Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Mini-Review Article

Anti-HIV Aptamers: Challenges and Prospects

Author(s): William Serumula*, Geronimo Fernandez, Victor M. Gonzalez and Raveen Parboosing

Volume 20, Issue 1, 2022

Published on: 08 September, 2021

Page: [7 - 19] Pages: 13

DOI: 10.2174/1570162X19666210908114825

Price: $65

conference banner
Abstract

Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.

Keywords: Aptamers, SELEX, HIV, drugs, treatment, cART.

Graphical Abstract

[1]
UNAIDS J. Fact sheet—latest global and regional statistics on the status of the AIDS epidemic 2009.
[2]
Lai S, Bartlett J, Lai H, et al. Long-term combination antiretroviral therapy is associated with the risk of coronary plaques in African Americans with HIV infection. AIDS Patient Care STDS 2009; 23(10): 815-24.
[http://dx.doi.org/10.1089/apc.2009.0048] [PMID: 19803679]
[3]
Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl) 2010; 2: 103-22.
[http://dx.doi.org/10.2147/HIV.S6882] [PMID: 22096389]
[4]
Ostrowski M, Benko E, Yue FY, et al. Intensifying antiretroviral therapy with raltegravir and maraviroc during early human immunodeficiency virus (HIV) infection does not accelerate HIV reservoir reduction. Open Forum Infect Dis 2015; 2(4): ofv138-8.
[http://dx.doi.org/10.1093/ofid/ofv138] [PMID: 26512359]
[5]
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346(6287): 818-22.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[6]
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (80- ) 1990; 249: 505-10.
[7]
Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics 2018; 8(15): 4016-32.
[http://dx.doi.org/10.7150/thno.25958] [PMID: 30128033]
[8]
Zhou J, Rossi JJ. Therapeutic potential of aptamer-siRNA conjugates for treatment of HIV-1. BioDrugs 2012; 26(6): 393-400.
[http://dx.doi.org/10.1007/BF03261896] [PMID: 23046156]
[9]
Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 2017; 16(3): 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[10]
Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5(2): 123-32.
[http://dx.doi.org/10.1038/nrd1955] [PMID: 16518379]
[11]
Gilbert JC, DeFeo-Fraulini T, Hutabarat RM, et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 2007; 116(23): 2678-86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.724864] [PMID: 18025536]
[12]
Han K, Liang Z, Zhou N. Design strategies for aptamer-based biosensors. Sensors (Basel) 2010; 10(5): 4541-57.
[http://dx.doi.org/10.3390/s100504541] [PMID: 22399891]
[13]
Healy JM, Lewis SD, Kurz M, et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 2004; 21(12): 2234-46.
[http://dx.doi.org/10.1007/s11095-004-7676-4] [PMID: 15648255]
[14]
Abeydeera ND, Egli M, Cox N, et al. Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Res 2016; 44(17): 8052-64.
[http://dx.doi.org/10.1093/nar/gkw725] [PMID: 27566147]
[15]
Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules 2019; 24(5): 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[16]
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: An update to aptamer selection technology. Biotechnol Adv 2015; 33(6 Pt 2): 1141-61.
[http://dx.doi.org/10.1016/j.biotechadv.2015.02.008] [PMID: 25708387]
[17]
Elle IC, Karlsen KK, Terp MG, et al. Selection of LNA-containing DNA aptamers against recombinant human CD73. Mol Biosyst 2015; 11(5): 1260-70.
[http://dx.doi.org/10.1039/C5MB00045A] [PMID: 25720604]
[18]
McGinness KE, Wright MC, Joyce GF. Continuous in vitro evolution of a ribozyme that catalyzes three successive nucleotidyl addition reactions. Chem Biol 2002; 9(5): 585-96.
[http://dx.doi.org/10.1016/S1074-5521(02)00136-9] [PMID: 12031665]
[19]
Szeto K, Latulippe DR, Ozer A, et al. RAPID-SELEX for RNA aptamers. PLoS One 2013; 8(12): e82667.
[http://dx.doi.org/10.1371/journal.pone.0082667] [PMID: 24376564]
[20]
Sun H, Zu Y. A highlight of recent advances in aptamer technology and its application. Molecules 2015; 20(7): 11959-80.
[http://dx.doi.org/10.3390/molecules200711959] [PMID: 26133761]
[21]
Cox JC, Ellington AD. Automated selection of anti-protein aptamers. Bioorg Med Chem 2001; 9(10): 2525-31.
[http://dx.doi.org/10.1016/S0968-0896(01)00028-1] [PMID: 11557339]
[22]
Zhou J, Satheesan S, Li H, et al. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol 2015; 22(3): 379-90.
[http://dx.doi.org/10.1016/j.chembiol.2015.01.005] [PMID: 25754473]
[23]
Zhao N, Pei SN, Parekh P, Salazar E, Zu Y. Blocking interaction of viral gp120 and CD4-expressing T cells by single-stranded DNA aptamers. Int J Biochem Cell Biol 2014; 51: 10-8.
[http://dx.doi.org/10.1016/j.biocel.2014.03.008] [PMID: 24661998]
[24]
Shum K-T, Zhou J, Rossi JJ. Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6(12): 1507-42.
[http://dx.doi.org/10.3390/ph6121507] [PMID: 24287493]
[25]
Perrone R, Butovskaya E, Lago S, et al. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Agents 2016; 47(4): 311-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.01.016] [PMID: 27032748]
[26]
Zhu Q, Shibata T, Kabashima T, Kai M. Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of siRNA. Eur J Med Chem 2012; 56: 396-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.045] [PMID: 22907035]
[27]
Wyatt JR, Vickers TA, Roberson JL, et al. Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci USA 1994; 91(4): 1356-60.
[http://dx.doi.org/10.1073/pnas.91.4.1356] [PMID: 7906414]
[28]
Zhang P, Zhao N, Zeng Z, Chang CC, Zu Y. Combination of an aptamer probe to CD4 and antibodies for multicolored cell phenotyping. Am J Clin Pathol 2010; 134(4): 586-93.
[http://dx.doi.org/10.1309/AJCP55KQYWSGZRKC] [PMID: 20855639]
[29]
Andreola M-L, Pileur F, Calmels C, et al. DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry 2001; 40(34): 10087-94.
[http://dx.doi.org/10.1021/bi0108599] [PMID: 11513587]
[30]
Ramalingam D, Duclair S, Datta SAK, Ellington A, Rein A, Prasad VR. RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J Virol 2011; 85(1): 305-14.
[http://dx.doi.org/10.1128/JVI.02626-09] [PMID: 20980522]
[31]
Ojwang JO, Buckheit RW, Pommier Y, et al. T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1. Antimicrob Agents Chemother 1995; 39(11): 2426-35.
[http://dx.doi.org/10.1128/AAC.39.11.2426] [PMID: 8585721]
[32]
Kim SJ, Kim MY, Lee JH, You JC, Jeong S. Selection and stabilization of the RNA aptamers against the human immunodeficiency virus type-1 nucleocapsid protein. Biochem Biophys Res Commun 2002; 291(4): 925-31.
[http://dx.doi.org/10.1006/bbrc.2002.6521] [PMID: 11866454]
[33]
Duclair S, Gautam A, Ellington A, Prasad VR. High-affinity RNA aptamers against the HIV-1 protease inhibit both in vitro protease activity and late events of viral replication. Mol Ther Nucleic Acids 2015; 4: e228-8.
[http://dx.doi.org/10.1038/mtna.2015.1] [PMID: 25689224]
[34]
Khati M, Schüman M, Ibrahim J, et al. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-Binding 2′F-RNA aptamers. J Virol 2003; 77: 12692-8.
[35]
Dey AK, Griffiths C, Lea SM, James W. Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA 2005; 11(6): 873-84.
[http://dx.doi.org/10.1261/rna.7205405] [PMID: 15923374]
[36]
Hotoda H, Koizumi M, Koga R, et al. Biologically active oligodeoxyribonucleotides. 5. 5′-End-substituted d(TGGGAG) possesses anti-human immunodeficiency virus type 1 activity by forming a G-quadruplex structure. J Med Chem 1998; 41(19): 3655-63.
[http://dx.doi.org/10.1021/jm970658w] [PMID: 9733490]
[37]
Koizumi M, Koga R, Hotoda H, et al. Biologically active oligodeoxyribonucleotides--IX. Synthesis and anti-HIV-1 activity of hexadeoxyribonucleotides, TGGGAG, bearing 3′- and 5′-end-modification. Bioorg Med Chem 1997; 5(12): 2235-43.
[http://dx.doi.org/10.1016/S0968-0896(97)00161-2] [PMID: 9459021]
[38]
Wheeler LA, Vrbanac V, Trifonova R, et al. Durable knock down and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 2013; 21(7): 1378-89.
[http://dx.doi.org/10.1038/mt.2013.77] [PMID: 23629001]
[39]
Wheeler LA, Trifonova R, Vrbanac V, et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 2011; 121(6): 2401-12.
[http://dx.doi.org/10.1172/JCI45876] [PMID: 21576818]
[40]
Sarafianos SG, Marchand B, Das K, et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 2009; 385(3): 693-713.
[http://dx.doi.org/10.1016/j.jmb.2008.10.071] [PMID: 19022262]
[41]
DeStefano JJ, Nair GR. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. Oligonucleotides 2008; 18(2): 133-44.
[http://dx.doi.org/10.1089/oli.2008.0103] [PMID: 18637731]
[42]
Wiegers K, Rutter G, Kottler H, Tessmer U, Hohenberg H, Kräusslich HG. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 1998; 72(4): 2846-54.
[http://dx.doi.org/10.1128/JVI.72.4.2846-2854.1998] [PMID: 9525604]
[43]
Musumeci D, Riccardi C, Montesarchio D. G-quadruplex forming oligonucleotides as anti-HIV agents. Molecules 2015; 20(9): 17511-32. Epub ahead of print
[http://dx.doi.org/10.3390/molecules200917511] [PMID: 26402662]
[44]
Phan AT, Kuryavyi V, Ma J-B, Faure A, Andréola ML, Patel DJ. An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci USA 2005; 102(3): 634-9.
[http://dx.doi.org/10.1073/pnas.0406278102] [PMID: 15637158]
[45]
Davies TKC, Structure DR. Structure and function of HIV-1 integrase. Curr Top Med Chem 2004; 4: 965-77.
[http://dx.doi.org/10.2174/1568026043388547] [PMID: 15134551]
[46]
Métifiot M, Leon O, Tarrago-Litvak L, Litvak S, Andréola ML. Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT. Biochimie 2005; 87(9-10): 911-9.
[http://dx.doi.org/10.1016/j.biochi.2005.03.013] [PMID: 16164998]
[47]
Jing N, De Clercq E, Rando RF, et al. Stability-activity relationships of a family of G-tetrad forming oligonucleotides as potent HIV inhibitors. A basis for anti-HIV drug design. J Biol Chem 2000; 275(5): 3421-30.
[http://dx.doi.org/10.1074/jbc.275.5.3421] [PMID: 10652335]
[48]
Lapadat-Tapolsky M, De Rocquigny H, Van Gent D, Roques B, Plasterk R, Darlix JL. Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res 1993; 21(4): 831-9.
[http://dx.doi.org/10.1093/nar/21.4.831] [PMID: 8383840]
[49]
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7(6): 754-74.
[http://dx.doi.org/10.4161/rna.7.6.14115] [PMID: 21160280]
[50]
Thomas JA, Gorelick RJ. Nucleocapsid protein function in early infection processes. Virus Res 2008; 134(1-2): 39-63.
[http://dx.doi.org/10.1016/j.virusres.2007.12.006] [PMID: 18279991]
[51]
Kim MY, Jeong S. Inhibition of the functions of the nucleocapsid protein of human immunodeficiency virus-1 by an RNA aptamer. Biochem Biophys Res Commun 2004; 320(4): 1181-6.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.077] [PMID: 15249214]
[52]
Warui DM, Baranger AM. Identification of small molecule inhibitors of the HIV-1 nucleocapsid-stem-loop 3 RNA complex. J Med Chem 2012; 55(9): 4132-41.
[http://dx.doi.org/10.1021/jm2007694] [PMID: 22480197]
[53]
Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 2009; 86(3): 151-64.
[http://dx.doi.org/10.1016/j.yexmp.2009.01.004] [PMID: 19454272]
[54]
Kaplan AH, Manchester M, Swanstrom R. The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 1994; 68(10): 6782-6.
[http://dx.doi.org/10.1128/jvi.68.10.6782-6786.1994] [PMID: 8084015]
[55]
Dupont DM, Andersen LM, Botkjaer KA, Andreasen PA. Nucleic acid aptamers against proteases. Curr Med Chem 2011; 18(27): 4139-51.
[http://dx.doi.org/10.2174/092986711797189556] [PMID: 21838691]
[56]
Dupont DM, Bjerregaard N, Verpaalen B, Andreasen PA, Jensen JK. Building a molecular trap for a serine protease from aptamer and peptide modules. Bioconjug Chem 2016; 27(4): 918-26.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00007] [PMID: 26926041]
[57]
Woodruff RS, Sullenger BA. Modulation of the coagulation cascade using aptamers. Arterioscler Thromb Vasc Biol 2015; 35(10): 2083-91.
[http://dx.doi.org/10.1161/ATVBAHA.115.300131] [PMID: 26315404]
[58]
González VM, Martín ME, Fernández G, García-Sacristán A. Use of aptamers as diagnostics tools and antiviral agents for human viruses. Pharmaceuticals (Basel) 2016; 9(4): E78.
[http://dx.doi.org/10.3390/ph9040078] [PMID: 27999271]
[59]
Koizumi M, Koga R, Hotoda H, et al. Biologically active oligodeoxyribonucleotides. Part 11: The least phosphate-modification of quadruplex-forming hexadeoxyribonucleotide TGGGAG, bearing 3-and 5-end-modification, with anti-HIV-1 activity. Bioorg Med Chem 1998; 6(12): 2469-75.
[http://dx.doi.org/10.1016/S0968-0896(98)80021-7] [PMID: 9925303]
[60]
Romanucci V, Milardi D, Campagna T, et al. Synthesis, biophysical characterization and anti-HIV activity of d(TG3AG) Quadruplexes bearing hydrophobic tails at the 5′-end. Bioorg Med Chem 2014; 22(3): 960-6.
[http://dx.doi.org/10.1016/j.bmc.2013.12.051] [PMID: 24433967]
[61]
D’Onofrio J, Petraccone L, Erra E, et al. 5′-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: synthesis and biophysical properties. Bioconjug Chem 2007; 18(4): 1194-204.
[http://dx.doi.org/10.1021/bc070062f] [PMID: 17569499]
[62]
D’Atri V, Oliviero G, Amato J, et al. New anti-HIV aptamers based on tetra-end-linked DNA G-quadruplexes: effect of the base sequence on anti-HIV activity. Chem Commun (Camb) 2012; 48(76): 9516-8.
[http://dx.doi.org/10.1039/c2cc34399a] [PMID: 22898884]
[63]
Dey AK, Khati M, Tang M, Wyatt R, Lea SM, James W. An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction. J Virol 2005; 79(21): 13806-10.
[http://dx.doi.org/10.1128/JVI.79.21.13806-13810.2005] [PMID: 16227301]
[64]
Kruspe S, Giangrande PH. Aptamer-siRNA chimeras: Discovery, progress, and future prospects. Biomedicines 2017; 5(3): 45.
[http://dx.doi.org/10.3390/biomedicines5030045] [PMID: 28792479]
[65]
Michalowski D, Chitima-Matsiga R, Held DM, Burke DH. Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases. Nucleic Acids Res 2008; 36(22): 7124-35.
[http://dx.doi.org/10.1093/nar/gkn891] [PMID: 18996899]
[66]
McNamara JO II, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006; 24(8): 1005-15.
[http://dx.doi.org/10.1038/nbt1223] [PMID: 16823371]
[67]
Dassie JP, Liu X-Y, Thomas GS, et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 2009; 27(9): 839-49.
[http://dx.doi.org/10.1038/nbt.1560] [PMID: 19701187]
[68]
Zhou J, Li H, Li S, Zaia J, Rossi JJ. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 2008; 16(8): 1481-9.
[http://dx.doi.org/10.1038/mt.2008.92] [PMID: 18461053]
[69]
Zhou J, Swiderski P, Li H, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 2009; 37(9): 3094-109.
[http://dx.doi.org/10.1093/nar/gkp185] [PMID: 19304999]
[70]
Neff CP, Zhou J, Remling L, et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4<sup>+</sup> T cell decline in humanized mice. Sci Transl Med 2011; 3: 66ra6.
[71]
Davis KA, Lin Y, Abrams B, Jayasena SD. Staining of cell surface human CD4 with 2′-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 1998; 26(17): 3915-24.
[http://dx.doi.org/10.1093/nar/26.17.3915] [PMID: 9705498]
[72]
de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007; 6(6): 443-53.
[http://dx.doi.org/10.1038/nrd2310] [PMID: 17541417]
[73]
Song E, Lee S-K, Dykxhoorn DM, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 2003; 77: 7174-81.
[74]
Kumar P, Ban H-S, Kim S-S, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134(4): 577-86.
[http://dx.doi.org/10.1016/j.cell.2008.06.034] [PMID: 18691745]
[75]
Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8(7): 681-6.
[http://dx.doi.org/10.1038/nm725] [PMID: 12042777]
[76]
Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA 2007; 104(10): 4095-100.
[http://dx.doi.org/10.1073/pnas.0608491104] [PMID: 17360483]
[77]
Song E, Zhu P, Lee S-K, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005; 23(6): 709-17.
[http://dx.doi.org/10.1038/nbt1101] [PMID: 15908939]
[78]
Kitabwalla M, Ruprecht RM. RNA interference--a new weapon against HIV and beyond. N Engl J Med 2002; 347(17): 1364-7.
[http://dx.doi.org/10.1056/NEJMcibr022294] [PMID: 12397198]
[79]
Lederman MM, Veazey RS, Offord R, et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 2004; 306(5695): 485-7.
[http://dx.doi.org/10.1126/science.1099288] [PMID: 15486300]
[80]
Veazey RS, Klasse PJ, Schader SM, et al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 2005; 438(7064): 99-102.
[http://dx.doi.org/10.1038/nature04055] [PMID: 16258536]
[81]
Veazey RS, Klasse PJ, Ketas TJ, et al. Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian–human immunodeficiency virus infection. J Exp Med 2003; 198: 1551-62.
[http://dx.doi.org/10.1084/jem.20031266]
[82]
Greenhead P, Hayes P, Watts PS, Laing KG, Griffin GE, Shattock RJ. Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. J Virol 2000; 74(12): 5577-86.
[http://dx.doi.org/10.1128/JVI.74.12.5577-5586.2000] [PMID: 10823865]
[83]
Collins KB, Patterson BK, Naus GJ, Landers DV, Gupta P. Development of an in vitro organ culture model to study transmission of HIV-1 in the female genital tract. Nat Med 2000; 6(4): 475-9.
[http://dx.doi.org/10.1038/74743] [PMID: 10742159]
[84]
Blair WS, Lin PF, Meanwell NA, Wallace OB. HIV-1 entry - an expanding portal for drug discovery. Drug Discov Today 2000; 5(5): 183-94.
[http://dx.doi.org/10.1016/S1359-6446(00)01484-7] [PMID: 10790262]
[85]
Lin P-F, Blair W, Wang T, et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci USA 2003; 100(19): 11013-8.
[http://dx.doi.org/10.1073/pnas.1832214100] [PMID: 12930892]
[86]
Ryser HJ-P, Flückiger R. Progress in targeting HIV-1 entry. Drug Discov Today 2005; 10(16): 1085-94.
[http://dx.doi.org/10.1016/S1359-6446(05)03550-6] [PMID: 16182193]
[87]
Smith DH, Byrn RA, Marsters SA, et al. Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science (80- ) 1987; 238: 1704-7.
[88]
Hussey RE, Richardson NE, Kowalski M, et al. A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 1988; 331(6151): 78-81.
[http://dx.doi.org/10.1038/331078a0] [PMID: 2829023]
[89]
Daar ES, Li XL, Moudgil T, Ho DD. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci USA 1990; 87(17): 6574-8.
[http://dx.doi.org/10.1073/pnas.87.17.6574] [PMID: 2395859]
[90]
Schacker T, Coombs RW, Collier AC, et al. The effects of high- dose recombinant soluble CD4 on human immunodeficiency virus type 1 viremia. J Infect Dis 1994; 169(1): 37-40.
[http://dx.doi.org/10.1093/infdis/169.1.37] [PMID: 8277195]
[91]
Martin L, Stricher F, Missé D, et al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol 2003; 21(1): 71-6.
[http://dx.doi.org/10.1038/nbt768] [PMID: 12483221]
[92]
Trkola A, Pomales AB, Yuan H, et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995; 69(11): 6609-17.
[http://dx.doi.org/10.1128/jvi.69.11.6609-6617.1995] [PMID: 7474069]
[93]
Allaway GP, Davis-Bruno KL, Beaudry GA, et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11(5): 533-9.
[http://dx.doi.org/10.1089/aid.1995.11.533] [PMID: 7576908]
[94]
Shearer WT, Israel RJ, Starr S, et al. Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 2000; 182(6): 1774-9.
[http://dx.doi.org/10.1086/317622] [PMID: 11069253]
[95]
Jacobson JM, Lowy I, Fletcher CV, et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000; 182(1): 326-9.
[http://dx.doi.org/10.1086/315698] [PMID: 10882617]
[96]
Zhou J, Rossi J. Cell-type-specific aptamer and aptamer-small interfering RNA conjugates for targeted human immunodeficiency virus type 1 therapy. J Investig Med 2014; 62(7): 914-9.
[http://dx.doi.org/10.1097/JIM.0000000000000103] [PMID: 25118114]
[97]
Berezhnoy A, Brenneman R, Bajgelman M, Seales D, Gilboa E. Thermal stability of siRNA modulates aptamer- conjugated siRNA inhibition. Mol Ther Nucleic Acids 2012; 1: e51.
[http://dx.doi.org/10.1038/mtna.2012.41] [PMID: 23344651]
[98]
Zhou J, Neff CP, Swiderski P, et al. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther 2013; 21(1): 192-200.
[http://dx.doi.org/10.1038/mt.2012.226] [PMID: 23164935]
[99]
Hanack K, Messerschmidt K, Listek M. Antibodies and selection of monoclonal antibodies. Adv Exp Med Biol 2016; 917: 11-22.
[http://dx.doi.org/10.1007/978-3-319-32805-8_2] [PMID: 27236550]
[100]
Groff K, Brown J, Clippinger AJ. Modern affinity reagents: Recombinant antibodies and aptamers. Biotechnol Adv 2015; 33(8): 1787-98.
[http://dx.doi.org/10.1016/j.biotechadv.2015.10.004] [PMID: 26482034]
[101]
Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs 2016; 8(7): 1177-94.
[http://dx.doi.org/10.1080/19420862.2016.1212149] [PMID: 27416017]
[102]
Huber M, Olson WC, Trkola A. Antibodies for HIV treatment and prevention: window of opportunity? Hum Antib Ther Viral Dis 2008; 39-66.
[103]
Marschall ALJ, Dübel S. Antibodies inside of a cell can change its outside: Can intrabodies provide a new therapeutic paradigm? Comput Struct Biotechnol J 2016; 14: 304-8.
[http://dx.doi.org/10.1016/j.csbj.2016.07.003] [PMID: 27570612]
[104]
Awi NJ, Teow S-Y. Antibody-mediated therapy against HIV/AIDS: Where are we standing now? J Pathogens 2018; 2018: 8724549.
[http://dx.doi.org/10.1155/2018/8724549] [PMID: 29973995]
[105]
Zhang Z, Guan Q, Yuan H. HIV-1 broadly neutralizing antibodies: identification, development and vaccine evaluation. J AIDS Clin Res 2016; 7: 12.
[106]
Zou X, Wu J, Gu J, Shen L, Mao L. Application of aptamers in virus detection and antiviral therapy. Front Microbiol 2019; 10: 1462.
[http://dx.doi.org/10.3389/fmicb.2019.01462] [PMID: 31333603]
[107]
Chun T-W, Stuyver L, Mizell SB, et al. Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 1997; 94(24): 13193-7.
[http://dx.doi.org/10.1073/pnas.94.24.13193] [PMID: 9371822]
[108]
Lorenzo-Redondo R, Fryer HR, Bedford T, et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 2016; 530(7588): 51-6.
[http://dx.doi.org/10.1038/nature16933] [PMID: 26814962]
[109]
Huang S-H, Ren Y, Thomas AS, et al. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Invest 2018; 128(2): 876-89.
[http://dx.doi.org/10.1172/JCI97555] [PMID: 29355843]
[110]
Agrawal S, Rustagi PK, Shaw DR. Novel enzymatic and immunological responses to oligonucleotides. Toxicol Lett 1995; 82-83: 431-4.
[http://dx.doi.org/10.1016/0378-4274(95)03573-7] [PMID: 8597089]
[111]
Galderisi U, Cascino A, Giordano A. Antisense oligonucleotides as therapeutic agents. J Cell Physiol 1999; 181(2): 251-7.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199911)181:2<251::AID-JCP7>3.0.CO;2-D] [PMID: 10497304]
[112]
Wagner RW. The state of the art in antisense research. Nat Med 1995; 1(11): 1116-8.
[http://dx.doi.org/10.1038/nm1195-1116] [PMID: 7584973]
[113]
Wagner RW, Flanagan WM. Antisense technology and prospects for therapy of viral infections and cancer. Mol Med Today 1997; 3(1): 31-8.
[http://dx.doi.org/10.1016/S1357-4310(96)10053-8] [PMID: 9021740]
[114]
Zamecnik PC, Goodchild J, Taguchi Y, Sarin PS. Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc Natl Acad Sci USA 1986; 83(12): 4143-6.
[http://dx.doi.org/10.1073/pnas.83.12.4143] [PMID: 3012555]
[115]
Sarin PS, Agrawal S, Civeira MP, Goodchild J, Ikeuchi T, Zamecnik PC. Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates. Proc Natl Acad Sci USA 1988; 85(20): 7448-51.
[http://dx.doi.org/10.1073/pnas.85.20.7448] [PMID: 3174646]
[116]
Shibahara S, Mukai S, Morisawa H, Nakashima H, Kobayashi S, Yamamoto N. Inhibition of human immunodeficiency virus (HIV-1) replication by synthetic oligo-RNA derivatives. Nucleic Acids Res 1989; 17(1): 239-52.
[http://dx.doi.org/10.1093/nar/17.1.239] [PMID: 2911465]
[117]
Agrawal S, Goodchild J. Oligodeoxynucleoside methylphosphonates: synthesis and enzymic degradation. Tetrahedron Lett 1987; 28: 3539-42.
[http://dx.doi.org/10.1016/S0040-4039(00)95529-1]
[118]
Goodchild J, Agrawal S, Civeira MP, Sarin PS, Sun D, Zamecnik PC. Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1988; 85(15): 5507-11.
[http://dx.doi.org/10.1073/pnas.85.15.5507] [PMID: 3041414]
[119]
Aldovini A, Young RA. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 1990; 64(5): 1920-6.
[http://dx.doi.org/10.1128/jvi.64.5.1920-1926.1990] [PMID: 2109098]
[120]
Matsukura M, Zon G, Shinozuka K, et al. Regulation of viral expression of human immunodeficiency virus in vitro by an antisense phosphorothioate oligodeoxynucleotide against rev (art/trs) in chronically infected cells. Proc Natl Acad Sci USA 1989; 86(11): 4244-8.
[http://dx.doi.org/10.1073/pnas.86.11.4244] [PMID: 2471199]
[121]
Stevenson M, Iversen PL. Inhibition of human immunodeficiency virus type 1-mediated cytopathic effects by poly(L-lysine)-conjugated synthetic antisense oligodeoxyribonucleotides. J Gen Virol 1989; 70(Pt 10): 2673-82.
[http://dx.doi.org/10.1099/0022-1317-70-10-2673] [PMID: 2794975]
[122]
Caumont A, Jamieson G, de Soultrait VR, et al. High affinity interaction of HIV-1 integrase with specific and non-specific single-stranded short oligonucleotides. FEBS Lett 1999; 455(1-2): 154-8.
[http://dx.doi.org/10.1016/S0014-5793(99)00859-5] [PMID: 10428491]
[123]
Snásel J, Rejman D, Liboska R, et al. Inhibition of HIV-1 integrase by modified oligonucleotides derived from U5′ LTR. Eur J Biochem 2001; 268(4): 980-6.
[http://dx.doi.org/10.1046/j.1432-1327.2001.01956.x] [PMID: 11179964]
[124]
Lisziewicz J, Sun D, Metelev V, Zamecnik P, Gallo RC, Agrawal S. Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates. Proc Natl Acad Sci USA 1993; 90(9): 3860-4.
[http://dx.doi.org/10.1073/pnas.90.9.3860] [PMID: 8483903]
[125]
Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 2015; 87: 46-51.
[http://dx.doi.org/10.1016/j.addr.2015.01.008] [PMID: 25666165]
[126]
Shemesh CS, Yu RZ, Gaus HJ, et al. Pharmacokinetic and pharmacodynamic investigations of ION-353382, a model antisense oligonucleotide: Using alpha-2-macroglobulin and murinoglobulin double-knockout mice. Nucleic Acid Ther 2016; 26(4): 223-35.
[http://dx.doi.org/10.1089/nat.2016.0607] [PMID: 27031383]
[127]
Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 2004; 101(7): 1892-7.
[http://dx.doi.org/10.1073/pnas.0308698100] [PMID: 14769924]
[128]
Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003; 21(6): 635-7.
[http://dx.doi.org/10.1038/nbt831] [PMID: 12754523]
[129]
Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12(7): 1179-87.
[http://dx.doi.org/10.1261/rna.25706] [PMID: 16682560]
[130]
Roehr B. Fomivirsen approved for CMV retinitis. J Int Assoc Physicians AIDS Care 1998; 4(10): 14-6.
[PMID: 11365956]
[131]
Perry CM, Balfour JA. Fomivirsen. Drugs 1999; 57(3): 375-80.
[http://dx.doi.org/10.2165/00003495-199957030-00010] [PMID: 10193689]
[132]
Zhou J, Rossi JJ. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 2011; 21(1): 1-10.
[http://dx.doi.org/10.1089/oli.2010.0264] [PMID: 21182455]
[133]
Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release 2013; 171(2): 152-62.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.006] [PMID: 23777885]
[134]
Das AT, Brummelkamp TR, Westerhout EM, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004; 78(5): 2601-5.
[http://dx.doi.org/10.1128/JVI.78.5.2601-2605.2004] [PMID: 14963165]
[135]
Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007; 25(12): 1435-43.
[http://dx.doi.org/10.1038/nbt1369] [PMID: 18066040]
[136]
Pomerantz RJ, Horn DL. Twenty years of therapy for HIV-1 infection. Nat Med 2003; 9(7): 867-73.
[http://dx.doi.org/10.1038/nm0703-867] [PMID: 12835707]
[137]
Strayer DS, Akkina R, Bunnell BA, et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11(6): 823-42.
[http://dx.doi.org/10.1016/j.ymthe.2005.01.020] [PMID: 15922953]
[138]
Boden D, Pusch O, Lee F, Tucker L, Ramratnam B. Human immunodeficiency virus type 1 escape from RNA interference. J Virol 2003; 77(21): 11531-5.
[http://dx.doi.org/10.1128/JVI.77.21.11531-11535.2003] [PMID: 14557638]
[139]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[140]
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol 2019; 9: 69.
[http://dx.doi.org/10.3389/fcimb.2019.00069] [PMID: 30968001]
[141]
Yin L, Hu S, Mei S, et al. CRISPR/Cas9 inhibits multiple steps of HIV-1 infection. Hum Gene Ther 2018; 29(11): 1264-76.
[http://dx.doi.org/10.1089/hum.2018.018] [PMID: 29644868]
[142]
Yu AQ, Ding Y, Lu ZY, et al. TALENs-mediated homozygous CCR5Δ32 mutations endow CD4+ U87 cells with resistance against HIV-1 infection. Mol Med Rep 2018; 17(1): 243-9.
[PMID: 29115572]
[143]
Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget 2017; 8(6): 9375-87.
[http://dx.doi.org/10.18632/oncotarget.14072] [PMID: 28030843]
[144]
Catuogno S, Esposito CL, Quintavalle C, Condorelli G, de Franciscis V, Cerchia L. Nucleic acids in human glioma treatment: innovative approaches and recent results. J Signal Transduct 2012; 2012: 735135.
[http://dx.doi.org/10.1155/2012/735135] [PMID: 22685651]
[145]
Catuogno S, Esposito CL, de Franciscis V. Aptamer-mediated targeted delivery of therapeutics: An update. Pharmaceuticals (Basel) 2016; 9(4): 69.
[http://dx.doi.org/10.3390/ph9040069] [PMID: 27827876]
[146]
Lakhin AV, Tarantul VZ, Gening LV. Aptamers: problems, solutions and prospects. Acta Nat (Engl Ed) 2013; 5(4): 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[147]
Dutton CM, Paynton C, Sommer SS. General method for amplifying regions of very high G+C content. Nucleic Acids Res 1993; 21(12): 2953-4.
[http://dx.doi.org/10.1093/nar/21.12.2953] [PMID: 8332515]
[148]
Green LS, Jellinek D, Bell C, et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 1995; 2(10): 683-95.
[http://dx.doi.org/10.1016/1074-5521(95)90032-2] [PMID: 9383475]
[149]
Turner JJ, Hoos JS, Vonhoff S, Klussmann S. Methods for L-ribooligonucleotide sequence determination using LCMS. Nucleic Acids Res 2011; 39(21): e147-7.
[http://dx.doi.org/10.1093/nar/gkr776] [PMID: 21948795]
[150]
Eulberg D, Klussmann S. Spiegelmers: biostable aptamers. ChemBioChem 2003; 4(10): 979-83.
[http://dx.doi.org/10.1002/cbic.200300663] [PMID: 14523914]
[151]
Hafner M, Vianini E, Albertoni B, et al. Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat Protoc 2008; 3(4): 579-87.
[http://dx.doi.org/10.1038/nprot.2008.15] [PMID: 18388939]
[152]
Yamazaki S, Tan L, Mayer G, et al. Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance. Chem Biol 2007; 14(7): 804-12.
[http://dx.doi.org/10.1016/j.chembiol.2007.06.003] [PMID: 17656317]
[153]
Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 2012; 161(2): 461-72.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.037] [PMID: 22094104]
[154]
Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 2012; 13(1): 105-19.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[155]
Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol Adv 2013; 31(8): 1260-74.
[http://dx.doi.org/10.1016/j.biotechadv.2013.04.007] [PMID: 23632375]
[156]
Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2013; 48(1-2): 259-71.
[http://dx.doi.org/10.1016/j.ejps.2012.10.014] [PMID: 23142634]
[157]
Vartanian JP, Henry M, Wain-Hobson S. Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res 1996; 24(14): 2627-31.
[http://dx.doi.org/10.1093/nar/24.14.2627] [PMID: 8758987]
[158]
Mirian M, Khanahmad H, Darzi L, Salehi M, Sadeghi-Aliabadi H. Oligonucleotide aptamers: potential novel molecules against viral hepatitis. Res Pharm Sci 2017; 12(2): 88-98.
[http://dx.doi.org/10.4103/1735-5362.202447] [PMID: 28515761]
[159]
Shiraishi K, Sanada Y, Mochizuki S, et al. Determination of polymeric micelles’ structural characteristics, and effect of the characteristics on pharmacokinetic behaviors. J Control Release 2015; 203: 77-84.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.017] [PMID: 25687307]
[160]
Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm 2014; 11(4): 1250-8.
[http://dx.doi.org/10.1021/mp400703d] [PMID: 24521246]
[161]
Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012; 134(4): 2139-47.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[162]
Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 2012; 12(10): 5304-10.
[http://dx.doi.org/10.1021/nl302638g] [PMID: 22920324]
[163]
Sanada Y, Akiba I, Hashida S, et al. Composition dependence of the micellar architecture made from poly(ethylene glycol)-block-poly(partially benzyl-esterified aspartic acid). J Phys Chem B 2012; 116(28): 8241-50.
[http://dx.doi.org/10.1021/jp300936d] [PMID: 22686285]
[164]
Rusconi CP, Scardino E, Layzer J, et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 2002; 419(6902): 90-4.
[http://dx.doi.org/10.1038/nature00963] [PMID: 12214238]
[165]
Bompiani KM, Monroe DM, Church FC, Sullenger BA. A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity. J Thromb Haemost 2012; 10(5): 870-80.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04679.x] [PMID: 22385910]
[166]
Good PD, Krikos AJ, Li SX, et al. Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther 1997; 4(1): 45-54.
[http://dx.doi.org/10.1038/sj.gt.3300354] [PMID: 9068795]
[167]
Ausländer D, Wieland M, Ausländer S, Tigges M, Fussenegger M. Rational design of a small molecule-responsive intramer controlling transgene expression in mammalian cells. Nucleic Acids Res 2011; 39(22): e155.
[http://dx.doi.org/10.1093/nar/gkr829] [PMID: 21984476]
[168]
Davydova AS, Vorobjeva MA, Venyaminova AG. Escort aptamers: new tools for the targeted delivery of therapeutics into cells. Acta Nat (Engl Ed) 2011; 3(4): 12-29.
[http://dx.doi.org/10.32607/20758251-2011-3-4-12-29] [PMID: 22649701]
[169]
Meyer C, Eydeler K, Magbanua E, et al. Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol 2012; 9(1): 67-80.
[http://dx.doi.org/10.4161/rna.9.1.18062] [PMID: 22258147]
[170]
Maier KE, Levy M. From selection hits to clinical leads: progress in aptamer discovery. Mol Ther Methods Clin Dev 2016; 5: 16014.
[http://dx.doi.org/10.1038/mtm.2016.14] [PMID: 27088106]
[171]
Cameron PU, Saleh S, Sallmann G, et al. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci USA 2010; 107(39): 16934-9.
[http://dx.doi.org/10.1073/pnas.1002894107] [PMID: 20837531]
[172]
Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med 2012; 2(7): a006890-0.
[http://dx.doi.org/10.1101/cshperspect.a006890] [PMID: 22762018]
[173]
Murphy EL, Collier AC, Kalish LA, et al. Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease. Ann Intern Med 2001; 135(1): 17-26.
[http://dx.doi.org/10.7326/0003-4819-135-1-200107030-00005] [PMID: 11434728]
[174]
Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998; 338(13): 853-60.
[http://dx.doi.org/10.1056/NEJM199803263381301] [PMID: 9516219]
[175]
Chonco L, Fernández G, Kalhapure R, et al. Novel DNA aptamers against CCL21 protein: Characterization and biomedical applications for targeted drug delivery to T cell-rich zones. Nucleic Acid Ther 2018; 28(4): 242-51.
[http://dx.doi.org/10.1089/nat.2017.0689] [PMID: 29733244]
[176]
Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci 2020; 21(23): E9123.
[http://dx.doi.org/10.3390/ijms21239123] [PMID: 33266216]
[177]
Friis-Møller N, Sabin CA, Weber R, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 2003; 349(21): 1993-2003.
[http://dx.doi.org/10.1056/NEJMoa030218] [PMID: 14627784]
[178]
Treisman GJ, Kaplin AI. Neurologic and psychiatric complications of antiretroviral agents. AIDS 2002; 16(9): 1201-15.
[http://dx.doi.org/10.1097/00002030-200206140-00002] [PMID: 12045485]
[179]
Kovari H, Weber R. Influence of antiretroviral therapy on liver disease. Curr Opin HIV AIDS 2011; 6(4): 272-7.
[http://dx.doi.org/10.1097/COH.0b013e3283473405] [PMID: 21508839]
[180]
Rasmussen TA, Lewin SR. Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 2016; 11(4): 394-401.
[http://dx.doi.org/10.1097/COH.0000000000000279] [PMID: 26974532]
[181]
Rasmussen TA, Tolstrup M, Søgaard OS. Reversal of latency as part of a cure for HIV-1. Trends Microbiol 2016; 24(2): 90-7.
[http://dx.doi.org/10.1016/j.tim.2015.11.003] [PMID: 26690612]
[182]
Clutter DS, Jordan MR, Bertagnolio S, Shafer RW. HIV-1 drug resistance and resistance testing. Infect Genet Evol 2016; 46: 292-307.
[http://dx.doi.org/10.1016/j.meegid.2016.08.031] [PMID: 27587334]
[183]
Baxter JD, Dunn D, White E, et al. Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med 2015; 16(Suppl. 1): 77-87.
[http://dx.doi.org/10.1111/hiv.12236] [PMID: 25711326]
[184]
Kassaye SG, Grossman Z, Balamane M, et al. Transmitted HIV drug resistance is high and longstanding in metropolitan washington, DC. Clin Infect Dis 2016; 63(6): 836-43.
[http://dx.doi.org/10.1093/cid/ciw382] [PMID: 27307507]
[185]
Rhee S-Y, Clutter D, Fessel WJ, et al. Trends in the molecular epidemiology and genetic mechanisms of transmitted human immunodeficiency virus type 1 drug resistance in a large US clinic population. Clin Infect Dis 2019; 68(2): 213-21.
[http://dx.doi.org/10.1093/cid/ciy453] [PMID: 29846534]
[186]
Li N, Wang Y, Pothukuchy A, et al. Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res 2009; 37: 5236.
[http://dx.doi.org/10.1093/nar/gkp663] [PMID: 18948292]
[187]
Chen Z, Tai Z, Gu F, Hu C, Zhu Q, Gao S. Aptamer-mediated delivery of docetaxel to prostate cancer through polymeric nanoparticles for enhancement of antitumor efficacy. Eur J Pharm Biopharm 2016; 107: 130-41.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.007] [PMID: 27393562]
[188]
Dai B, Hu Y, Duan J, Yang XD. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget 2016; 7(25): 38257-69. http://legacy.oncotarget.com/index.php?journal=oncotarget&amp
[http://dx.doi.org/10.18632/oncotarget.9431] [PMID: 27203221]
[189]
Fernández G, Moraga A, Cuartero MI, et al. TLR4-binding DNA aptamers show a protective effect against acute stroke in animal models. Mol Ther 2018; 26(8): 2047-59.
[http://dx.doi.org/10.1016/j.ymthe.2018.05.019] [PMID: 29910175]
[190]
Laird GM, Bullen CK, Rosenbloom DIS, et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest 2015; 125(5): 1901-12.
[http://dx.doi.org/10.1172/JCI80142] [PMID: 25822022]
[191]
Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 2012; 37(3): 377-88.
[http://dx.doi.org/10.1016/j.immuni.2012.08.010] [PMID: 22999944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy