Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Oncotherapeutic Application of Resveratrol-based Inorganic Nanoparticles

Author(s): Angela Perris, Sanchari Bhattacharya, Junaid Jibran Jawed and Muddasarul Hoda*

Volume 9, Issue 4, 2021

Published on: 06 September, 2021

Page: [271 - 280] Pages: 10

DOI: 10.2174/2211738509666210906164727

Price: $65

Abstract

Background: Potential therapeutic benefits of natural phytoconstituents and the emergence of nano-structured drug delivery systems have expanded the scope of enhanced chemotherapy with minimal adverse effects. Various in vivo and in vitro studies have revealed Resveratrol to be a potent anti-carcinogenic agent. Researchers are currently applying the concept of nano-science for enhancing the delivery of phyto-drugs like resveratrol, in order to carry the drug to the affected tissues and organs of cancer patients with much ease and efficiency.

Methods: The current review emphasizes the use of inorganic nanoparticles for enhancing the delivery and efficacy of resveratrol into otherwise inaccessible tumorigenic tissues.

Conclusion: The present review work summarizes a comprehensive update on the mechanism of actions of the resveratrol-based inorganic nanocomposite particles that are currently being studied against various cancer models. This work may be significant in laying the foundation for the future of metallic nanoparticles-based delivery and efficacy of phytochemicals in general and resveratrol in specific against non-invasive metastatic cancer.

Keywords: Cancer, metastasis, resveratrol, inorganic nanoparticles, drug delivery, cellular uptake.

Graphical Abstract

[1]
Cancer IA for R on. Latest global cancer data: cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. 2018.
[2]
Barboro P, Alberti I, Sanna P, et al. Changes in the cytoskeletal and nuclear matrix proteins in rat hepatocyte neoplastic nodules in their relation to the process of transformation. Exp Cell Res 1996; 225(2): 315-27.
[http://dx.doi.org/10.1006/excr.1996.0182] [PMID: 8660920]
[3]
Klein CA. Selection and adaptation during metastatic cancer progression. Nature 2013; 501(7467): 365-72.
[http://dx.doi.org/10.1038/nature12628] [PMID: 24048069]
[4]
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147(2): 275-92.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[5]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1-2): 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[6]
Arvelo F, Sojo F, Cotte C. Tumour progression and metastasis. Ecancermedicalscience 2016; 10: 617.
[http://dx.doi.org/10.3332/ecancer.2016.617] [PMID: 26913068]
[7]
Folkman J, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285(21): 1182-6.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[8]
Okimoto RA, Bivona TG. Recent advances in personalized lung cancer medicine. Per Med 2014; 11(3): 309-21.
[http://dx.doi.org/10.2217/pme.14.19] [PMID: 25506379]
[9]
Krepler C, Xiao M, Sproesser K, et al. Personalized preclinical trials in braf inhibitor-resistant patient-derived xenograft models identify second-line combination therapies. Clin Cancer Res 2016; 22(7): 1592-602.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1762] [PMID: 26673799]
[10]
Langley RR, Fidler IJ. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 2007; 28(3): 297-321.
[http://dx.doi.org/10.1210/er.2006-0027] [PMID: 17409287]
[11]
Talmadge JE, Benedict K, Madsen J, Fidler IJ. Development of biological diversity and susceptibility to chemotherapy in murine cancer metastases. Cancer Res 1984; 44(9): 3801-5.
[PMID: 6744297]
[12]
Rawat D, Shrivastava S, Naik RA, Chhonker SK, Mehrotra A, Koiri RK. An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer Agents Med Chem 2018; 18(13): 1838-59.
[http://dx.doi.org/10.2174/1871520618666180604085612] [PMID: 29866017]
[13]
Hoda M, Hemaiswarya S, Doble M. Role of phenolic phytochemicals in diabetes management. 2019. Available from: http://link.springer.com/10.1007/978-981-13-8997-9
[14]
Santos AC, Pereira I, Magalhães M, et al. Targeting cancer via resveratrol-loaded nanoparticles administration: focusing on in vivo evidence. AAPS J 2019; 21(4): 57.
[http://dx.doi.org/10.1208/s12248-019-0325-y] [PMID: 31016543]
[15]
Bishayee A. Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2009; 2(5): 409-18.
[http://dx.doi.org/10.1158/1940-6207.CAPR-08-0160] [PMID: 19401532]
[16]
Colin D, Lancon A, Delmas D, et al. Antiproliferative activities of resveratrol and related compounds in human hepatocyte derived HepG2 cells are associated with biochemical cell disturbance revealed by fluorescence analyses. Biochimie 2008; 90(11-12): 1674-84.
[http://dx.doi.org/10.1016/j.biochi.2008.06.006] [PMID: 18627786]
[17]
Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cell Signal 2009; 21(11): 1541-7.
[http://dx.doi.org/10.1016/j.cellsig.2009.03.009] [PMID: 19298854]
[18]
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. npj Precis Oncol 2017; 1(1): 35.
[19]
Pervaiz S. Resveratrol- from the bottle to the bedside? Leuk Lymphoma 2001; 40(5-6): 491-8.
[http://dx.doi.org/10.3109/10428190109097648] [PMID: 11426522]
[20]
Leonard SS, Xia C, Jiang B-H, et al. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 2003; 309(4): 1017-26.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.105] [PMID: 13679076]
[21]
Langová M, Polívková Z, Šmerák P, Bártová J, Bárta I. Antimutagenic effect of resveratrol. Czech J Food Sci 2011; 23(5): 202-8.
[http://dx.doi.org/10.17221/3392-CJFS]
[22]
Ko J-H, Sethi G, Um J-Y, et al. The role of resveratrol in cancer therapy. Int J Mol Sci 2017; 18(12): 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[23]
Hyrsova L, Vanduchova A, Dusek J, et al. Trans-resveratrol, but not other natural stilbenes occurring in food, carries the risk of drug-food interaction via inhibition of cytochrome P450 enzymes or interaction with xenosensor receptors. Toxicol Lett 2019; 300: 81-91.
[http://dx.doi.org/10.1016/j.toxlet.2018.10.028] [PMID: 30394306]
[24]
Hsieh TC, Lu X, Wang Z, Wu JM. Induction of quinone reductase NQO1 by resveratrol in human K562 cells involves the antioxidant response element ARE and is accompanied by nuclear translocation of transcription factor Nrf2. Med Chem 2006; 2(3): 275-85.
[http://dx.doi.org/10.2174/157340606776930709] [PMID: 16948474]
[25]
Heo YH, Kim S, Park JE, Jeong LS, Lee SK. Induction of quinone reductase activity by stilbene analogs in mouse Hepa 1c1c7 cells. Arch Pharm Res 2001; 24(6): 597-600.
[http://dx.doi.org/10.1007/BF02975172] [PMID: 11794542]
[26]
Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004; 24(5A): 2783-840.
[PMID: 15517885]
[27]
Yu X-D, Yang JL, Zhang W-L, Liu D-X. Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest. Tumour Biol 2016; 37(3): 2871-7.
[http://dx.doi.org/10.1007/s13277-015-3793-4] [PMID: 26409447]
[28]
Bai Y, Mao Q-Q, Qin J, et al. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci 2010; 101(2): 488-93.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01415.x] [PMID: 20028382]
[29]
Chun YJ, Kim MY, Guengerich FP. Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem Biophys Res Commun 1999; 262(1): 20-4.
[http://dx.doi.org/10.1006/bbrc.1999.1152] [PMID: 10448061]
[30]
Aziz MH, Nihal M, Fu VX, Jarrard DF, Ahmad N. Resveratrol- caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3′-kinase/Akt pathway and Bcl-2 family proteins. Mol Cancer Ther 2006; 5(5): 1335-41.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0526] [PMID: 16731767]
[31]
Delmas D, Rébé C, Lacour S, et al. Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 2003; 278(42): 41482-90.
[http://dx.doi.org/10.1074/jbc.M304896200] [PMID: 12902349]
[32]
Shankar S, Siddiqui I, Srivastava RK. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-Related Apoptosis Inducing Ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem 2007; 304(1-2): 273-85.
[http://dx.doi.org/10.1007/s11010-007-9510-x] [PMID: 17636462]
[33]
Harati K, Slodnik P, Chromik AM, et al. Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells. Anticancer Res 2015; 35(2): 767-74.
[PMID: 25667456]
[34]
Cai Y, Zhao L, Qin Y, Zhang M, He Y. Resveratrol inhibits proliferation and induces apoptosis of nasopharyngeal carcinoma cell line C666-1 through AMPK activation. Pharmazie 2015; 70(6): 399-403.
[PMID: 26189302]
[35]
He X, Wang Y, Zhu J, Orloff M, Eng C. Resveratrol enhances the anti-tumor activity of the mTOR inhibitor rapamycin in multiple breast cancer cell lines mainly by suppressing rapamycin-induced AKT signaling. Cancer Lett 2011; 301(2): 168-76.
[http://dx.doi.org/10.1016/j.canlet.2010.11.012] [PMID: 21168265]
[36]
Benitez DA, Hermoso MA, Pozo-Guisado E, Fernández-Salguero PM, Castellón EA. Regulation of cell survival by resveratrol involves inhibition of NF κ B-regulated gene expression in prostate cancer cells. Prostate 2009; 69(10): 1045-54.
[http://dx.doi.org/10.1002/pros.20953] [PMID: 19301309]
[37]
Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 2010; 5(12): e15288.
[http://dx.doi.org/10.1371/journal.pone.0015288]
[38]
Bhardwaj A, Sethi G, Vadhan-Raj S, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007; 109(6): 2293-302.
[http://dx.doi.org/10.1182/blood-2006-02-003988] [PMID: 17164350]
[39]
Mikuła-Pietrasik J, Sosińska P, Murias M, et al. High potency of a novel resveratrol derivative, 3,3′,4,4′-tetrahydroxy-trans-stilbene, against ovarian cancer is associated with an oxidative stress-mediated imbalance between DNA damage accumulation and repair. Oxid Med Cell Longev 2015; 2015: 135691.
[http://dx.doi.org/10.1155/2015/135691] [PMID: 26229578]
[40]
Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: preclinical evidence and molecular mechanisms. Semin Cancer Biol 2016; 40-41: 209-32.
[http://dx.doi.org/10.1016/j.semcancer.2015.11.001] [PMID: 26774195]
[41]
Yu H, Pan C, Zhao S, Wang Z, Zhang H, Wu W. Resveratrol inhibits tumor necrosis factor-α-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells. Biomed Pharmacother 2008; 62(6): 366-72.
[http://dx.doi.org/10.1016/j.biopha.2007.09.006] [PMID: 17988825]
[42]
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[43]
Wang H, Zhang H, Tang L, et al. Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 2013; 303: 139-46.
[http://dx.doi.org/10.1016/j.tox.2012.09.017] [PMID: 23146760]
[44]
Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 2007; 26(5): 711-24.
[http://dx.doi.org/10.1038/sj.onc.1209808] [PMID: 16862183]
[45]
Orallo F. Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem 2006; 13(1): 87-98.
[http://dx.doi.org/10.2174/092986706775197962] [PMID: 16457641]
[46]
Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 2004; 32(12): 1377-82.
[http://dx.doi.org/10.1124/dmd.104.000885] [PMID: 15333514]
[47]
Ahmadi R, Ebrahimzadeh MA. Resveratrol - A comprehensive review of recent advances in anticancer drug design and development. Eur J Med Chem 2020; 200: 112356.
[http://dx.doi.org/10.1016/j.ejmech.2020.112356] [PMID: 32485531]
[48]
Cao SJ, Xu S, Wang HM, et al. Nanoparticles: oral delivery for protein and peptide drugs. AAPS PharmSciTech 2019; 20(5): 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[49]
Bhattacharya S, Mondal L, Mukherjee B, et al. Apigenin loaded nanoparticle delayed development of hepatocellular carcinoma in rats. Nanomedicine 2018; 14(6): 1905-17.
[http://dx.doi.org/10.1016/j.nano.2018.05.011] [PMID: 29802937]
[50]
Li C, Zhang J, Zu YJ, et al. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med 2015; 19(9): 641-52.
[51]
Mondal L, Mukherjee B, Das K, et al. CD-340 functionalized doxorubicin-loaded nanoparticle induces apoptosis and reduces tumor volume along with drug-related cardiotoxicity in mice. Int J Nanomedicine 2019; 14: 8073-94.
[http://dx.doi.org/10.2147/IJN.S220740] [PMID: 31632019]
[52]
Hogg SJ, Chitcholtan K, Hassan W, Sykes PH, Garrill A. Resveratrol, acetyl-resveratrol, and polydatin exhibit antigrowth activity against 3D cell aggregates of the SKOV-3 and OVCAR-8 ovarian cancer cell lines. Obstet Gynecol Int 2015; 2015: 279591.
[http://dx.doi.org/10.1155/2015/279591] [PMID: 26617640]
[53]
Thipe VC, Panjtan Amiri K, Bloebaum P, et al. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomedicine 2019; 14: 4413-28.
[http://dx.doi.org/10.2147/IJN.S204443] [PMID: 31417252]
[54]
Lee DG, Go EB, Lee M, Pak PJ, Kim J-S, Chung N. Gold nanoparticles conjugated with resveratrol induce cell cycle arrest in MCF-7 cell lines. Appl Biol Chem 2019; 62(1): 33.
[55]
Sallem F, Haji R, Vervandier-Fasseur D, et al. Elaboration of trans-resveratrol derivative-loaded superparamagnetic iron oxide nanoparticles for glioma treatment. Nanomaterials (Basel) 2019; 9(2): 287.
[http://dx.doi.org/10.3390/nano9020287] [PMID: 30781702]
[56]
Fan C, Kong F, Shetti D, Zhang B, Yang Y, Wei K. Resveratrol loaded oxidized mesoporous carbon nanoparticles: a promising tool to treat triple negative breast cancer. Biochem Biophys Res Commun 2019; 519(2): 378-84.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.016] [PMID: 31519327]
[57]
Chaudhary Z, Subramaniam S, Khan GM, et al. Encapsulation and controlled release of resveratrol within functionalized mesoporous silica nanoparticles for prostate cancer therapy. Front Bioeng Biotechnol 2019; 7: 225.
[http://dx.doi.org/10.3389/fbioe.2019.00225] [PMID: 31620434]
[58]
Marinheiro D, Ferreira BJML, Oskoei P, Oliveira H, Daniel- da-Silva AL. Encapsulation and Enhanced Release of Resveratrol from Mesoporous Silica Nanoparticles for Melanoma Therapy. Materials (Basel) 2021; 14(6): 1382.
[http://dx.doi.org/10.3390/ma14061382] [PMID: 33809119]
[59]
Kumar CG, Poornachandra Y, Mamidyala SK. Green synthesis of bacterial gold nanoparticles conjugated to resveratrol as delivery vehicles. Colloids Surf B Biointerfaces 2014; 123: 311-7.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.032] [PMID: 25277291]
[60]
Park SY, Chae SY, Park JO, Lee KJ, Park G. Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells. Oncol Rep 2016; 35(6): 3248-56.
[http://dx.doi.org/10.3892/or.2016.4716] [PMID: 27035791]
[61]
Venditti I, Iucci G, Fratoddi I, et al. Direct conjugation of resveratrol on hydrophilic gold nanoparticles: structural and cytotoxic studies for biomedical applications. Nanomaterials (Basel) 2020; 10(10): 1898.
[http://dx.doi.org/10.3390/nano10101898] [PMID: 32977463]
[62]
Sanna V, Pala N, Dessì G, et al. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities. Int J Nanomedicine 2014; 9: 4935-51.
[PMID: 25364251]
[63]
Wang W, Tang Q, Yu T, et al. Surfactant-free preparation of au@resveratrol hollow nanoparticles with photothermal performance and antioxidant activity. ACS Appl Mater Interfaces 2017; 9(4): 3376-87.
[http://dx.doi.org/10.1021/acsami.6b13911] [PMID: 28098974]
[64]
Zhang D, Zhang J, Zeng J, et al. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J Biomed Nanotechnol 2019; 15(2): 288-300.
[http://dx.doi.org/10.1166/jbn.2019.2682] [PMID: 30596551]
[65]
Fadel M, Kassab K, Youssef T, El-Kholy AI. One-step synthesis of phyto-polymer coated gold nanospheres as a delivery system to enhance resveratrol cytotoxicity. Drug Dev Ind Pharm 2019; 45(6): 937-45.
[http://dx.doi.org/10.1080/03639045.2019.1579828] [PMID: 30734589]
[66]
Kamal R, Chadha VD, Dhawan DK. Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue. Nanomedicine 2018; 14(3): 1059-71.
[http://dx.doi.org/10.1016/j.nano.2018.01.008] [PMID: 29391211]
[67]
Yazdanparast S, Benvidi A, Azimzadeh M, Tezerjani MD, Ghaani MR. Experimental and theoretical study for miR-155 detection through resveratrol interaction with nucleic acids using magnetic core-shell nanoparticles. Microchim Acta 2020; 187(8): 479.
[68]
Yuan Y-G, Peng Q-L, Gurunathan S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomedicine 2017; 12: 6487-502.
[http://dx.doi.org/10.2147/IJN.S135482] [PMID: 28919750]
[69]
Tailor G, Yadav BL, Chaudhary J, Joshi M, Suvalka C. Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem Biophys Rep 2020; 24: 100848.
[http://dx.doi.org/10.1016/j.bbrep.2020.100848] [PMID: 33305022]
[70]
Summerlin N, Qu Z, Pujara N, et al. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerfaces 2016; 144: 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]
[71]
Hu Y, Wang Z, Qiu Y, Liu Y, Ding M, Zhang Y. Anti-miRNA21 and resveratrol-loaded polysaccharide-based mesoporous silica nanoparticle for synergistic activity in gastric carcinoma. J Drug Target 2019; 27(10): 1135-43.
[http://dx.doi.org/10.1080/1061186X.2019.1610766] [PMID: 31017473]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy