Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Poly (Adenosine Diphosphate Ribose) Polymerase-1 Single Nucleotide Polymorphism in the 3'-Untranslated Region for Ischemic Stroke Risk Reduction

Author(s): Lujun Gu, Gangtao Xu and Dinghua Liu*

Volume 18, Issue 3, 2021

Published on: 16 September, 2021

Page: [302 - 306] Pages: 5

DOI: 10.2174/1567202618666210916122553

Price: $65

Abstract

Objective: To determine the effect of PARP1 polymorphism on gene interactions.

Methods: A total of 500 patients and 500 healthy controls were enrolled.

Results: Analysis of clinical data showed that patients with stroke, diabetes, hypertension, and elevated serum triglyceride levels had higher levels of alcohol and smoking. The polymorphism of PARP1rs8679 was inversely associated with the risk of ischemic stroke. Patients with PARP1rs8679AG/ GG genotypes had a lower incidence of an initial stroke. Compared with the wild genotype, mRNA levels of PARP1 were reduced. MiR-124-5p directly induced PARP1 inhibition through the gain binding ability of 3 'UTR binding.

Conclusion: Single nucleotide polymorphism (SNP) rs8679 in PARP13ʹUTR can prevent ischemic stroke.

Keywords: Bioinformatics, PARP1, ischemic stroke, protect, miRNA, factor.

[1]
Cheng JH, Zhang Z, Ye Q, Ye ZS, Xia NG. Characteristics of the ischemic stroke patients whose seizures occur at stroke presentation at a single institution in Eastern China. J Neurol Sci 2018; 387: 46-50.
[http://dx.doi.org/10.1016/j.jns.2018.01.028] [PMID: 29571870]
[2]
Li F, Yang L, Yang R, et al. Ischemic stroke in young adults of northern China: Characteristics and risk factors for recurrence. Eur Neurol 2017; 77(3-4): 115-22.
[http://dx.doi.org/10.1159/000455093] [PMID: 28052272]
[3]
Numis AL, Fox CK. Arterial ischemic stroke in children: risk factors and etiologies. Curr Neurol Neurosci Rep 2014; 14(1): 422.
[http://dx.doi.org/10.1007/s11910-013-0422-8] [PMID: 24384876]
[4]
Zhang D, Hu X, Li J, et al. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nat Commun 2019; 10(1): 1307.
[http://dx.doi.org/10.1038/s41467-019-09014-2] [PMID: 30898999]
[5]
Murata MM, Kong X, Moncada E, et al. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 2019; 30(20): 2584-97.
[http://dx.doi.org/10.1091/mbc.E18-10-0650] [PMID: 31390283]
[6]
Meng D, He W, Huang P, et al. Polymorphism of PARP-1 indicates an increased risk and a worse initial severity of ischemic stroke. Per Med 2018; 15(5): 355-60.
[http://dx.doi.org/10.2217/pme-2018-0007] [PMID: 30260276]
[7]
Moroni F. Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol 2008; 8(1): 96-103.
[http://dx.doi.org/10.1016/j.coph.2007.10.005] [PMID: 18032109]
[8]
Olmez I, Ozyurt H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int 2012; 60(2): 208-12.
[http://dx.doi.org/10.1016/j.neuint.2011.11.009] [PMID: 22122807]
[9]
Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 1999; 20(4): 171-81.
[http://dx.doi.org/10.1016/S0165-6147(99)01292-4] [PMID: 10322503]
[10]
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2013; 47(1): 9-23.
[http://dx.doi.org/10.1007/s12035-012-8344-z] [PMID: 23011809]
[11]
Sarnaik AA, Conley YP, Okonkwo DO, et al. Influence of PARP-1 polymorphisms in patients after traumatic brain injury. J Neurotrauma 2010; 27(3): 465-71.
[http://dx.doi.org/10.1089/neu.2009.1171] [PMID: 19925161]
[12]
Schneiderova M, Naccarati A, Pardini B, et al. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis. Mutagenesis 2017; 32(5): 533-42.
[http://dx.doi.org/10.1093/mutage/gex026] [PMID: 29048575]
[13]
Teo MT, Landi D, Taylor CF, et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 2012; 33(3): 581-6.
[http://dx.doi.org/10.1093/carcin/bgr300] [PMID: 22166496]
[14]
He W, Wang Q, Gu L, Zhong L, Liu D. NOX4 rs11018628 polymorphism associates with a decreased risk and better short-term recovery of ischemic stroke. Exp Ther Med 2018; 16(6): 5258-64.
[http://dx.doi.org/10.3892/etm.2018.6874] [PMID: 30542483]
[15]
Mackay MT, Wiznitzer M, Benedict SL, Lee KJ, Deveber GA, Ganesan V. Arterial ischemic stroke risk factors: the International Pediatric Stroke Study. Ann Neurol 2011; 69(1): 130-40.
[http://dx.doi.org/10.1002/ana.22224] [PMID: 21280083]
[16]
Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res 2013; 41(5): 3115-29.
[http://dx.doi.org/10.1093/nar/gkt025] [PMID: 23355608]
[17]
Cheng J, Zhuo Z, Zhao P, et al. PARP1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. J Cancer 2019; 10(18): 4159-64.
[http://dx.doi.org/10.7150/jca.34222] [PMID: 31413734]
[18]
Chiarugi A. “Simple but not simpler”: toward a unified picture of energy requirements in cell death. FASEB J 2005; 19(13): 1783-8.
[http://dx.doi.org/10.1096/fj.05-4200rev] [PMID: 16260648]
[19]
Fonfria E, Marshall IC, Benham CD, et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 2004; 143(1): 186-92.
[http://dx.doi.org/10.1038/sj.bjp.0705914] [PMID: 15302683]
[20]
Gao X, Yang H, ZhiPing T. Association studies of genetic polymorphism, environmental factors and their interaction in ischemic stroke. Neurosci Lett 2006; 398(3): 172-7.
[http://dx.doi.org/10.1016/j.neulet.2005.12.078] [PMID: 16443328]
[21]
Goto S, Xue R, Sugo N, et al. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 2002; 33(4): 1101-6.
[http://dx.doi.org/10.1161/01.STR.0000014203.65693.1E] [PMID: 11935067]
[22]
Kiss A, Ráduly AP, Regdon Z, et al. Targeting nuclear NAD+ synthesis inhibits DNA repair, impairs metabolic adaptation and increases chemosensitivity of U-2OS osteosarcoma cells. Cancers (Basel) 2020; 12(5): 1180.
[http://dx.doi.org/10.3390/cancers12051180] [PMID: 32392755]
[23]
Kondratova AA, Cheon H, Dong B, et al. Suppressing PARylation by 2′,5′-oligoadenylate synthetase 1 inhibits DNA damage-induced cell death. EMBO J 2020; 39(11): e101573.
[http://dx.doi.org/10.15252/embj.2019101573] [PMID: 32323871]
[24]
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: Results from a nationwide population-based survey of 480-687 adults. Circulation 2017; 135(8): 759-71.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.025250] [PMID: 28052979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy