Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Fe3O4@SiO2@CeO2 as a Potential Nanomagnetic Carrier for Oral Delivery System and Release of Celecoxib

Author(s): Shabnam Ahmadvand, Maryam Kargar Razi*, Babak Sadeghi and Seyedeh Sara Mirfazli

Volume 25, Issue 11, 2022

Published on: 05 January, 2022

Page: [1973 - 1984] Pages: 12

DOI: 10.2174/1386207324666210910160716

Price: $65

Abstract

Aims and Objective: In this study, an attempt was made to synthesize, characterize, and develop many applications of functionalized rare metal oxide nanoparticles. Herein, a new strategy for drug delivery is developed to functionalize magnetite nanoparticles to improve their performances in the delivery of celecoxib.

Materials and Methods: Magnetite Fe3O4@SiO2 nanoparticles are synthesized by the sol-gel method. The surface of the hydroxyl groups was extended by treating with cerium nitrate salt; finally, sodium hydroxide was anchored to the surface hydroxyl groups to produce cerium oxidefunctionalized Fe3O4@SiO2@CeO2 magnetic nanoparticles (FSC). The synthesized sample was characterized by FT-IR, FESEM, VSM, TGA, and XRD. Afterward, the functionalized nanoparticles were examined in the delivery of celecoxib as an active drug model involving cerium oxide and hydroxyl functional groups.

Results: For this purpose, the amount of loading/release of the drug was investigated in different amounts of nanocomposite and pH values.

Conclusion: The results of the present investigation indicate that the formulations (mFSC=5 mg, pH=3.3) can be considered as best among various formulations with respect to particle size, entrapment efficiency, and in-vitro successful drug release.

Keywords: Celecoxib, drug delivery, magnetite, nanocomposite, XRD, SEM.

« Previous
Graphical Abstract

[1]
Streicher, R.M.; Schmidt, M.; Fiorito, S. Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine (Lond.), 2007, 2(6), 861-874.
[http://dx.doi.org/10.2217/17435889.2.6.861] [PMID: 18095851]
[2]
Kim, S.S.; Ahn, K.M.; Park, M.S.; Lee, J.H.; Choi, C.Y.; Kim, B.S. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res. A, 2007, 80(1), 206-215.
[http://dx.doi.org/10.1002/jbm.a.30836] [PMID: 17072849]
[3]
van Rijt, S.; Habibovic, P. Enhancing regenerative approaches with nanoparticles. J. R. Soc. Inter., 2017, 14(129), 20170093.
[http://dx.doi.org/10.1098/rsif.2017.0093] [PMID: 28404870]
[4]
Conte, R.; Marturano, V.; Peluso, G.; Calarco, A.; Cerruti, P. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci., 2017, 18(4), 709-714.
[http://dx.doi.org/10.3390/ijms18040709] [PMID: 28350317]
[5]
Arbós, P.; Campanero, M.A.; Arangoa, M.A.; Renedo, M.J.; Irache, J.M. Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J. Control. Release, 2003, 89(1), 19-30.
[http://dx.doi.org/10.1016/S0168-3659(03)00066-X] [PMID: 12695060]
[6]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[7]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[8]
Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev., 2012, 41(7), 2740-2779.
[http://dx.doi.org/10.1039/C1CS15237H] [PMID: 22109657]
[9]
Hebert, L.E.; Scherr, P.A.; Beckett, L.A.; Albert, M.S.; Pilgrim, D.M.; Chown, M.J.; Funkenstein, H.H.; Evans, D.A. Age-specific incidence of Alzheimer’s disease in a community population. JAMA, 1995, 273(17), 1354-1359.
[http://dx.doi.org/10.1001/jama.1995.03520410048025] [PMID: 7715060]
[10]
Bachman, D.L.; Wolf, P.A.; Linn, R.T.; Knoefel, J.E.; Cobb, J.L.; Belanger, A.J.; White, L.R.; D’Agostino, R.B. Incidence of dementia and probable Alzheimer’s disease in a general population: the Framingham Study. Neurology, 1993, 43(3 Pt 1), 515-519.
[http://dx.doi.org/10.1212/WNL.43.3_Part_1.515] [PMID: 8450993]
[11]
Ernst, R.L.; Hay, J.W. The US economic and social costs of Alzheimer’s disease revisited. Am. J. Public Health, 1994, 84(8), 1261-1264.
[http://dx.doi.org/10.2105/AJPH.84.8.1261] [PMID: 8059882]
[12]
Pardridge, W.M. Non-invasive drug delivery to the human brain using endogenous blood-brain barrier transport systems. Pharm. Sci. Technol. Today, 1999, 2(2), 49-59.
[http://dx.doi.org/10.1016/S1461-5347(98)00117-5] [PMID: 10234207]
[13]
Torchilin, V.P.; Lukyanov, A.N. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov. Today, 2003, 8(6), 259-266.
[http://dx.doi.org/10.1016/S1359-6446(03)02623-0] [PMID: 12623240]
[14]
Bae, Y.; Kataoka, K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Deliv. Rev., 2009, 61(10), 768-784.
[http://dx.doi.org/10.1016/j.addr.2009.04.016] [PMID: 19422866]
[15]
Kaasgaard, T.; Andresen, T.L. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin. Drug Deliv., 2010, 7(2), 225-243.
[http://dx.doi.org/10.1517/17425240903427940] [PMID: 20095944]
[16]
Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev., 2010, 110(4), 1857-1959.
[http://dx.doi.org/10.1021/cr900327d] [PMID: 20356105]
[17]
Thakor, A.S.; Jokerst, J.; Zavaleta, C.; Massoud, T.F.; Gambhir, S.S. Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett., 2011, 11(10), 4029-4036.
[http://dx.doi.org/10.1021/nl202559p] [PMID: 21846107]
[18]
Hammondale, P.T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater., 2004, 16, 1271-1278.
[http://dx.doi.org/10.1002/adma.200400760]
[19]
Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: a review. J. Control. Release, 2006, 113(2), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.007] [PMID: 16740332]
[20]
Patri, A.K.; Majoros, I.J.; Baker, J.R. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 2002, 6(4), 466-471.
[http://dx.doi.org/10.1016/S1367-5931(02)00347-2] [PMID: 12133722]
[21]
Rezwan, K.; Chen, Q.Z.; Blaker, J.J.; Boccaccini, A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18), 3413-3431.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.039] [PMID: 16504284]
[22]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[23]
Zahir Abadi, I.J.; Sadeghi, O.; Lotfizadeh, H.R.; Tavassoli, N.; Amani, V.; Amini, M.M. Novel modified manoporous silica for oral drug delivery: Loading and release of clarithromycin. J. Sol-Gel Sci. Technol., 2012, 61, 90-95.
[http://dx.doi.org/10.1007/s10971-011-2595-4]
[24]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[25]
Van, R.S.; Habibovic, P. Enhancing regenerative approaches with nanoparticles. J. R. Soc. Interface, 2017, 14, 20170093.
[http://dx.doi.org/10.1098/rsif.2017.0093]
[26]
Tang, Q.; Xu, Y.; Wu, D.; Sun, Y.; Wang, J.; Xu, J.; Deng, F. Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. J. Control. Release, 2006, 114(1), 41-46.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.006] [PMID: 16784793]
[27]
Trewyn, B.G.; Giri, S.; Slowing, I.I.; Lin, V.S.Y. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem. Commun. (Camb.), 2007, 31(31), 3236-3245.
[http://dx.doi.org/10.1039/b701744h] [PMID: 17668088]
[28]
Yang, Q.; Wang, S.H.; Fan, P.; Wang, L.; Di, Y.; Lin, K.; Xiao, F.S. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem. Mater., 2005, 17, 59-68.
[http://dx.doi.org/10.1021/cm051198v]
[29]
Chomchoey, N.; Bhongsuwan, D.; Bhongsuwan, T. Magnetic properties of magnetite nanoparticles synthesized by oxidative alkaline hydrolysis of iron powder. J. Nat. Sci., 2010, 44, 963-971.
[30]
Hoa, L.T.M.; Dung, T.T.; Danh, T.M.; Duc, N.H.; Chien, D.M. Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. J. Phys., 2009, 187, 12-18.
[31]
Acar, H.Y.C.; Garaas, R.S.; Syud, F.; Bonitatebus, P.; Kulkarni, A.M. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J. Magn. Magn. Mater., 2005, 293, 1-8.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.035]
[32]
Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Phanichphant, S. Synthesis of Fe3O4/SiO2/CeO2 core-shell magnetic and their application as photocatalyst. J. Nanosci. Nanotechnol., 2014, 14(10), 7756-7762.
[http://dx.doi.org/10.1166/jnn.2014.9427] [PMID: 25942861]
[33]
Huang, Y.; Zhang, L.; Huan, W.; Xiaojuan, L.; Yang, Y. A study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method. Glass Phys. Chem., 2010, 36, 325-331.
[http://dx.doi.org/10.1134/S1087659610030090]
[34]
Saadatjooa, N.; Golshekana, M. Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo [α] xanthenone derivatives. J. Mol. Catal. Chem., 2013, 377, 173-179.
[http://dx.doi.org/10.1016/j.molcata.2013.05.007]
[35]
Dong, Y.; Ng, W.K.; Shen, S.; Kim, S.; Tan, R.B.H. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int. J. Pharm., 2009, 375(1-2), 84-88.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.013] [PMID: 19481693]
[36]
Maniya, N.H.; Sanjaykumar, R.P.; Murthy, Z.V.P. Controlled delivery of celecoxib from porous silicon micro- and nanoparticles. Appl. Surf. Sci., 2015, 330, 358-363.
[http://dx.doi.org/10.1016/j.apsusc.2015.01.053]
[37]
Huang, S.T.; Du, Y.Z. Synthesis and anti-hepatitis B virus activity of celecoxib conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr. Polym., 2001, 83, 1715-1722.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.032]
[38]
Dandagi, P.; Patel, P.; Mastiholimath, V.; Gadad, A. Development and characterization of a particulate drug delivery systemfor etoposide. Indian J. Nov. Drug Deliv., 2001, 3, 43-51.
[39]
Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater., 2004, 270, 1-8.
[http://dx.doi.org/10.1016/j.jmmm.2003.07.006]
[40]
Masteri-Farahani, M.; Tayyebi, N. A new magnetically recoverable nanocatalyst for epoxidation of olefins. J. Mol. Catal. Chem., 2011, 348, 83-88.
[http://dx.doi.org/10.1016/j.molcata.2011.08.007]
[41]
Banerjee, S.S.; Chen, D.H. Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater., 2007, 19, 6345-6349.
[http://dx.doi.org/10.1021/cm702278u]
[42]
Allemann, E.; Gurny, R.; Deolker, E. Drug loaded nanoparticles: preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm., 1993, 39, 173-191.
[43]
Banerjee, T.; Mitra, S.; Singh, A.K.; Sharma, R.K.; Maitra, A. Preparation and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm., 2002, 243, 93-105.
[http://dx.doi.org/10.1016/S0378-5173(02)00267-3] [PMID: 12176298]
[44]
Moazzen, E.; Ebrahimzadeh, H.; Amini, M.; Sadeghi, O. A novel biocompatible drug carrier for oral delivery and controlled release of antibiotic drug: Loading and release of clarithromycin as an antibiotic drug model. J. Sol-Gel Sci. Technol., 2013, 66, 345-352.
[45]
Xing, S.; Zhou, Z.; Ma, Z.; Wu, Y. Catal. B., 2011, 107, 386.
[46]
Zhang, J.; Yang, J.; Wang, J.; Ding, H.; Liu, Q.; Schubert, U.; Rui, Y.; Xu, J. Top of Form Bottom of Form Surface oxygen vacancies dominated CeO2 as efficient catalyst for imine synthesis: Influences of different cerium precursors. J. Mol. Catal., 2017, 443, 131-138.
[http://dx.doi.org/10.1016/j.mcat.2017.09.030]
[47]
De Almeida, L.; Grandjean, S.; Vigier, N.; Patisson, F. Insights into the thermal decomposition of Lanthanide(III) and Actinide(III) Oxalates – from neodymium and cerium to plutonium. Eur. J. Inorg. Chem., 2012, 31, 4986-4999.
[http://dx.doi.org/10.1002/ejic.201200469]
[48]
Zara, G.P.; Cavalli, R.; Bargoni, A.; Fundarò, A.; Vighetto, D.; Gasco, M.R. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Target., 2002, 10(4), 327-335.
[http://dx.doi.org/10.1080/10611860290031868] [PMID: 12164381]
[49]
Tian, X.H.; Lin, X.N.; Wei, F.; Feng, W.; Huang, Z.C.; Wang, P.; Ren, L.; Diao, Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine, 2011, 6, 445-452.
[PMID: 21445277]
[50]
Joshi, S.A.; Chavhan, S.S.; Sawant, K.K. Rivastigmine-loaded PLGA and PBCA nanoparticles: Preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm., 2010, 76(2), 189-199.
[http://dx.doi.org/10.1016/j.ejpb.2010.07.007] [PMID: 20637869]
[51]
Wei, F.; Ren, Q.; Zhang, H.; Yang, L.; Chen, H.; Liang, Zh.; Chen, D. Removal of tetracycline hydrochloride from wastewater by Zr/Fe-MOFs/GO composites. RSC Advances, 2021, 11, 9977-9984.
[http://dx.doi.org/10.1039/D1RA01027A]
[52]
Wei, F.H.; Chen, D.; Liang, Z.; Zhao, S.Q.; Luo, Y. Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(vi) in wastewater. Dalton Trans., 2017, 46(47), 16525-16531.
[http://dx.doi.org/10.1039/C7DT03776G] [PMID: 29152624]
[53]
Wei, F.; Chen, D.; Liang, Zh.; Zhao, Sh.; Luo, Y. Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions. RSC Advances, 2017, 7, 46520-46528.
[http://dx.doi.org/10.1039/C7RA09243A]
[54]
Wei, F.; Chen, D.; Liang, Z.; Zhao, S. Comparison study on the adsorption capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs. Nanomaterials (Basel), 2018, 8(4), 248-259.
[http://dx.doi.org/10.3390/nano8040248] [PMID: 29673172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy