Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advances in Nanomaterial-based Luminescent ATP Sensors

Author(s): Xiaomeng Zhou and Li Shang*

Volume 18, Issue 6, 2022

Published on: 09 September, 2021

Page: [677 - 688] Pages: 12

DOI: 10.2174/1573411017666210909121746

Price: $65

Abstract

Adenosine 5'-triphosphate (ATP) plays a significant role in biological processes and the ATP level is closely associated with many diseases. In order to detect ATP in live cells, tissues, and body fluids with high sensitivity and selectivity, researchers have developed various sensing strategies. Particularly, owing to the distinct physicochemical properties of nanomaterials and the high sensitivity of fluorescence, a lot of efforts have been devoted to developing nanomaterials-based approaches for fluorescent ATP sensing in recent years. In this review, we focus on the current development of nanomaterial-based fluorescent ATP sensors and discuss the sensing mechanisms in detail. The advantages and disadvantages of ATP sensing using different kinds of nanomaterials, including carbon nanomaterials, metal nanoparticles, semiconductor quantum dots, metal-organic frameworks, and up-conversion nanoparticles have been thoroughly compared and discussed. Finally, current challenges and future prospects in this field are examined.

Keywords: Nanomaterials, adenosine triphosphate, fluorescence, biosensors, aptamer, cellular processes.

Graphical Abstract

[1]
Gao, Z.; Qiu, Z.; Lu, M.; Shu, J.; Tang, D. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5¢-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosens. Bioelectron., 2017, 89(Pt 2), 1006-1012.
[http://dx.doi.org/10.1016/j.bios.2016.10.043] [PMID: 27825528]
[2]
Shen, X.; Mizuguchi, G.; Hamiche, A.; Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature, 2000, 406(6795), 541-544.
[http://dx.doi.org/10.1038/35020123] [PMID: 10952318]
[3]
Dennis, P.B.; Jaeschke, A.; Saitoh, M.; Fowler, B.; Kozma, S.C.; Thomas, G.; Mammalian, T.O.R. Mammalian TOR: a homeostatic ATP sensor. Science, 2001, 294(5544), 1102-1105.
[http://dx.doi.org/10.1126/science.1063518] [PMID: 11691993]
[4]
Cai, S-L.; Zheng, Y-B.; Cao, S-H.; Cai, X-H.; Li, Y-Q. A conformation and charge co-modulated ultrasensitive biomimetic ion channel. Chem. Commun. (Camb.), 2016, 52(84), 12450-12453.
[http://dx.doi.org/10.1039/C6CC04899D] [PMID: 27709163]
[5]
Ahn, J.K.; Kim, H.Y.; Park, K.S.; Park, H.G. A personal glucose meter for label-free and washing-free biomolecular detection. Anal. Chem., 2018, 90(19), 11340-11343.
[http://dx.doi.org/10.1021/acs.analchem.8b02014] [PMID: 30152994]
[6]
Park, J-H.; Byun, J-Y.; Shim, W-B.; Kim, S.U.; Kim, M-G. High-sensitivity detection of ATP using a localized surface plasmon resonance (LSPR) sensor and split aptamers. Biosens. Bioelectron., 2015, 73, 26-31.
[http://dx.doi.org/10.1016/j.bios.2015.05.043] [PMID: 26042875]
[7]
Xie, L.; Yan, X.; Du, Y. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens. Bioelectron., 2014, 53, 58-64.
[http://dx.doi.org/10.1016/j.bios.2013.09.031] [PMID: 24121209]
[8]
Dong, Y.P.; Zhou, Y.; Wang, J.; Zhu, J.J. Electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)3(2+) electrogenerated chemiluminescence and gold nanoparticles/graphene oxide nanocomposites with graphene oxide as coreactant and its sensing application. Anal. Chem., 2016, 88(10), 5469-5475.
[http://dx.doi.org/10.1021/acs.analchem.6b00921] [PMID: 27101322]
[9]
Nagana Gowda, G.A.; Abell, L.; Lee, C.F.; Tian, R.; Raftery, D. Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo (1)H NMR spectroscopy. Anal. Chem., 2016, 88(9), 4817-4824.
[http://dx.doi.org/10.1021/acs.analchem.6b00442] [PMID: 27043450]
[10]
Shi, H.; Chen, N.; Su, Y.; Wang, H.; He, Y. Reusable silicon-based surface-enhanced raman scattering ratiometric aptasensor with high sensitivity, specificity, and reproducibility. Anal. Chem., 2017, 89(19), 10279-10285.
[http://dx.doi.org/10.1021/acs.analchem.7b01881] [PMID: 28882037]
[11]
Cheng, D.; Li, Y.; Wang, J.; Sun, Y.; Jin, L.; Li, C.; Lu, Y. Fluorescence and colorimetric detection of ATP based on a strategy of self-promoting aggregation of a water-soluble polythiophene derivative. Chem. Commun. (Camb.), 2015, 51(40), 8544-8546.
[http://dx.doi.org/10.1039/C5CC01713K] [PMID: 25894335]
[12]
Wang, G.; Xu, Q.; Liu, L.; Su, X.; Lin, J.; Xu, G.; Luo, X. Mixed self-assembly of polyethylene glycol and aptamer on polydopamine surface for highly sensitive and low-fouling detection of adenosine triphosphate in complex media. ACS Appl. Mater. Interfaces, 2017, 9(36), 31153-31160.
[http://dx.doi.org/10.1021/acsami.7b09529] [PMID: 28831806]
[13]
Chen, L.; Chao, J.; Qu, X.; Zhang, H.; Zhu, D.; Su, S.; Aldalbahi, A.; Wang, L.; Pei, H. Probing cellular molecules with polyA-based engineered aptamer nanobeacon. ACS Appl. Mater. Interfaces, 2017, 9(9), 8014-8020.
[http://dx.doi.org/10.1021/acsami.6b16764] [PMID: 28221021]
[14]
Wang, L.; Yuan, L.; Zeng, X.; Peng, J.; Ni, Y.; Er, J.C.; Xu, W.; Agrawalla, B.K.; Su, D.; Kim, B.; Chang, Y-T. A multisite-binding switchable fluorescent probe for monitoring mitochondrial ATP level fluctuation in live cells. Angew. Chem. Int. Ed. Engl., 2016, 55(5), 1773-1776.
[http://dx.doi.org/10.1002/anie.201510003] [PMID: 26676712]
[15]
Ren, T-B.; Wen, S-Y.; Wang, L.; Lu, P.; Xiong, B.; Yuan, L.; Zhang, X-B. Engineering a reversible fluorescent probe for real-time live-cell imaging and quantification of mitochondrial ATP. Anal. Chem., 2020, 92(6), 4681-4688.
[http://dx.doi.org/10.1021/acs.analchem.0c00506] [PMID: 32098468]
[16]
Lee, J.; Adegoke, O.; Park, E.Y. High-performance biosensing systems based on various nanomaterials as signal transducers. Biotechnol. J., 2019, 14(1), e1800249.
[http://dx.doi.org/10.1002/biot.201800249] [PMID: 30117715]
[17]
Liu, H.; Zhang, L.; Yan, M.; Yu, J. Carbon nanostructures in biology and medicine. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(32), 6437-6450.
[http://dx.doi.org/10.1039/C7TB00891K] [PMID: 32264410]
[18]
Hu, M.; Chen, J.; Li, Z-Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 2006, 35(11), 1084-1094.
[http://dx.doi.org/10.1039/b517615h] [PMID: 17057837]
[19]
Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res., 2014, 47(4), 1097-1105.
[http://dx.doi.org/10.1021/ar400250z] [PMID: 24437921]
[20]
Yang, G.; Zhang, Y-M.; Cai, Y.; Yang, B.; Gu, C.; Zhang, S.X-A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev., 2020, 49(23), 8687-8720.
[http://dx.doi.org/10.1039/D0CS00317D] [PMID: 33078186]
[21]
Zhang, X.Y.; Liu, W.; Wang, H.X.; Zhao, X.N.; Zhang, Z.F.; Nienhaus, G.U.; Shang, L.; Su, Z.Q. Self-assembled thermosensitive luminescent nanoparticles with peptide-Au conjugates for cellular imaging and drug delivery. Chin. Chem. Lett., 2020, 31(3), 859-864.
[http://dx.doi.org/10.1016/j.cclet.2019.06.032]
[22]
Sun, J.; Li, L.; Kong, Q.; Zhang, Y.; Zhao, P.; Ge, S.; Cui, K.; Yu, J. Mimic peroxidase-transfer enhancement of photoelectrochemical aptasensing via CuO nanoflowers functionalized lab-on-paper device with a controllable fluid separator. Biosens. Bioelectron., 2019, 133, 32-38.
[http://dx.doi.org/10.1016/j.bios.2019.02.027] [PMID: 30904620]
[23]
Wang, D.; Xiao, X.; Xu, S.; Liu, Y.; Li, Y. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay. Biosens. Bioelectron., 2018, 99, 431-437.
[http://dx.doi.org/10.1016/j.bios.2017.08.020] [PMID: 28810234]
[24]
Yuan, L.; Wang, X.; Fang, Y.; Liu, C.; Jiang, D.; Wo, X.; Wang, W.; Chen, H-Y. Digitizing gold nanoparticle-based colorimetric assay by imaging and counting single nanoparticles. Anal. Chem., 2016, 88(4), 2321-2326.
[http://dx.doi.org/10.1021/acs.analchem.5b04244] [PMID: 26758648]
[25]
Li, Z.; Wang, Y.; Liu, Y.; Zeng, Y.; Huang, A.; Peng, N.; Liu, X.; Liu, J. A novel aptasensor for the ultra-sensitive detection of adenosine triphosphate via aptamer/quantum dot based resonance energy transfer. Analyst (Lond.), 2013, 138(17), 4732-4736.
[http://dx.doi.org/10.1039/c3an00449j] [PMID: 23814782]
[26]
Liu, S.; Wang, X.; Pang, S.; Na, W.; Yan, X.; Su, X. Fluorescence detection of adenosine-5¢-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots. Anal. Chim. Acta, 2014, 827, 103-110.
[http://dx.doi.org/10.1016/j.aca.2014.04.027] [PMID: 24833001]
[27]
Shi, F.; Li, Y.; Lin, Z.; Ma, D.; Su, X. A novel fluorescent probe for adenosine 5¢-triphosphate detection based on Zn2+-modulated l-cysteine capped CdTe quantum dots. Sens. Actuators B Chem., 2015, 220, 433-440.
[http://dx.doi.org/10.1016/j.snb.2015.05.087]
[28]
Tedsana, W.; Tuntulani, T.; Ngeontae, W. A highly selective turn-on ATP fluorescence sensor based on unmodified cysteamine capped CdS quantum dots. Anal. Chim. Acta, 2013, 783, 65-73.
[http://dx.doi.org/10.1016/j.aca.2013.04.037] [PMID: 23726101]
[29]
Liu, M.; Song, J.; Shuang, S.; Dong, C.; Brennan, J.D.; Li, Y. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano, 2014, 8(6), 5564-5573.
[http://dx.doi.org/10.1021/nn5007418] [PMID: 24857187]
[30]
Ji, X.; Wang, Z.; Niu, S.; Ding, C. Non-template synthesis of porous carbon nanospheres coated with a DNA-cross-linked hydrogel for the simultaneous imaging of dual biomarkers in living cells. Chem. Commun. (Camb.), 2020, 56(39), 5271-5274.
[http://dx.doi.org/10.1039/D0CC00499E] [PMID: 32270827]
[31]
Lin, X.; Cui, L.; Huang, Y.; Lin, Y.; Xie, Y.; Zhu, Z.; Yin, B.; Chen, X.; Yang, C.J. Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chem. Commun. (Camb.), 2014, 50(57), 7646-7648.
[http://dx.doi.org/10.1039/C4CC02184C] [PMID: 24898824]
[32]
Liu, Z.; Chen, S.; Liu, B.; Wu, J.; Zhou, Y.; He, L.; Ding, J.; Liu, J. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal. Chem., 2014, 86(24), 12229-12235.
[http://dx.doi.org/10.1021/ac503358m] [PMID: 25393607]
[33]
Wang, L.; Zhu, F.; Liao, S.; Chen, M.; Zhu, Y.Q.; Liu, Q.; Chen, X. Single-stranded DNA modified protonated graphitic carbon nitride nanosheets: A versatile ratiometric fluorescence platform for multiplex detection of various targets. Talanta, 2019, 197, 422-430.
[http://dx.doi.org/10.1016/j.talanta.2019.01.066] [PMID: 30771957]
[34]
Xu, M.; Gao, Z.; Zhou, Q.; Lin, Y.; Lu, M.; Tang, D. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5¢-triphosphate with unmodified gold nanoparticles. Biosens. Bioelectron., 2016, 86, 978-984.
[http://dx.doi.org/10.1016/j.bios.2016.07.105] [PMID: 27498324]
[35]
Zhang, C.; Zhang, H.; Yu, Y.; Wu, S.; Chen, F. Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu(III) ion using carbon dots as reference. Talanta, 2019, 197, 451-456.
[http://dx.doi.org/10.1016/j.talanta.2019.01.062] [PMID: 30771961]
[36]
Kim, J-H.; Ahn, J-H.; Barone, P.W.; Jin, H.; Zhang, J.; Heller, D.A.; Strano, M.S. A luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP. Angew. Chem. Int. Ed. Engl., 2010, 49(8), 1456-1459.
[http://dx.doi.org/10.1002/anie.200906251] [PMID: 20108292]
[37]
Yi, M.; Yang, S.; Peng, Z.; Liu, C.; Li, J.; Zhong, W.; Yang, R.; Tan, W. Two-photon graphene oxide/aptamer nanosensing conjugate for in vitro or in vivo molecular probing. Anal. Chem., 2014, 86(7), 3548-3554.
[http://dx.doi.org/10.1021/ac5000015] [PMID: 24592855]
[38]
Lee, J.D.; Cang, J.; Chen, Y-C.; Chen, W-Y.; Ou, C-M.; Chang, H-T. Detection of adenosine 5¢-triphosphate by fluorescence variation of oligonucleotide-templated silver nanoclusters. Biosens. Bioelectron., 2014, 58, 266-271.
[http://dx.doi.org/10.1016/j.bios.2014.02.068] [PMID: 24657647]
[39]
Chen, J.; Ji, X.; Tinnefeld, P.; He, Z. Multifunctional dumbbell-shaped DNA-templated selective formation of fluorescent silver nanoclusters or copper nanoparticles for sensitive detection of biomolecules. ACS Appl. Mater. Interfaces, 2016, 8(3), 1786-1794.
[http://dx.doi.org/10.1021/acsami.5b09678] [PMID: 26719979]
[40]
Liu, G.; Li, J.; Feng, D.Q.; Zhu, J.J.; Wang, W. Silver nanoclusters beacon as stimuli-responsive versatile platform for multiplex DNAs detection and aptamer-substrate complexes sensing. Anal. Chem., 2017, 89(1), 1002-1008.
[http://dx.doi.org/10.1021/acs.analchem.6b04362] [PMID: 28105835]
[41]
Liu, Z.; Wu, P.; Yin, Y.; Tian, Y. A ratiometric fluorescent DNA nanoprobe for cerebral adenosine triphosphate assay. Chem. Commun. (Camb.), 2019, 55(67), 9955-9958.
[http://dx.doi.org/10.1039/C9CC05046A] [PMID: 31364619]
[42]
Shamsipur, M.; Molaei, K.; Molaabasi, F.; Hosseinkhani, S.; Taherpour, A.; Sarparast, M.; Moosavifard, S.E.; Barati, A. Aptamer-based fluorescent biosensing of adenosine triphosphate and cytochrome c via aggregation-induced emission enhancement on novel label-free DNA-capped silver nanoclusters/graphene oxide nanohybrids. ACS Appl. Mater. Interfaces, 2019, 11(49), 46077-46089.
[http://dx.doi.org/10.1021/acsami.9b14487] [PMID: 31718135]
[43]
Song, Q.; Wang, R.; Sun, F.; Chen, H.; Wang, Z.; Na, N.; Ouyang, J. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens. Bioelectron., 2017, 87, 760-763.
[http://dx.doi.org/10.1016/j.bios.2016.09.029] [PMID: 27649332]
[44]
Wang, W.; Chen, C.; Li, X.; Wang, S.; Luo, X. A bioresponsive controlled-release bioassay based on aptamer-gated Au nanocages and its application in living cells. Chem. Commun. (Camb.), 2015, 51(44), 9109-9112.
[http://dx.doi.org/10.1039/C5CC02452H] [PMID: 25939588]
[45]
Wang, W.; Li, X.; Tang, K.; Song, Z.; Luo, X. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(27), 5945-5951.
[http://dx.doi.org/10.1039/D0TB00666A] [PMID: 32667018]
[46]
Xue, N.; Wu, S.; Li, Z.; Miao, X. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal. Chim. Acta, 2020, 1104, 117-124.
[http://dx.doi.org/10.1016/j.aca.2019.12.073] [PMID: 32106942]
[47]
Zhu, Y.; Hu, X.C.; Shi, S.; Gao, R.R.; Huang, H.L.; Zhu, Y.Y.; Lv, X.Y.; Yao, T.M. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens. Bioelectron., 2016, 79, 205-212.
[http://dx.doi.org/10.1016/j.bios.2015.12.015] [PMID: 26706942]
[48]
Chang, J.; Lv, W.; Li, Q.; Li, H.; Li, F. One-step synthesis of methylene blue-encapsulated zeolitic imidazolate framework for dual-signal fluorescent and homogeneous electrochemical biosensing. Anal. Chem., 2020, 92(13), 8959-8964.
[http://dx.doi.org/10.1021/acs.analchem.0c00952] [PMID: 32478502]
[49]
Deng, J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J. Am. Chem. Soc., 2017, 139(16), 5877-5882.
[http://dx.doi.org/10.1021/jacs.7b01229] [PMID: 28385016]
[50]
Wang, K.; Qian, M.; Qi, H.; Gao, Q.; Zhang, C. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale, 2020, 12(29), 15663-15669.
[http://dx.doi.org/10.1039/D0NR02149K] [PMID: 32672322]
[51]
Zhou, X.; Li, J.; Tan, L.L.; Li, Q.; Shang, L. Novel perylene probe-encapsulated metal-organic framework nanocomposites for ratiometric fluorescence detection of ATP. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(16), 3661-3666.
[http://dx.doi.org/10.1039/C9TB02319D] [PMID: 31999287]
[52]
He, X.; Li, Z.; Jia, X.; Wang, K.; Yin, J. A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer. Talanta, 2013, 111, 105-110.
[http://dx.doi.org/10.1016/j.talanta.2013.02.050] [PMID: 23622532]
[53]
Zheng, X.; Peng, R.; Jiang, X.; Wang, Y.; Xu, S.; Ke, G.; Fu, T.; Liu, Q.; Huan, S.; Zhang, X. Fluorescence resonance energy transfer-based DNA nanoprism with a split aptamer for adenosine triphosphate sensing in living cells. Anal. Chem., 2017, 89(20), 10941-10947.
[http://dx.doi.org/10.1021/acs.analchem.7b02763] [PMID: 28931278]
[54]
He, H.; Dai, J.; Dong, G.; Shi, H.; Wang, F.; Qiu, Y.; Liao, R.; Zhou, C.; Guo, Y.; Xiao, D. Self-replication-assisted rapid preparation of DNA nanowires at room temperature and its biosensing application. Anal. Chem., 2019, 91(4), 3043-3047.
[http://dx.doi.org/10.1021/acs.analchem.8b05431] [PMID: 30667217]
[55]
Ji, X.; Wang, J.; Niu, S.; Ding, C. Size-controlled DNA-cross-linked hydrogel coated silica nanoparticles served as a ratiometric fluorescent probe for the detection of adenosine triphosphate in living cells. Chem. Commun. (Camb.), 2019, 55(36), 5243-5246.
[http://dx.doi.org/10.1039/C9CC01832H] [PMID: 30989156]
[56]
Lu, L.; Qian, Y.; Wang, L.; Ma, K.; Zhang, Y. Metal-enhanced fluorescence-based core-shell Ag@SiO2 nanoflares for affinity biosensing via target-induced structure switching of aptamer. ACS Appl. Mater. Interfaces, 2014, 6(3), 1944-1950.
[http://dx.doi.org/10.1021/am4049942] [PMID: 24480015]
[57]
Song, Q.; Peng, M.; Wang, L.; He, D.; Ouyang, J. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles. Biosens. Bioelectron., 2016, 77, 237-241.
[http://dx.doi.org/10.1016/j.bios.2015.09.008] [PMID: 26409024]
[58]
Qiang, W.; Hu, H.; Sun, L.; Li, H.; Xu, D. Aptamer/polydopamine nanospheres nanocomplex for In situ molecular sensing in living cells. Anal. Chem., 2015, 87(24), 12190-12196.
[http://dx.doi.org/10.1021/acs.analchem.5b03075] [PMID: 26556471]
[59]
Qiang, W.; Wang, X.; Li, W.; Chen, X.; Li, H.; Xu, D. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. Biosens. Bioelectron., 2015, 71, 143-149.
[http://dx.doi.org/10.1016/j.bios.2015.04.029] [PMID: 25897884]
[60]
Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev., 2019, 119(1), 120-194.
[http://dx.doi.org/10.1021/acs.chemrev.8b00172] [PMID: 30247026]
[61]
Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev., 2015, 115(19), 10816-10906.
[http://dx.doi.org/10.1021/acs.chemrev.5b00008] [PMID: 25997028]
[62]
Fatahi, Z.; Esfandiari, N.; Ranjbar, Z. A new anti-counterfeiting feature relying on invisible non-toxic fluorescent carbon dots. J. Anal. Test., 2020, 4(4), 307-315.
[http://dx.doi.org/10.1007/s41664-020-00149-6]
[63]
Ng, S.; Lim, H.S.; Ma, Q.; Gao, Z. Optical aptasensors for adenosine triphosphate. Theranostics, 2016, 6(10), 1683-1702.
[http://dx.doi.org/10.7150/thno.15850] [PMID: 27446501]
[64]
Dong, J.; Zhao, M. In-vivo fluorescence imaging of adenosine 5¢-triphosphate. TrAC-Trend. Anal. Chem., 2016, 80, 190-203.
[65]
Wang, Y.; Tang, L.; Li, Z.; Lin, Y.; Li, J. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat. Protoc., 2014, 9(8), 1944-1955.
[http://dx.doi.org/10.1038/nprot.2014.126] [PMID: 25058642]
[66]
Shang, L.; Xu, J.; Nienhaus, G.U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today, 2019, 28, 100767-100790.
[http://dx.doi.org/10.1016/j.nantod.2019.100767]
[67]
Ni, B.; Shi, Y.; Wang, X. The Sub-Nanometer Scale as a New Focus in Nanoscience. Adv. Mater., 2018, 30(43), e1802031.
[http://dx.doi.org/10.1002/adma.201802031] [PMID: 30039573]
[68]
Zhou, M.; Han, L.; He, H.; Deng, D.; Zhang, L.; Yan, X.; Wu, Z.; Zhu, Y.; Luo, L. Sensitive and Selective Determination of Cu2+ Using Self-Assembly of 4-Mercaptobenzoic Acid on Gold Nanoparticles. J. Anal. Test., 2019, 3(4), 306-312.
[http://dx.doi.org/10.1007/s41664-019-00102-2]
[69]
Selvaprakash, K.; Chen, Y.C. Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosens. Bioelectron., 2014, 61, 88-94.
[http://dx.doi.org/10.1016/j.bios.2014.04.055] [PMID: 24858996]
[70]
Xu, J.; Wei, C. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Biosens. Bioelectron., 2017, 87, 422-427.
[http://dx.doi.org/10.1016/j.bios.2016.08.079] [PMID: 27589406]
[71]
Chen, J.; Saeki, F.; Wiley, B.J.; Cang, H.; Cobb, M.J.; Li, Z-Y.; Au, L.; Zhang, H.; Kimmey, M.B.; Li, X.; Xia, Y. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett., 2005, 5(3), 473-477.
[http://dx.doi.org/10.1021/nl047950t] [PMID: 15755097]
[72]
Wang, Y.; Liu, Y.; Luehmann, H.; Xia, X.; Brown, P.; Jarreau, C.; Welch, M.; Xia, Y. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano, 2012, 6(7), 5880-5888.
[http://dx.doi.org/10.1021/nn300464r] [PMID: 22690722]
[73]
Xia, X.; Yang, M.; Oetjen, L.K.; Zhang, Y.; Li, Q.; Chen, J.; Xia, Y. An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease activity. Nanoscale, 2011, 3(3), 950-953.
[http://dx.doi.org/10.1039/c0nr00874e] [PMID: 21225037]
[74]
Zou, C.; Foda, M.F.; Tan, X.; Shao, K.; Wu, L.; Lu, Z.; Bahlol, H.S.; Han, H. Carbon-dot and quantum-dot-coated dual-emission core-satellite silica nanoparticles for ratiometric intracellular Cu(2+) imaging. Anal. Chem., 2016, 88(14), 7395-7403.
[http://dx.doi.org/10.1021/acs.analchem.6b01941] [PMID: 27347813]
[75]
Zhan, Y.; Zeng, Y.; Li, L.; Luo, F.; Qiu, B.; Lin, Z.; Guo, L. Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sens., 2019, 4(5), 1252-1260.
[http://dx.doi.org/10.1021/acssensors.9b00125] [PMID: 30900872]
[76]
Wu, S.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater., 2020, 32(3), e1805871.
[http://dx.doi.org/10.1002/adma.201805871] [PMID: 30790371]
[77]
Zhang, K.; Zhou, H.; Mei, Q.; Wang, S.; Guan, G.; Liu, R.; Zhang, J.; Zhang, Z. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc., 2011, 133(22), 8424-8427.
[http://dx.doi.org/10.1021/ja2015873] [PMID: 21563794]
[78]
Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells. Anal. Chem., 2016, 88(11), 5981-5987.
[http://dx.doi.org/10.1021/acs.analchem.6b00999] [PMID: 27167489]
[79]
Deng, H-H.; Shi, X-Q.; Wang, F-F.; Peng, H-P.; Liu, A-L.; Xia, X-H.; Chen, W. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition. Chem. Mater., 2017, 29(3), 1362-1369.
[http://dx.doi.org/10.1021/acs.chemmater.6b05141]
[80]
Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251), 933-937.
[http://dx.doi.org/10.1126/science.271.5251.933]
[81]
Liu, X.; Freeman, R.; Golub, E.; Willner, I. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano, 2011, 5(9), 7648-7655.
[http://dx.doi.org/10.1021/nn202799d] [PMID: 21866963]
[82]
Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 2002, 13(1), 40-46.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[83]
Liu, S.; Shi, F.; Chen, L.; Su, X. Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2,4,6-trinitrophenol detection. Talanta, 2013, 116, 870-875.
[http://dx.doi.org/10.1016/j.talanta.2013.07.073] [PMID: 24148487]
[84]
Liu, S.; Shi, F.; Zhao, X.; Chen, L.; Su, X. 3-Aminophenyl boronic acid-functionalized CuInS2 quantum dots as a near-infrared fluorescence probe for the determination of dopamine. Biosens. Bioelectron., 2013, 47, 379-384.
[http://dx.doi.org/10.1016/j.bios.2013.03.055] [PMID: 23608539]
[85]
Jiao, S.; Liu, L.; Wang, J.; Ma, K.; Lv, J. A Novel Biosensor Based on Molybdenum Disulfide (MoS2) Modified Porous Anodic Aluminum Oxide Nanochannels for Ultrasensitive microRNA-155 Detection. Small, 2020, 16(28), e2001223.
[http://dx.doi.org/10.1002/smll.202001223] [PMID: 32529739]
[86]
Park, H.; Han, G.; Lee, S.W.; Lee, H.; Jeong, S.H.; Naqi, M.; AlMutairi, A.; Kim, Y.J.; Lee, J.; Kim, W.J.; Kim, S.; Yoon, Y.; Yoo, G. Label-free and recalibrated multilayer MoS2 biosensor for point-of-care diagnostics. ACS Appl. Mater. Interfaces, 2017, 9(50), 43490-43497.
[http://dx.doi.org/10.1021/acsami.7b14479] [PMID: 29171259]
[87]
Fan, Y.Y.; Mou, Z.L.; Wang, M.; Li, J.; Zhang, J.; Dang, F.Q.; Zhang, Z.Q. Chimeric aptamers-based and MoS2 nanosheet-enhanced label-free fluorescence polarization strategy for adenosine triphosphate detection. Anal. Chem., 2018, 90(22), 13708-13713.
[http://dx.doi.org/10.1021/acs.analchem.8b04107] [PMID: 30350952]
[88]
Zhong, Y.; Yi, T. MoS2 quantum dots as a unique fluorescent “turn-off-on” probe for the simple and rapid determination of adenosine triphosphate. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(15), 2549-2556.
[http://dx.doi.org/10.1039/C9TB00191C] [PMID: 32255131]
[89]
Chughtai, A.H.; Ahmad, N.; Younus, H.A.; Laypkov, A.; Verpoort, F. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev., 2015, 44(19), 6804-6849.
[http://dx.doi.org/10.1039/C4CS00395K] [PMID: 25958955]
[90]
Qiao, L.; Song, M.; Geng, A.; Yao, S. Polyoxometalate-based high-nuclear cobalt–vanadium–oxo cluster as efficient catalyst for visible light-driven CO2 reduction. Chin. Chem. Lett., 2019, 30(6), 1273-1276.
[http://dx.doi.org/10.1016/j.cclet.2019.01.024]
[91]
Savage, M.; Cheng, Y.; Easun, T.L.; Eyley, J.E.; Argent, S.P.; Warren, M.R.; Lewis, W.; Murray, C.; Tang, C.C.; Frogley, M.D.; Cinque, G.; Sun, J.; Rudić, S.; Murden, R.T.; Benham, M.J.; Fitch, A.N.; Blake, A.J.; Ramirez-Cuesta, A.J.; Yang, S.; Schröder, M. Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv. Mater., 2016, 28(39), 8705-8711.
[http://dx.doi.org/10.1002/adma.201602338] [PMID: 27529671]
[92]
Hu, G.; Yang, L.; Li, Y.; Wang, L. Continuous and scalable fabrication of stable and biocompatible MOF@SiO2 nanoparticles for drug loading. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(47), 7936-7942.
[http://dx.doi.org/10.1039/C8TB02308E] [PMID: 32255039]
[93]
Chen, W-H.; Luo, G-F.; Sohn, Y.S.; Nechushtai, R.; Willner, I. Enzyme-driven release of loads from nucleic acid-capped metal-organic framework nanoparticles. Adv. Funct. Mater., 2019, 29(5), 1805341-1805353.
[http://dx.doi.org/10.1002/adfm.201805341]
[94]
Wang, D.; Wu, H.; Lim, W.Q.; Phua, S.Z.F.; Xu, P.; Chen, Q.; Guo, Z.; Zhao, Y. A mesoporous nanoenzyme derived from metal-organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy. Adv. Mater., 2019, 31(27), e1901893.
[http://dx.doi.org/10.1002/adma.201901893] [PMID: 31095804]
[95]
Wang, Z.; Zhou, X.; Li, Y.; Huang, Z.; Han, J.; Xie, G.; Liu, J. Sensing ATP: Zeolitic imidazolate framework-67 Is superior to aptamers for target recognition. Anal. Chem., 2021, 93(21), 7707-7713.
[http://dx.doi.org/10.1021/acs.analchem.1c00976] [PMID: 33999595]
[96]
Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed., 2005, 44(37), 6054-6057.
[http://dx.doi.org/10.1002/anie.200501907] [PMID: 16118828]
[97]
He, X.; Gao, J.; Gambhir, S.S.; Cheng, Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol. Med., 2010, 16(12), 574-583.
[http://dx.doi.org/10.1016/j.molmed.2010.08.006] [PMID: 20870460]
[98]
Wang, Y.; Bao, L.; Liu, Z.; Pang, D-W. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem., 2011, 83(21), 8130-8137.
[http://dx.doi.org/10.1021/ac201631b] [PMID: 21923110]
[99]
Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L-H. synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett., 2004, 4(11), 2191-2196.
[http://dx.doi.org/10.1021/nl048680h]
[100]
Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc., 2018, 140(2), 578-581.
[http://dx.doi.org/10.1021/jacs.7b11161] [PMID: 29281270]
[101]
Nutiu, R.; Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc., 2003, 125(16), 4771-4778.
[http://dx.doi.org/10.1021/ja028962o] [PMID: 12696895]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy