Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Methyl-linked Pyrazoles: Synthetic and Medicinal Perspective

Author(s): Tulika Sharma, Joginder Singh, Bijender Singh, Ramesh Kataria and Vinod Kumar*

Volume 22, Issue 5, 2022

Published on: 05 January, 2022

Page: [770 - 804] Pages: 35

DOI: 10.2174/1389557521666210914124914

Price: $65

conference banner
Abstract

Pyrazoles, an important and well-known class of the azole family, have been found to show a large number of applications in various fields, especially medicinal chemistry. Pyrazole derivatives, particularly methyl-substituted pyrazoles, have been reported as potent medicinal scaffolds that exhibit a wide spectrum of biological activities. The present review is an attempt to highlight the detailed synthetic approaches for methyl-substituted pyrazoles along with an in-depth analysis of their respective medical significances till March 2021. It is hoped that literature sum-up in the form of present review article would certainly be a great tool in assisting medicinal chemists in generating new leads possessing pyrazole nucleus with high efficacy and less microbial resistance.

Keywords: Pyrazoles, drug discovery, medicinal chemistry, organic synthesis, microbial resistance, NMR spectral characteristics.

Graphical Abstract

[1]
Gedawy, E.M.; Kassab, A.E.; El Kerdawy, A.M. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur. J. Med. Chem., 2020, 189112066
[http://dx.doi.org/10.1016/j.ejmech.2020.112066] [PMID: 31982653]
[2]
Karami, S.; Dekamin, M.G.; Valiey, E.; Shakib, P. DABA MNPs: a new and efficient magnetic bifunctional nanocatalyst for green synthesis of biologically active pyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives. New J. Chem., 2020, 44, 1-11.
[http://dx.doi.org/10.1039/D0NJ02666B]
[3]
Ansari, A.; Ali, A.; Asif, M. Shamsuzzaman. Review: Biologically active pyrazole derivatives. New J. Chem., 2016, 41, 16-41.
[http://dx.doi.org/10.1039/C6NJ03181A]
[4]
Titi, A.; Messali, M.; Alqurashy, B.A.; Touzani, R.; Shiga, T.; Oshio, H.; Fettouhi, M.; Rajabi, M.; Almalki, F.A.; Hadda, T.B. Synthesis, characterization, X-Ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. J. Mol. Struct., 2020, 1205127625
[http://dx.doi.org/10.1016/j.molstruc.2019.127625]
[5]
Naim, M.J.; Alam, O.; Nawaz, F.; Alam, M.J.; Alam, P. Current status of pyrazole and its biological activities. J. Pharm. Bioallied Sci., 2016, 8(1), 2-17.
[http://dx.doi.org/10.4103/0975-7406.171694] [PMID: 26957862]
[6]
Kumar, V.; Kaur, K.; Karelia, D.N.; Beniwal, V.; Gupta, G.K.; Sharma, A.K.; Gupta, A.K. Synthesis and biological evaluation of some 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones: Antibacterial, DNA photocleavage, and anticancer activities. Eur. J. Med. Chem., 2014, 81, 267-276.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.004] [PMID: 24849271]
[7]
Gupta, G.K.; Kumar, V.; Kumar, V. Pyrazoles as potential anti-obesity agents. Res. J. Chem. Environ., 2011, 15(3), 90-103.
[8]
Kumar, M.; Kumar, V.; Gupta, G.K. Synthesis, antibacterial evaluation, and SAR study of some novel 3-aryl/heteroaryl-9-methyl-1, 2, 4-triazolo-[4, 3-a]-quinoline derivatives. Med. Chem. Res., 2015, 24, 1857-1868.
[http://dx.doi.org/10.1007/s00044-014-1254-z]
[9]
Kumar, M.; Kumar, V.; Beniwal, V. Synthesis of some pyrazolylaldehyde N-isonicotinoyl hydrazones and 2, 5-disubstituted 1, 3, 4-oxadiazoles as DNA photocleaving agents. Med. Chem. Res., 2015, 24, 2862-2870.
[http://dx.doi.org/10.1007/s00044-015-1340-x]
[10]
Saber, A.F.; Zaki, R.M.; Kamal El-Dean, A.M.; Radwan, S.M. Synthesis, reactions, and spectral characterization of some new biologically active compounds derived from thieno[2, 3-c] pyrazole-5-carboxamide. J. Heterocycl. Chem., 2020, 57, 238-247.
[http://dx.doi.org/10.1002/jhet.3769]
[11]
Dwivedi, J.; Sharma, S.; Jain, S.; Singh, A. The synthetic and biological attributes of pyrazole derivatives: A review. Mini Rev. Med. Chem., 2018, 18(11), 918-947.
[http://dx.doi.org/10.2174/1389557517666170927160919] [PMID: 28971774]
[12]
Kumar, V.; Kaur, K.; Gupta, G.K.; Gupta, A.K.; Kumar, S. Developments in synthesis of the anti-inflammatory drug, celecoxib: A review. Recent Pat. Inflamm. Allergy Drug Discov., 2013, 7(2), 124-134.
[http://dx.doi.org/10.2174/1872213X11307020004] [PMID: 23565678]
[13]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[14]
Girisha, K.S.; Kalluraya, B.; Narayana, V. Padmashree, Synthesis and pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-pyrazoline. Eur. J. Med. Chem., 2010, 45(10), 4640-4644.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.032] [PMID: 20702008]
[15]
Aggarwal, R.; Kumar, V.; Tyagi, P.; Singh, S.P. Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-3H/methyl-4-phenylpyrazoles. Bioorg. Med. Chem., 2006, 14(6), 1785-1791.
[http://dx.doi.org/10.1016/j.bmc.2005.10.026] [PMID: 16300953]
[16]
Gupta, G.K.; Kumar, V. Pyranopyrazoles as a new class of FTO inhibitors : A Docking Study. Res. J. Chem. Environ., 2015, 19, 51-60.
[17]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[18]
Mu, J.X.; Shi, Y.X.; Yang, M.Y.; Sun, Z.H.; Liu, X.H.; Li, B.J.; Sun, N.B. Design, synthesis, DFT Study and antifungal activity of pyrazolecarboxamide derivatives. Molecules, 2016, 21(1), 68.
[http://dx.doi.org/10.3390/molecules21010068] [PMID: 26760990]
[19]
Faisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F.A. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci., 2019, 131, 70.
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[20]
Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem., 2013, 69, 735-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.053] [PMID: 24099993]
[21]
Dai, H.; Yu, H.B.; Liu, J.B.; Li, Y.Q.; Qin, X.; Zhang, X.; Qin, Z.F.; Wang, T.T.; Fang, J.X. Synthesis and bioactivities of novel pyrazole oxime ester derivatives containing pyridyl moiety. Youji Huaxue, 2017, 37, 126-142.
[http://dx.doi.org/10.6023/cjoc201701042]
[22]
Raju, H.; Chandrappa, S.; Prasanna, D.S.; Ananda, H.; Nagamani, T.S.; Byregowda, S.M.; Rangappa, K.S. Synthesis, characterization and in vitro antiproliferative effects of novel 5-amino pyrazole derivatives against breast cancer cell lines. Rec. Pat. Anticancer Drug Discov., 2011, 6, 186-195.
[PMID: 21247401]
[23]
Pal, D.; Saha, S.; Singh, S. Importance of pyrazole moiety in the field of cancer. Int. J. Pharm. Pharm. Sci., 2012, 4, 98-104.
[24]
Shen, S.L.; Zhu, J.; Li, M.; Zhao, B.X.; Miao, J.Y. Synthesis of ferrocenyl pyrazole-containing chiral aminoethanol derivatives and their inhibition against A549 and H322 lung cancer cells. Eur. J. Med. Chem., 2012, 54, 287-294.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.008] [PMID: 22683243]
[25]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem., 2004, 47(14), 3693-3696.
[http://dx.doi.org/10.1021/jm030394f] [PMID: 15214796]
[26]
Mamaghani, M.; Nia, R.H. A Review on the recent multicomponent synthesis of pyranopyrazoles. Polycycl. Aromat. Compd., 2021, 41, 223-291.
[http://dx.doi.org/10.1080/10406638.2019.1584576]
[27]
Sammelson, R.E.; Caboni, P.; Durkin, K.A.; Casida, J.E. GABA receptor antagonists and insecticides: common structural features of 4-alkyl-1-phenylpyrazoles and 4-alkyl-1-phenyltrioxabicyclooctanes. Bioorg. Med. Chem., 2004, 12(12), 3345-3355.
[http://dx.doi.org/10.1016/j.bmc.2004.03.069] [PMID: 15158803]
[28]
Koyama, G.; Maeda, K.; Umezawa, H.; Iitaka, Y. The structural studies of formycin and formycin B. Tetrahedron Lett., 1966, 6, 597-602.
[http://dx.doi.org/10.1016/S0040-4039(01)99671-6] [PMID: 5905317]
[29]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[30]
Wube, A.A.; Wenzig, E.M.; Gibbons, S.; Asres, K.; Bauer, R.; Bucar, F. Constituents of the stem bark of Discopodium penninervium and their LTB4 and COX-1 and -2 inhibitory activities. Phytochemistry, 2008, 69(4), 982-987.
[http://dx.doi.org/10.1016/j.phytochem.2007.11.001] [PMID: 18086481]
[31]
Allin, S.M.; Barton, W.R.S.; Bowman, W.R.; Bridge, E. (née Mann); Elsegood, M.R.J.; McInally, T.; McKee, V. Bu3SnH-mediated radical cyclisation onto azoles. Tetrahedron Lett., 2008, 64, 7745-7758.
[http://dx.doi.org/10.1016/j.tet.2008.06.014]
[32]
Petrie, C.R., III; Revankar, G.R.; Dalley, N.K.; George, R.D.; McKernan, P.A.; Hamill, R.L.; Robins, R.K. Synthesis and biological activity of certain nucleoside and nucleotide derivatives of pyrazofurin. J. Med. Chem., 1986, 29(2), 268-278.
[http://dx.doi.org/10.1021/jm00152a016] [PMID: 3950908]
[33]
Padwal, R.S.; Majumdar, S.R. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet, 2007, 369(9555), 71-77.
[http://dx.doi.org/10.1016/S0140-6736(07)60033-6] [PMID: 17208644]
[34]
Stevenson, I.H. Factors influencing antipyrine elimination. Br. J. Clin. Pharmacol., 1977, 4(3), 261-265.
[http://dx.doi.org/10.1111/j.1365-2125.1977.tb00710.x] [PMID: 332216]
[35]
Gupta, R. Biological significance of nitrogen containing heterocyclic compounds - a mini review; Int. J. Com. App, 2015, pp. 18-23.
[36]
Ismail, M.A.H.; Lehmann, J.; Abou, D.A.; Ella, E.; Albohy, A.; Abouzid, K.A.M. Lonazolac analogues : molecular modeling, synthesis and in vivo anti-inflammatory activity. Med. Chem. Res., 2009, 18, 725-744.
[http://dx.doi.org/10.1007/s00044-009-9163-2]
[37]
Gassani, B.C.A.; Rezende, R.M.; Paiva-Lima, P.; Ferreira-Alves, D.L.; dos Reis, W.G.P.; Bakhle, Y.S.; de Francischi, J.N. Is the sulphonamide radical in the celecoxib molecule essential for its analgesic activity? Pharmacol. Res., 2010, 62(5), 439-443.
[http://dx.doi.org/10.1016/j.phrs.2010.06.007] [PMID: 20600917]
[38]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of Pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134] [PMID: 29329257]
[39]
Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, antioxidant and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules, 2020, 25(5), 1047.
[http://dx.doi.org/10.3390/molecules25051047] [PMID: 32110945]
[40]
Rozy, F.; Sharon, A. Base catalyzed scaffold shift from pyranone carboxamide to pyrazolyl acetamide through intramolecular ring transformation. Chem. Select, 2019, 4, 6194-6197.
[http://dx.doi.org/10.1002/slct.201900373]
[41]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5)172435
[http://dx.doi.org/10.1098/rsos.172435] [PMID: 29892430]
[42]
Yerragunta, V.; Suman, D.; Swamy, K.; Anusha, V.; Patil, P.; Naresh, M. Pyrazole and its biological activity, Phar. Tutor Mag., 2017, 2, 40-48.
[43]
Ailawadi, S.; Yadav, J.M.; Pathak, D. Synthesis and characterization of some substituted pyrazoles as analgesics and anti-inflammatory agents. Pharma Chem., 2011, 3, 215-222.
[44]
Ouyang, G.; Chen, Z.; Cai, X.J.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem., 2008, 16(22), 9699-9707.
[http://dx.doi.org/10.1016/j.bmc.2008.09.070] [PMID: 18945621]
[45]
Kang, J.; Yue, X.L.; Chen, C.S.; Li, J.H.; Ma, H.J. Synthesis and herbicidal activity of 5-Heterocycloxy-3-methyl-1-substituted-1H-pyrazoles. Molecules, 2015, 21(1)E39
[http://dx.doi.org/10.3390/molecules21010039] [PMID: 26712728]
[46]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[47]
Abu Bakr, S.M.; El-Karim, S.S.A.; Said, M.M.; Yauns, M.M. Synthesis and anticancer evaluation of novel isoxazole/pyrazole derivatives. Res. Chem. Intermed., 2015, 42(2), 1-13.
[48]
Barawkar, D.A.; Bandyopadhyay, A.; Deshpande, A.; Koul, S.; Kandalkar, S.; Patil, P.; Khose, G.; Vyas, S.; Mone, M.; Bhosale, S.; Singh, U.; De, S.; Meru, A.; Gundu, J.; Chugh, A.; Palle, V.P.; Mookhtiar, K.A.; Vacca, J.P.; Chakravarty, P.K.; Nargund, R.P.; Wright, S.D.; Roy, S.; Graziano, M.P.; Cully, D.; Cai, T.Q.; Singh, S.B. Discovery of pyrazole carboxylic acids as potent inhibitors of rat long chain L-2-hydroxy acid oxidase. Bioorg. Med. Chem. Lett., 2012, 22(13), 4341-4347.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.020] [PMID: 22658862]
[49]
Fadda, A.A.; Abdel-Latif, E.; el-Mekawy, R.E. Synthesis and molluscicidal activity of some new thiophene, thiadiazole and pyrazole derivatives. Eur. J. Med. Chem., 2009, 44(3), 1250-1256.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.006] [PMID: 18930566]
[50]
Galal, S.A.; Khairat, S.H.M.; Ragab, F.A.F.; Abdelsamie, A.S.; Ali, M.M.; Soliman, S.M.; Mortier, J.; Wolber, G.; El Diwani, H.I. Design, synthesis and molecular docking study of novel quinoxalin-2(1H)-ones as anti-tumor active agents with inhibition of tyrosine kinase receptor and studying their cyclooxygenase-2 activity. Eur. J. Med. Chem., 2014, 86, 122-132.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.048] [PMID: 25147154]
[51]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.033] [PMID: 24607877]
[52]
Faria, J.V.; dos Santos, M.S.; Bernardino, A.M.R.; Becker, K.M.; Machado, G.M.C.; Rodrigues, R.F.; Canto-Cavalheiro, M.M.; Leon, L.L. Synthesis and activity of novel tetrazole compounds and their pyrazole-4-carbonitrile precursors against Leishmania spp. Bioorg. Med. Chem. Lett., 2013, 23(23), 6310-6312.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.062] [PMID: 24125880]
[53]
Organic synthesis-Driving force of life development, The 3rd international conference of organic chemistry, Javakhishvili Tbilisi State university association of professional chemists of georgia. 2014.
[54]
Kaushik, D.; Khan, S.A.; Chawla, G.; Kumar, S.N. ′-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity. Eur. J. Med. Chem., 2010, 45(9), 3943-3949.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.049] [PMID: 20573423]
[55]
Kumar, V.; Aggarwal, R.; Tyagi, P.; Singh, S.P. Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur. J. Med. Chem., 2005, 40(9), 922-927.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.021] [PMID: 15921826]
[56]
Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14(24), 6035-6040.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.066] [PMID: 15546724]
[57]
Sidique, S.; Shiryaev, S.A.; Ratnikov, B.I.; Herath, A.; Su, Y.; Strongin, A.Y.; Cosford, N.D.P. Structure-activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile Virus NS2B-NS3 proteinase. Bioorg. Med. Chem. Lett., 2009, 19(19), 5773-5777.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.150] [PMID: 19703770]
[58]
Siddiqui, Z.N.; Farooq, F.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. J. Saudi Chem. Soc., 2013, 17, 237-243.
[http://dx.doi.org/10.1016/j.jscs.2011.03.016]
[59]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5] [PMID: 31572983]
[60]
Mohammed, K.S.; Elbeily, E.E.; El-Taweel, F.M.; Fadda, A.A. Synthesis , characterization and antioxidant evaluation of some novel pyrazolo[3,4-c][1,2]diazepine and pyrazolo[3,4-c]pyrazole derivatives J. Heter. Chem., 2018, 493
[61]
Saleh, N.M.; El-Gazzar, M.G.; Aly, H.M.; Othman, R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Front Chem., 2020, 7, 917.
[http://dx.doi.org/10.3389/fchem.2019.00917] [PMID: 32039146]
[62]
Yagnam, S.; Akondi, A.M.; Trivedi, R.; Rathod, B.; Prakasham, R.S.; Sridhar, B. Spirooxindole-fused pyrazolo pyridine derivatives: NiO – SiO2 catalyzed one-pot synthesis and antimicrobial activities. Synth. Commun., 2018, 48(3), 1-12.
[http://dx.doi.org/10.1080/00397911.2017.1393687]
[63]
Alasadi, Y.K.; Allah, B.A.K.A.; Al-Badrany, K.A. Synthesis and evaluation of the biological activity of some new pyrimidin derivatives derived from pyrazolin Euras. Chemico-Tech. J., 2019, 21, 286-294.
[64]
Depa, N.; Erothu, H. Design, synthesis, antibacterial evaluation and molecular docking studies of novel pyrazole/1,2,4-oxadiazole conjugate ester derivatives. Med. Chem. Res., 2021, 30(5), 1-12.
[65]
El-Assaly, S.A.; Ismail, A.H.A.; Bary, H.A.; Abouelenein, M.G. Synthesis, molecular docking studies, and antimicrobial evaluation of pyrano[2,3-c]pyrazole derivatives. Curr. Chem. Lett., 2021, 10, 309-328.
[http://dx.doi.org/10.5267/j.ccl.2021.3.003]
[66]
Karrouchi, K.; Chemlal, L.; Doudach, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; Faouzi, M.E.A.; Ansar, M. Synthesis, anti-inflammatory and antioxidant activities of some new pyrazole derivatives. J. Pharm. Res., 2014, 8, 1171-1177.
[67]
Warbhe, P.; Deshmukh, R. Novel synthesis and antimicrobial activity of 3-amino phenyl-5-methyl pyrazoles and its derivatives. Int. J. Pharm. Sci. Res., 2017, 8, 217-221.
[68]
Mohanty, S.K.; Ahuntia, A.; Ramesh, M.; Shankar, T.S.; Harish, M.; Shaikshavali, M.; Hussain, S.S.; Basha, S.M. Synthesis, characterization and antimicrobial & antioxidant activity of 2-Isonicotinoyl-5-methyl-2,4-dihydro-3H-pyrazolone derivatives. Indo. Am. J. Pharm. Res., 2014, 4, 2455-2464.
[69]
Mowbray, C.E.; Burt, C.; Corbau, R.; Perros, M.; Tran, I.; Stupple, P.A.; Webster, R.; Wood, A. Pyrazole NNRTIs 1: design and initial optimisation of a novel template. Bioorg. Med. Chem. Lett., 2009, 19(19), 5599-5602.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.039] [PMID: 19709880]
[70]
Andrés, M.; Bravo, M.; Buil, M.A.; Calbet, M.; Castillo, M.; Castro, J.; Eichhorn, P.; Ferrer, M.; Lehner, M.D.; Moreno, I.; Roberts, R.S.; Sevilla, S. 2-(1H-Pyrazol-1-yl)acetic acids as chemoattractant receptor-homologous molecule expressed on Th2 lymphocytes (CRTh2) antagonists. Eur. J. Med. Chem., 2014, 71, 168-184.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.072] [PMID: 24292338]
[71]
McKeown, S.C.; Hall, A.; Giblin, G.M.P.; Lorthioir, O.; Blunt, R.; Lewell, X.Q.; Wilson, R.J.; Brown, S.H.; Chowdhury, A.; Coleman, T.; Watson, S.P.; Chessell, I.P.; Pipe, A.; Clayton, N.; Goldsmith, P. Identification of novel pyrazole acid antagonists for the EP1 receptor. Bioorg. Med. Chem. Lett., 2006, 16(18), 4767-4771.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.086] [PMID: 16843659]
[72]
Skinner, P.J.; Cherrier, M.C.; Webb, P.J.; Shin, Y.J.; Gharbaoui, T.; Lindstrom, A.; Hong, V.; Tamura, S.Y.; Dang, H.T.; Pride, C.C.; Chen, R.; Richman, J.G.; Connolly, D.T.; Semple, G. Fluorinated pyrazole acids are agonists of the high affinity niacin receptor GPR109a. Bioorg. Med. Chem. Lett., 2007, 17(20), 5620-5623.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.101] [PMID: 17804224]
[73]
Gunasekaran, P.; Perumal, S.; Yogeeswari, P.; Sriram, D. A facile four-component sequential protocol in the expedient synthesis of novel 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones in water and their antitubercular evaluation. Eur. J. Med. Chem., 2011, 46(9), 4530-4536.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.029] [PMID: 21839549]
[74]
Burgart, Y.V.; Elkina, N.A.; Shchegolkov, E.V.; Krasnykh, O.P.; Maslova, V.V.; Triandafilova, G.A.; Solodnikov, S.Y.; Makhaeva, G.F.; Serebryakova, O.G.; Rudakova, E.V.; Saloutin, V.I. Synthesis of Biologically active 6-(tolylhydrazinylidene)pyrazolo[1,5-a]pyrimidinones. Chem. Heterocycl. Compd., 2020, 56, 199-207.
[http://dx.doi.org/10.1007/s10593-020-02652-1]
[75]
Long, L.; Wang, Y.H.; Zhuo, J.X.; Tu, Z.C.; Wu, R.; Yan, M.; Liu, Q.; Lu, G. Structure-based drug design: Synthesis and biological evaluation of quinazolin-4-amine derivatives as selective Aurora A kinase inhibitors. Eur. J. Med. Chem., 2018, 157, 1361-1375.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.053] [PMID: 30196060]
[76]
El Foujji, L.; El Bourakadi, K.; Essassi, E.M.; Boeré, R.T.; Qaiss, A. el k.; Bouhfid, R. Solid-state zwitterionic tautomerization of 2-((5-methyl-1H-pyrazol-3-yl)methyl)-1H-benzimidazole: synthesis, characterization, DFT calculation and docking studies. J. Mol. Struct., 2021, 1235130231
[http://dx.doi.org/10.1016/j.molstruc.2021.130231]
[77]
Kaur, K.; Kumar, V.; Kaur, K.; Kumar, V.; Kumar, V. Synthesis of Some Novel 2-(3,5-Dimethyl-1H-Pyrazol-1-yl)-1-Arylethanols as Antimicrobial Agents. Indian J. Heterocycl. Chem., 2018, 28, 1-9.
[78]
Kaur, K.; Kumar, V.; Beniwal, V.; Kumar, V.; Aneja, K.R.; Sharma, V.; Jaglan, S. Novel (E)-1-aryl-2-(3,5-dimethyl-4-(aryldiazenyl)-1H-pyrazol-1-yl)ethanones: Solvent-free synthesis and antimicrobial, antioxidant and UV-mediated DNA damage protective activity studies. Med. Chem. Res., 2015, 24, 4023-4036.
[http://dx.doi.org/10.1007/s00044-015-1452-3]
[79]
Kaur, K.; Kumar, V.; Kumar, V.; Aneja, K.R.; Sharma, V.; Jaglan, S. Solvent-free synthesis of novel (E)-2-(3,5-dimethyl-4-(aryldiazenyl)-1H-pyrazol-1-yl)-4-arylthiazoles: Determination of their biological activity. Med. Chem. Res., 2015, 24, 3863-3875.
[http://dx.doi.org/10.1007/s00044-015-1429-2]
[80]
Kale, P.D. Synthesis and antimicrobial activity of some new 3,5-dimethyl azopyrazole derivatives. J. Chem. Pharm. Res., 2013, 5, 130-134.
[81]
Amir, M.; Kumar, S. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation. Indian J. Chem., 2005, 44, 2532-2537.
[82]
Hiremath, S.P.; Rudresh, K.; Saundane, A.R. Synthesis and biological activities of new 5-hydrazino-10-substituted-7H-indolo[2,3-c]isoquinolines and 1-(10-substituted-7H-indolo[2,3-c]isoquinoline-5-yl)-3,5-disubstituted pyrazoles,-3-methyl pyrazol-5-ones and -3,5-disubstituted pyrazolines. Indian J. Chem., 2002, 41, 394-399.
[http://dx.doi.org/10.1002/chin.200219140]
[83]
Kocyigit-Kaymakcioglu, B.; Aker, R.G.; Tezcan, K.; Sakalli, E.; Ketenci, S.; Qruc-Emre, E.E.; Akin, D.; Gurbanova, A.; Terzioglu, B.; Onat, F.; Rollas, S. Anticonvulsant activity of 3,5-dimethylpyrazole derivatives in animal models. Med. Chem. Res., 2011, 20, 607-614.
[http://dx.doi.org/10.1007/s00044-010-9358-6]
[84]
Rani, M.; Sharma, S.; Chauhan, R.; Sharma, S.; Dwivedi, J. Synthesis, characterization and antibacterial evaluation of some azole derivatives. Ind. J. Pharm. Edu. Res., 2017, 51, 650-655.
[http://dx.doi.org/10.5530/ijper.51.4.96]
[85]
Reddy, C.S.; Kumar, G.R.; Devi, M.V.; Nagaraj, A. Synthesis of novel linked pyrazolyl-thiazolidinone heterocycles as potent antibacterial agents. Acta Chim. Slov., 2011, 58(3), 576-581.
[PMID: 24062119]
[86]
Bendaha, H.; Yu, L.; Touzani, R.; Souane, R.; Giaever, G.; Nislow, C.; Boone, C.; El Kadiri, S.; Brown, G.W.; Bellaoui, M. New azole antifungal agents with novel modes of action: synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem., 2011, 46(9), 4117-4124.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.012] [PMID: 21723647]
[87]
Amir, M.; Javed, S.A.; Hassan, M.Z. Synthesis and antimicrobial activity of pyrazolinone and pyrazole analogues containing quinoline moiety. Indian J. Chem., 2013, 52, 1493-1499.
[88]
Sojitra, N.A.; Dixit, R.B.; Patel, R.K.; Patel, J.P.; Dixit, B.C. Classical and microwave assisted synthesis of new 4-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylazo)-N-(2-substituted-4-oxo-4H-quinazolin-3-yl)benzenesulfonamide derivatives and their antimicrobial activities. J. Saudi Chem. Soc., 2016, 20, S29-S37.
[http://dx.doi.org/10.1016/j.jscs.2012.07.020]
[89]
Manojkumar, P.; Ravi, T.K.; Subbuchettiar, G. Synthesis of coumarin heterocyclic derivatives with antioxidant activity and in vitro cytotoxic activity against tumour cells. Acta Pharm., 2009, 59(2), 159-170.
[http://dx.doi.org/10.2478/v10007-009-0018-7] [PMID: 19564141]
[90]
Ali, A.R.; El-Bendary, E.R.; Ghaly, M.A.; Shehata, I.A. Synthesis, in vitro anticancer evaluation and in silico studies of novel imidazo[2,1-b]thiazole derivatives bearing pyrazole moieties. Eur. J. Med. Chem., 2014, 75, 492-500.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.010] [PMID: 24576591]
[91]
Reddy, C.S.; Devia, M.V.; Kumara, G.R.; Raoa, L.S.; Nagarajb, A. Synthesis and antimicrobial activity of linked heterocyclics containing pyrazole-pyrimidine rings, Ind. J. Chem. Sect. B Org. Med. Chem., 2011, 50, 1181-1186.
[92]
Kumari, S.; Paliwal, S.K.; Chauhan, R. An Improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2018, 14, 39-47.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[93]
Sharma, T. Vinit, Sakshi, Bawa, S.; Kumar, V.; Singh, J.; Kataria, R.; Singh, B.; Kumar, V. Synthesis, characterization, antibacterial and DNA photocleavage study of 1-(2-Arenethyl)-3,5-dimethyl-1H-pyrazoles. Chem. Data Collect., 2020, 28100408
[http://dx.doi.org/10.1016/j.cdc.2020.100408]
[94]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon, 2020, 6(1)e03185
[http://dx.doi.org/10.1016/j.heliyon.2020.e03185] [PMID: 31956713]
[95]
Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorg. Chem., 2021, 110104696
[http://dx.doi.org/10.1016/j.bioorg.2021.104696] [PMID: 33652343]
[96]
Bekhit, A.A.; Ashour, H.M.A.; Guemei, A.A. Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch. Pharm. (Weinheim), 2005, 338(4), 167-174.
[http://dx.doi.org/10.1002/ardp.200400940] [PMID: 15864786]
[97]
Zolfigol, M.A.; Khazaei, A.; Karimitabar, F.; Hamidi, M. Alum as a catalyst for the synthesis of bispyrazole derivatives. Appl. Sci. (Basel), 2016, 6, 27.
[http://dx.doi.org/10.3390/app6010027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy