Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Some Scaffolds as Anti-leishmanial Agents: A Review

Author(s): Thatikayala Mahender, Wadhwa Pankaj, Singh Pankaj Kumar, Vaidya Ankur and Sahu Sanjeev Kumar*

Volume 22, Issue 5, 2022

Published on: 12 January, 2022

Page: [743 - 757] Pages: 15

DOI: 10.2174/1389557521666210913115116

Price: $65

Abstract

Leishmaniasis is a parasitic infectious neglected tropical disease transmitted to humans by the parasites of Leishmania species. Mainly, three types of leishmaniases are usually observed: visceral (VL), cutaneous (CL), and mucocutaneous leishmaniasis. In many western countries, almost 700,000 to 1 million people suffer from leishmaniasis, and it is estimated that around 26000 to 65000 deaths occur from leishmaniasis. Few drugs are available for its treatment; however, none of them are ideal for leishmaniasis due to long treatment, discomfort mode of administration, risk of high-level toxicity, high resistance, etc. Hence, so many patients are unable to take complete treatment due to the high drug resistance. The present review will focus on antileishmanial activity of reported derivatives of betacarboline, chalcone, azole, quinoline, quinazoline, benzimidazole, benzadiazapine, thiaazoles, semicarbazone, and hydontoin analogues. We believe that this present study will be helpful for researchers to design new antileishmanial agents.

Keywords: Leishmaniasis, antileishmanial compounds, visceral, cutaneous, mucocutaneous, scaffolds.

Graphical Abstract

[1]
Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[2]
Mitropoulos, P.; Konidas, P.; Durkin-Konidas, M. New World cutaneous leishmaniasis: Updated review of current and future diagnosis and treatment. J. Am. Acad. Dermatol., 2010, 63(2), 309-322.
[http://dx.doi.org/10.1016/j.jaad.2009.06.088] [PMID: 20303613]
[3]
Handler, M.Z.; Patel, P.A.; Kapila, R.; Al-Qubati, Y.; Schwartz, R.A. Cutaneous and mucocutaneous leishmaniasis: Differential diagnosis, diagnosis, histopathology, and management. J. Am. Acad. Dermatol., 2015, 73(6), 911-926, 927-928.
[http://dx.doi.org/10.1016/j.jaad.2014.09.014] [PMID: 26568336]
[4]
Moore, E.M. Diagnostic approach to tropical skin infections. Medicine (Baltimore), 2014, 42(2), 73-78.
[http://dx.doi.org/10.1016/j.mpmed.2013.11.010] [PMID: 24646463]
[5]
Lemos, J.C. Lima, Sdo.C. American cutaneous leishmaniasis: Phlebotomine transmission area in the Municipality of Uberlândia, MG. Rev. Soc. Bras. Med. Trop., 2005, 38(1), 22-26.
[http://dx.doi.org/10.1590/S0037-86822005000100005] [PMID: 15717090]
[6]
Grevelink, S.A.; Lerner, E.A. Leishmaniasis. J. Am. Acad. Dermatol., 1996, 34(2 Pt 1), 257-272.
[http://dx.doi.org/10.1016/S0190-9622(96)80121-6] [PMID: 8642091]
[7]
De Vries, H.J.; Reedijk, S.H.; Schallig, H.D. Cutaneous leishmaniasis: Recent developments in diagnosis and management. Am. J. Clin. Dermatol., 2015, 16(2), 99-109.
[http://dx.doi.org/10.1007/s40257-015-0114-z] [PMID: 25687688]
[8]
Coffeng, L.E.; Le Rutte, E.A.; Muñoz, J.; Adams, E.R.; Prada, J.M.; de Vlas, S.J.; Medley, G.F. Impact of changes in detection effort on control of visceral leishmaniasis in the Indian subcontinent. 2020, 221, 5546-5553.
[http://dx.doi.org/10.1093/infdis/jiz644]
[9]
Das, A.; Karthick, M.; Dwivedi, S.; Banerjee, I.; Mahapatra, T.; Srikantiah, S.; Chaudhuri, I. Epidemiologic correlates of mortality among symptomatic visceral leishmaniasis cases: Findings from situation assessment in high endemic foci in India. PLoS Negl. Trop. Dis., 2016, 10(11), e0005150.
[http://dx.doi.org/10.1371/journal.pntd.0005150] [PMID: 27870870]
[10]
Le Rutte, E.A.; Chapman, L.A.; Coffeng, L.E.; Ruiz-Postigo, J.A.; Olliaro, P.L.; Adams, E.R.; Hasker, E.C.; Boelaert, M.C.; Hollingsworth, T.D.; Medley, G.F. Policy recommendations from transmission modeling for the elimination of visceral leishmaniasis in the Indian subcontinent. Clin. Infect. Dise., 2018, (66)(suppl_4), S301-S308.
[http://dx.doi.org/10.1093/cid/ciy007]
[11]
Postigo, J.A.R. Leishmaniasis in the world health organization eastern mediterranean region. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 1), S62-S65.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.06.023] [PMID: 20728317]
[12]
Killick-Kendrick, R. The life-cycle of Leishmania in the sandfly with special reference to the form infective to the vertebrate host. Ann. Parasitol. Hum. Comp., 1990, 65(Suppl. 1), 37-42.
[http://dx.doi.org/10.1051/parasite/1990651037] [PMID: 2264679]
[13]
Pan, A.A.; Duboise, S.M.; Eperon, S.; Rivas, L.; Hodgkinson, V.; Traub-Cseko, Y.; McMahon-Pratt, D. Developmental life cycle of Leishmania--cultivation and characterization of cultured extracellular amastigotes. J. Eukaryot. Microbiol., 1993, 40(2), 213-223.
[http://dx.doi.org/10.1111/j.1550-7408.1993.tb04906.x] [PMID: 8461895]
[14]
Croft, S.L.; Barrett, M.P.; Urbina, J.A. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol., 2005, 21(11), 508-512.
[http://dx.doi.org/10.1016/j.pt.2005.08.026] [PMID: 16150644]
[15]
Feddersen, A.; Sack, K. Experimental studies on the nephrotoxicity of pentamidine in rats. J. Antimicrob. Chemother., 1991, 28(3), 437-446.
[http://dx.doi.org/10.1093/jac/28.3.437] [PMID: 1960124]
[16]
Herbrecht, R.; Natarajan-Amé, S.; Nivoix, Y.; Letscher-Bru, V. The lipid formulations of amphotericin B. Expert Opin. Pharmacother., 2003, 4(8), 1277-1287.
[http://dx.doi.org/10.1517/14656566.4.8.1277] [PMID: 12877636]
[17]
Verma, N.K.; Dey, C.S. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob. Agents Chemother., 2004, 48(8), 3010-3015.
[http://dx.doi.org/10.1128/AAC.48.8.3010-3015.2004] [PMID: 15273114]
[18]
Armijos, R.X.; Weigel, M.M.; Calvopiña, M.; Mancheno, M.; Rodriguez, R. Comparison of the effectiveness of two topical paromomycin treatments versus meglumine antimoniate for New World cutaneous leishmaniasis. Acta Trop., 2004, 91(2), 153-160.
[http://dx.doi.org/10.1016/j.actatropica.2004.03.009] [PMID: 15234664]
[19]
Loiseau, P.; Cojean, S.; Schrével, J. Sitamaquine as a putative antileishmanial drug candidate: From the mechanism of action to the risk of drug resistance. Parasite. J. de la Société Française de Parasitologie, 2011, 18(2), 115.
[20]
de Menezes, J.P.B.; Guedes, C.E.S.; Petersen, A.L.D.O.A.; Fraga, D.B.M.; Veras, P.S.T. Advances in development of new treatment for leishmaniasis. BioMed Research International, 2015, 2015
[http://dx.doi.org/10.1155/2015/815023]
[21]
Franco, J.; Scarone, L.; Comini, M.A. Annual reports in medicinal chemistry; Elsevier, 2018, 51, 97-133.
[22]
Mathew, N.S.; Negi, P.S. Discovery and development of therapeutics from natural products against neglected tropical diseases; Elsevier, 2019, pp. 241-292.
[http://dx.doi.org/10.1016/B978-0-12-815723-7.00007-9]
[23]
Ashok, P.; Lathiya, H.; Murugesan, S. Manzamine alkaloids as antileishmanial agents: A review. Eur. J. Med. Chem., 2015, 97, 928-936.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.006] [PMID: 25023608]
[24]
Rajasekaran, R.; Chen, Y-P.P. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov. Today, 2015, 20(8), 958-968.
[http://dx.doi.org/10.1016/j.drudis.2015.04.006] [PMID: 25936844]
[25]
Rodrigues, C.A.; dos Santos, P.F.; da Costa, M.O.L.; Pavani, T.F.A.; Xander, P.; Geraldo, M.M.; Mengarda, A.; de Moraes, J.; Rando, D.G.G. 4-Phenyl-1, 3-thiazole-2-amines as scaffolds for new antileishmanial agents. J. Venom. Anim. Toxins Incl. Trop. Dis., 2018, 24(1), 1-10.
[26]
Stroppa, P.H.F.; Antinarelli, L.M.R.; Carmo, A.M.L.; Gameiro, J.; Coimbra, E.S.; da Silva, A.D. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg. Med. Chem., 2017, 25(12), 3034-3045.
[http://dx.doi.org/10.1016/j.bmc.2017.03.051] [PMID: 28433512]
[27]
Shokri, A.; Emami, S.; Fakhar, M.; Teshnizi, S.H.; Keighobadi, M. In vitro antileishmanial activity of novel azoles (3-imidazolylflavanones) against promastigote and amastigote stages of Leishmania major. Acta Trop., 2017, 167, 73-78.
[http://dx.doi.org/10.1016/j.actatropica.2016.12.027] [PMID: 28017860]
[28]
Taha, M.; Ismail, N.H.; Imran, S.; Anouar, E.H.; Selvaraj, M.; Jamil, W.; Ali, M.; Kashif, S.M.; Rahim, F.; Khan, K.M.; Adenan, M.I. Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. Eur. J. Med. Chem., 2017, 126, 1021-1033.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.019] [PMID: 28012342]
[29]
Bekhit, A.A.; Hassan, A.M.; Abd El Razik, H.A.; El-Miligy, M.M.; El-Agroudy, E.J. Bekhit, Ael-D. New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur. J. Med. Chem., 2015, 94, 30-44.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.038] [PMID: 25768697]
[30]
Draper, J. Synthesis of pyridyl ethyl amides as potential antitrypanosomal agents, and synthesis of arylimidamide-azole hybrids as potential antileishmanial agents. MS thesis USA; Georgia State University. 2014.
[31]
Keighobadi, M.; Emami, S.; Fakhar, M.; Shokri, A.; Mirzaei, H.; Hosseini Teshnizi, S. Repurposing azole antifungals into antileishmanials: Novel 3-triazolylflavanones with promising in vitro antileishmanial activity against Leishmania major. Parasitol. Int., 2019, 69, 103-109.
[http://dx.doi.org/10.1016/j.parint.2018.12.006] [PMID: 30582997]
[32]
Verma, A.; Srivastava, S.; Sane, S.A.; Marrapu, V.K.; Srinivas, N.; Yadav, M.; Bhandari, K.; Gupta, S. Antileishmanial activity of benzocycloalkyl azole oximino ethers: The conformationally constraint analogues of oxiconazole. Acta Trop., 2011, 117(2), 157-160.
[http://dx.doi.org/10.1016/j.actatropica.2010.10.011] [PMID: 21078278]
[33]
dos Santos, M.S.; Oliveira, M.L.; Bernardino, A.M.; de Léo, R.M.; Amaral, V.F.; de Carvalho, F.T.; Leon, L.L.; Canto-Cavalheiro, M.M. Synthesis and antileishmanial evaluation of 1-aryl-4-(4,5-dihydro-1H-imidazol-2-yl)-1H-pyrazole derivatives. Bioorg. Med. Chem. Lett., 2011, 21(24), 7451-7454.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.134] [PMID: 22055204]
[34]
Marrapu, V.K.; Mittal, M.; Shivahare, R.; Gupta, S.; Bhandari, K. Synthesis and evaluation of new furanyl and thiophenyl azoles as antileishmanial agents. Eur. J. Med. Chem., 2011, 46(5), 1694-1700.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.021] [PMID: 21385661]
[35]
Marrapu, V.K.; Srinivas, N.; Mittal, M.; Shakya, N.; Gupta, S.; Bhandari, K. Design and synthesis of novel tetrahydronaphthyl azoles and related cyclohexyl azoles as antileishmanial agents. Bioorg. Med. Chem. Lett., 2011, 21(5), 1407-1410.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.026] [PMID: 21295472]
[36]
Papadopoulou, M.V.; Trunz, B.B.; Bloomer, W.D.; McKenzie, C.; Wilkinson, S.R.; Prasittichai, C.; Brun, R.; Kaiser, M.; Torreele, E. Novel 3-nitro-1H-1,2,4-triazole-based aliphatic and aromatic amines as anti-chagasic agents. J. Med. Chem., 2011, 54(23), 8214-8223.
[http://dx.doi.org/10.1021/jm201215n] [PMID: 22023653]
[37]
Clark, R.L.; Carter, K.C.; Mullen, A.B.; Coxon, G.D.; Owusu-Dapaah, G.; McFarlane, E.; Duong Thi, M.D.; Grant, M.H.; Tettey, J.N.; Mackay, S.P. Identification of the benzodiazepines as a new class of antileishmanial agent. Bioorg. Med. Chem. Lett., 2007, 17(3), 624-627.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.004] [PMID: 17113290]
[38]
Palma, A.; Yépes, A.F.; Leal, S.M.; Coronado, C.A.; Escobar, P. Synthesis and in vitro activity of new tetrahydronaphtho[1,2-b]azepine derivatives against Trypanosoma cruzi and Leishmania chagasi parasites. Bioorg. Med. Chem. Lett., 2009, 19(8), 2360-2363.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.013] [PMID: 19321339]
[39]
Abdelhameed, A.; Liao, X.; McElroy, C.A.; Joice, A.C.; Rakotondraibe, L.; Li, J.; Slebodnick, C.; Guo, P.; Wilson, W.D.; Werbovetz, K.A. Synthesis and antileishmanial evaluation of thiazole orange analogs. Bioorg. Med. Chem. Lett., 2020, 30(1), 126725.
[http://dx.doi.org/10.1016/j.bmcl.2019.126725] [PMID: 31732409]
[40]
Revuelto, A.; Ruiz-Santaquiteria, M.; de Lucio, H.; Gamo, A.; Carriles, A.A.; Gutiérrez, K.J.; Sánchez-Murcia, P.A.; Hermoso, J.A.; Gago, F.; Camarasa, M-J.; Jiménez-Ruiz, A.; Velázquez, S. Pyrrolopyrimidine vs imidazole-phenyl-thiazole scaffolds in nonpeptidic dimerization inhibitors of leishmania infantum trypanothione reductase. ACS Infect. Dis., 2019, 5(6), 873-891.
[http://dx.doi.org/10.1021/acsinfecdis.8b00355] [PMID: 30983322]
[41]
Sadat-Ebrahimi, S.E.; Mirmohammadi, M.; Mojallal Tabatabaei, Z.; Azimzadeh Arani, M.; Jafari-Ashtiani, S.; Hashemian, M.; Foroumadi, P.; Yahya-Meymandi, A.; Moghimi, S.; Moshafi, M.H.; Norouzi, P.; Kabudanian Ardestani, S.; Foroumadi, A. Novel 5-(nitrothiophene-2-yl)-1,3,4-thiadiazole derivatives: Synthesis and antileishmanial activity against promastigote stage of leishmania major. Iran. J. Pharm. Res., 2019, 18(4), 1816-1822.
[PMID: 32184848]
[42]
Colín-Lozano, B.; León-Rivera, I.; Chan-Bacab, M.J.; Ortega-Morales, B.O.; Moo-Puc, R.; López-Guerrero, V.; Hernández-Núñez, E.; Argüello-Garcia, R.; Scior, T.; Barbosa-Cabrera, E.; Navarrete-Vázquez, G. Synthesis, in vitro and in vivo giardicidal activity of nitrothiazole-NSAID chimeras displaying broad antiprotozoal spectrum. Bioorg. Med. Chem. Lett., 2017, 27(15), 3490-3494.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.071] [PMID: 28645659]
[43]
Aliança, A.S.D.S.; Oliveira, A.R.; Feitosa, A.P.S.; Ribeiro, K.R.C.; de Castro, M.C.A.B.; Leite, A.C.L.; Alves, L.C.; Brayner, F.A. in vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives. Eur. J. Pharm. Sci., 2017, 105, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2017.05.005] [PMID: 28478133]
[44]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Antitrypanosomal activity of 5-nitro-2-aminothiazole-based compounds. Eur. J. Med. Chem., 2016, 117, 179-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.010] [PMID: 27092415]
[45]
Ibrar, A.; Zaib, S.; Khan, I.; Jabeen, F.; Iqbal, J.; Saeed, A. Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: Synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Advances, 2015, 5(109), 89919-89931.
[http://dx.doi.org/10.1039/C5RA14900B]
[46]
Gonçalves, G.A.; Spillere, A.R. das Neves, G.M.; Kagami, L.P.; von Poser, G.L.; Canto, R.F.S.; Eifler-Lima, V. Natural and synthetic coumarins as antileishmanial agents: A review. Eur. J. Med. Chem., 2020, 203, 112514.
[http://dx.doi.org/10.1016/j.ejmech.2020.112514] [PMID: 32668302]
[47]
Poorrajab, F.; Ardestani, S.K.; Emami, S.; Behrouzi-Fardmoghadam, M.; Shafiee, A.; Foroumadi, A. Nitroimidazolyl-1,3,4-thiadiazole-based anti-leishmanial agents: Synthesis and in vitro biological evaluation. Eur. J. Med. Chem., 2009, 44(4), 1758-1762.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.039] [PMID: 18485538]
[48]
Baréa, P.; Barbosa, V.A.; Bidóia, D.L.; de Paula, J.C.; Stefanello, T.F.; da Costa, W.F.; Nakamura, C.V.; Sarragiotto, M.H. Synthesis, antileishmanial activity and mechanism of action studies of novel β-carboline-1,3,5-triazine hybrids. Eur. J. Med. Chem., 2018, 150, 579-590.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.014] [PMID: 29549842]
[49]
Chauhan, S.S.; Pandey, S.; Shivahare, R.; Ramalingam, K.; Krishna, S.; Vishwakarma, P.; Siddiqi, M.; Gupta, S.; Goyal, N.; Chauhan, P.M. Novel β-carboline–quinazolinone hybrid as an inhibitor of Leishmania donovani trypanothione reductase: Synthesis, molecular docking and bioevaluation. MedChemComm, 2015, 6(2), 351-356.
[http://dx.doi.org/10.1039/C4MD00298A]
[50]
Manda, S.; Khan, S.I.; Jain, S.K.; Mohammed, S.; Tekwani, B.L.; Khan, I.A.; Vishwakarma, R.A.; Bharate, S.B. Synthesis, antileishmanial and antitrypanosomal activities of N-substituted tetrahydro-β-carbolines. Bioorg. Med. Chem. Lett., 2014, 24(15), 3247-3250.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.030] [PMID: 24980054]
[51]
Gellis, A.; Dumètre, A.; Lanzada, G.; Hutter, S.; Ollivier, E.; Vanelle, P.; Azas, N. Preparation and antiprotozoal evaluation of promising β-carboline alkaloids. Biomed. Pharmacother., 2012, 66(5), 339-347.
[http://dx.doi.org/10.1016/j.biopha.2011.12.006] [PMID: 22397756]
[52]
Kumar, R.; Khan, S.; Verma, A.; Srivastava, S.; Viswakarma, P.; Gupta, S.; Meena, S.; Singh, N.; Sarkar, J.; Chauhan, P.M. Synthesis of 2-(pyrimidin-2-yl)-1-phenyl-2,3,4,9-tetrahydro-1H-β-carbolines as antileishmanial agents. Eur. J. Med. Chem., 2010, 45(8), 3274-3280.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.004] [PMID: 20457476]
[53]
Alonso, L.; de Paula, J.C.; Baréa, P.; Sarragiotto, M.H.; Ueda-Nakamura, T.; Alonso, A.; de Souza Fernandes, N.; Lancheros, C.A.C.; Volpato, H.; Lazarin-Bidóia, D.; Nakamura, C.V. Membrane dynamics in Leishmania amazonensis and antileishmanial activities of β-carboline derivatives. Biochim. Biophys. Acta Biomembr., 2021, 1863(1), 183473.
[http://dx.doi.org/10.1016/j.bbamem.2020.183473] [PMID: 32937102]
[54]
Chauhan, S.S.; Gupta, L.; Mittal, M.; Vishwakarma, P.; Gupta, S.; Chauhan, P.M. Synthesis and biological evaluation of indolyl glyoxylamides as a new class of antileishmanial agents. Bioorg. Med. Chem. Lett., 2010, 20(21), 6191-6194.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.119] [PMID: 20850302]
[55]
Kumar, A.; Katiyar, S.B.; Gupta, S.; Chauhan, P.M. Syntheses of new substituted triazino tetrahydroisoquinolines and β-carbolines as novel antileishmanial agents. Eur. J. Med. Chem., 2006, 41(1), 106-113.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.007] [PMID: 16356594]
[56]
Tonelli, M.; Gabriele, E.; Piazza, F.; Basilico, N.; Parapini, S.; Tasso, B.; Loddo, R.; Sparatore, F.; Sparatore, A. Benzimidazole derivatives endowed with potent antileishmanial activity. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 210-226.
[http://dx.doi.org/10.1080/14756366.2017.1410480] [PMID: 29233048]
[57]
Abdelwahid, M.A.; Elsaman, T.; Mohamed, M.S.; Latif, S.A.; Mukhtar, M.M.; Mohamed, M.A. Synthesis, characterization, and antileishmanial activity of certain quinoline-4-carboxylic acids. J. Chem., 2019, 2019, Article ID: 2859637.
[58]
Calixto, S.L.; Glanzmann, N.; Xavier Silveira, M.M.; da Trindade Granato, J.; Gorza Scopel, K.K.; Torres de Aguiar, T.; DaMatta, R.A.; Macedo, G.C.; da Silva, A.D.; Coimbra, E.S. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chem. Biol. Interact., 2018, 293, 141-151.
[http://dx.doi.org/10.1016/j.cbi.2018.08.003] [PMID: 30098941]
[59]
Malghani, Z.; Khan, A.-U.; Faheem, M.; Danish, M.Z.; Nadeem, H.; Ansari, S.F.; Maqbool, M. Molecular docking, antioxidant, anticancer and antileishmanial effects of newly synthesized quinoline derivatives. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2020, 20(13), 1516-1529.
[60]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[61]
Antinarelli, L.M.R.; Souza, I.O.; Glanzmann, N.; Almeida, A.D.; Porcino, G.N.; Vasconcelos, E.G.; da Silva, A.D.; Coimbra, E.S. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp. Parasitol., 2016, 171, 10-16.
[http://dx.doi.org/10.1016/j.exppara.2016.10.009] [PMID: 27743972]
[62]
Yousuf, M.; Mukherjee, D.; Dey, S.; Pal, C.; Adhikari, S. Antileishmanial ferrocenylquinoline derivatives: Synthesis and biological evaluation against Leishmania donovani. Eur. J. Med. Chem., 2016, 124, 468-479.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.049] [PMID: 27598235]
[63]
Coimbra, E.S.; Antinarelli, L.M.; Silva, N.P.; Souza, I.O.; Meinel, R.S.; Rocha, M.N.; Soares, R.P.; da Silva, A.D. Quinoline derivatives: Synthesis, leishmanicidal activity and involvement of mitochondrial oxidative stress as mechanism of action. Chem. Biol. Interact., 2016, 260, 50-57.
[http://dx.doi.org/10.1016/j.cbi.2016.10.017] [PMID: 27789199]
[64]
Paloque, L.; Verhaeghe, P.; Casanova, M.; Castera-Ducros, C.; Dumètre, A.; Mbatchi, L.; Hutter, S.; Kraiem-M’rabet, M.; Laget, M.; Remusat, V.; Rault, S.; Rathelot, P.; Azas, N.; Vanelle, P. Discovery of a new antileishmanial hit in 8-nitroquinoline series. Eur. J. Med. Chem., 2012, 54, 75-86.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.029] [PMID: 22608675]
[65]
Loiseau, P.M.; Gupta, S.; Verma, A.; Srivastava, S.; Puri, S.K.; Sliman, F.; Normand-Bayle, M.; Desmaele, D. In vitro activities of new 2-substituted quinolines against Leishmania donovani. Antimicrob. Agents Chemother., 2011, 55(4), 1777-1780.
[http://dx.doi.org/10.1128/AAC.01299-10] [PMID: 21220526]
[66]
Enciso, E.; Sarmiento-Sánchez, J.I.; López-Moreno, H.S.; Ochoa-Terán, A.; Osuna-Martínez, U.; Beltrán-López, E. Synthesis of new quinazolin-2,4-diones as anti-Leishmania mexicana agents. Mol. Divers., 2016, 20(4), 821-828.
[http://dx.doi.org/10.1007/s11030-016-9693-8] [PMID: 27531196]
[67]
Kumar, S.; Shakya, N.; Gupta, S.; Sarkar, J.; Sahu, D.P. Synthesis and biological evaluation of novel 4-(hetero) aryl-2-piperazino quinazolines as anti-leishmanial and anti-proliferative agents. Bioorg. Med. Chem. Lett., 2009, 19(9), 2542-2545.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.020] [PMID: 19328690]
[68]
Cavalcanti de Queiroz, A.; Alves, M.A.; Barreiro, E.J.; Lima, L.M.; Alexandre-Moreira, M.S. Semicarbazone derivatives as promising therapeutic alternatives in leishmaniasis. Exp. Parasitol., 2019, 201, 57-66.
[http://dx.doi.org/10.1016/j.exppara.2019.04.003] [PMID: 31004571]
[69]
Passalacqua, T.G.; Dutra, L.A.; de Almeida, L.; Velásquez, A.M.A.; Torres, F.A.E.; Yamasaki, P.R.; dos Santos, M.B.; Regasini, L.O.; Michels, P.A. Bolzani; Graminha, M.A. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett., 2015, 25(16), 3342-3345.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.072] [PMID: 26055530]
[70]
Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Alonso, C.; González, M.; Rubiales, G.; Palacios, F. Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 152, 137-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.033] [PMID: 29704722]
[71]
de Mello, T.F.; Bitencourt, H.R.; Pedroso, R.B.; Aristides, S.M.; Lonardoni, M.V.; Silveira, T.G. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp. Parasitol., 2014, 136, 27-34.
[http://dx.doi.org/10.1016/j.exppara.2013.11.003] [PMID: 24269198]
[72]
Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R.M.C.; Gentilomi, G.A.; Varani, S.; Belluti, F. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur. J. Med. Chem., 2018, 152, 527-541.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.057] [PMID: 29758517]
[73]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[74]
Barbosa, T.; Sousa, S.; Amorim, F.; Rodrigues, Y.; de Assis, P. C.; Caldas, J.P.A.; Oliveira, M.R.; Vasconcellos, M.L.A.A. Bioorg. Med. Chem., 2011, 19, 4250.
[http://dx.doi.org/10.1016/j.bmc.2011.05.055] [PMID: 21684751]
[75]
Baquedano, Y.; Alcolea, V.; Toro, M.Á.; Gutiérrez, K.J.; Nguewa, P.; Font, M.; Moreno, E.; Espuelas, S.; Jiménez-Ruiz, A.; Palop, J.A.; Plano, D.; Sanmartín, C. Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents. Antimicrob. Agents Chemother., 2016, 60(6), 3802-3812.
[http://dx.doi.org/10.1128/AAC.02529-15] [PMID: 27067328]
[76]
Aponte, J.C.; Castillo, D.; Estevez, Y.; Gonzalez, G.; Arevalo, J.; Hammond, G.B.; Sauvain, M. In vitro and in vivo anti-Leishmania activity of polysubstituted synthetic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(1), 100-103.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.033] [PMID: 19962891]
[77]
Elgazwy, A-S.S.H.; Atta-Allha, S.R.; Keshk, S.M. Synthesis of 5-spirocyclohexyl-2, 4-dithiohydantoin derivatives: A potential anti-leishmaniasis agent. Monatshefte für Chemie-Chemical Monthly, 2009, 140(2), 243.
[http://dx.doi.org/10.1007/s00706-008-0063-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy