Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

In-vitro Evaluation of Isatin Derivatives as Potent Anti-Breast Cancer Agents against MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 Breast Cancers Cell Lines: A Review

Author(s): Garima Chauhan*, Dharam Pal Pathak, Faraat Ali, Pragya Dubey and Shaik Khasimbi

Volume 22, Issue 10, 2022

Published on: 11 January, 2022

Page: [1883 - 1896] Pages: 14

DOI: 10.2174/1871520621666210903130152

Price: $65

Abstract

Introduction: Breast cancer (BC) is one of the most frequent malignancies and the most common reasons for impermanence in women. The backbone of therapy for BC is principally chemotherapy, but its non-specific nature to differentiate between normal cells and cancer cells and severe side effects are the main barriers in its use. So, there is an intense requirement to enlarge more efficacious, more specific and safer anti-BC agents.

Objective: Isatin (IST) is an endogenous molecule that is a principal class of heterocyclic compounds and exhibits a wide range of therapeutic activities which can be used as a starting material for the synthesis of several drug molecules. Many kinds of literature were reported previously on different pharmacological activities of IST derivatives and particularly on anticancer activity but this review mainly focuses on anti-BC activities of IST derivatives through MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 cell lines. Herein we mentioned; a total of 33 IST derivatives (compound 24- 56) which show good anti-BC activity. IST-derived compounds are also available in the market and are used for various cancer types like sunitinib for renal cell carcinoma (RCC) and Nintedanib for the cryptogenic fibrosing alveolitis treatment, but when evaluated for BC, they did not prove to be much successful.

Conclusion: This review mainly highlights anti-BC activities of various IST analogues using MCF-7, MDA MB 231, MDA-MB 435 and MDA-MB 468 cell lines, displaying the potent compound of the series and structure-activity relationships of compounds with molecular docking also. So, this study mainly shows the importance of IST as a major source for drug design and development of newer anti-BC drugs.

Keywords: Breast cancer, IST, anti-BC agents, cell lines, structure-activity relationship, toxicity.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin., 2012, 62(1), 10-29.
[http://dx.doi.org/10.3322/caac.20138] [PMID: 22237781]
[3]
DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A. Breast cancer statistics. CA Cancer J. Clin., 2011, 61(6), 409-418.
[http://dx.doi.org/10.3322/caac.20134] [PMID: 21969133]
[4]
Smith, N.Z. Treating metastatic breast cancer with systemic chemotherapies: current trends and future perspectives. Clin. J. Oncol. Nurs., 2012, 16(2), E33-E43.
[http://dx.doi.org/10.1188/12.CJON.E33-E43] [PMID: 22459535]
[5]
Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol., 2007, 608, 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1] [PMID: 17993229]
[6]
Ramachandran, S.; Uma Maheswari, V. Synthesis, analgesic and ulcerogenic evaluation of some novel schiff and mannich bases of Isatin derivatives. Int. J. Pharma Bio Sci., 2011, 2(1), 251-260.
[7]
(a)Buolamwini, J.K.; Addo, J.; Kamath, S.; Patil, S.; Mason, D.; Ores, M. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr. Cancer Drug Targets, 2005, 5(1), 57-68.
[http://dx.doi.org/10.2174/1568009053332672] [PMID: 15720190]
(b)Bacher, G.; Beckers, T.; Emig, P.; Klenner, T.; Kutscher, B.; Nickel, B. New small- molecule tubulin inhibitors. Pure Appl. Chem., 2001, 73(9), 1459-1464.
[http://dx.doi.org/10.1351/pac200173091459]
[8]
Ahuja, P.; Siddiqui, N. Anticonvulsant evaluation of clubbed indole-1,2,4-triazine derivatives: a synthetic approach. Eur. J. Med. Chem., 2014, 80, 509-522.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.043] [PMID: 24813879]
[9]
Zhang, M.Z.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y.C.; Chen, Q.; Yang, G.F.; Clough, J. Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)-indoles and 3-(1,3,4-oxadiazol-5-yl)methyl-indoles. Eur. J. Med. Chem., 2013, 63, 22-32.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.038] [PMID: 23454531]
[10]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[11]
Singh, N.P.; Singh, U.P.; Rouse, M.; Zhang, J.; Chatterjee, S.; Nagarkatti, P.S.; Nagarkatti, M. Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of MicroRNA. J. Immunol., 2016, 196(3), 1108-1122.
[http://dx.doi.org/10.4049/jimmunol.1501727] [PMID: 26712945]
[12]
Pedada, S.R.; Yarla, N.S.; Tambade, P.J.; Dhananjaya, B.L.; Bishayee, A.; Arunasree, K.M.; Philip, G.H.; Dharmapuri, G.; Aliev, G.; Putta, S.; Rangaiah, G. Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. Eur. J. Med. Chem., 2016, 112, 289-297.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.025] [PMID: 26907155]
[13]
Al-Wabli, R.I.; Almomen, A.A.; Almutairi, M.S.; Keeton, A.B.; Piazza, G.A.; Attia, M.I. New IST–indole conjugates: Synthesis, characterization, and a plausible mechanism of their in vitro antiproliferative activity. Drug Des. Devel. Ther., 2020, 14, 483-495.
[http://dx.doi.org/10.2147/DDDT.S227862] [PMID: 32099332]
[14]
Kammasud, N.; Boonyarat, C.; Sanphanya, K.; Utsintong, M.; Tsunoda, S.; Sakurai, H.; Saiki, I.; André, I.; Grierson, D.S.; Vajragupta, O. 5-Substituted pyrido[2,3-d]pyrimidine, an inhibitor against three receptor tyrosine kinases. Bioorg. Med. Chem. Lett., 2009, 19(3), 745-750.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.023] [PMID: 19110422]
[15]
Lai, Y.; Ma, L.; Huang, W.; Yu, X.; Zhang, Y.; Ji, H.; Tian, J. Synthesis and biological evaluation of 3-[4-(amino/methylsulfonyl)phenyl]methylene-indolin-2-one derivatives as novel COX-1/2 and 5-LOX inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(24), 7349-7353.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.056] [PMID: 21055929]
[16]
Ma, Z.; Hou, L.; Jiang, Y.; Chen, Y.; Song, J. The endogenous oxindole isatin induces apoptosis of MCF 7 breast cancer cells through a mitochondrial pathway. Oncol. Rep., 2014, 32(5), 2111-2117.
[http://dx.doi.org/10.3892/or.2014.3426] [PMID: 25174967]
[17]
Fong, T.A.T.; Shawver, L.K.; Sun, L.; Tang, C.; App, H.; Powell, T.J.; Kim, Y.H.; Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, K.P.; McMahon, G. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res., 1999, 59(1), 99-106.
[PMID: 9892193]
[18]
Shaheen, R.M.; Davis, D.W.; Liu, W.; Zebrowski, B.K.; Wilson, M.R.; Bucana, C.D.; McConkey, D.J.; McMahon, G.; Ellis, L.M. Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res., 1999, 59(21), 5412-5416.
[PMID: 10554007]
[19]
Longo, R.; Sarmiento, R.; Fanelli, M.; Capaccetti, B.; Gattuso, D.; Gasparini, G. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis, 2002, 5(4), 237-256.
[http://dx.doi.org/10.1023/A:1024532022166] [PMID: 12906317]
[20]
Kuenen, B.C.; Levi, M.; Meijers, J.C.M.; Kakkar, A.K.; van Hinsbergh, V.W.M.; Kostense, P.J.; Pinedo, H.M.; Hoekman, K. Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor pathway in cancer patients. Arterioscler. Thromb. Vasc. Biol., 2002, 22(9), 1500-1505.
[http://dx.doi.org/10.1161/01.ATV.0000030186.66672.36] [PMID: 12231573]
[21]
Morabito, A.; De Maio, E.; Di Maio, M.; Normanno, N.; Perrone, F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist, 2006, 11(7), 753-764.
[http://dx.doi.org/10.1634/theoncologist.11-7-753] [PMID: 16880234]
[22]
Sepp-Lorenzino, L.; Thomas, K.A. Antiangiogenic agents targeting vascular endothelial growth factor and its receptors in clinical development. Expert Opin. Investig. Drugs, 2002, 11(10), 1447-1465.
[http://dx.doi.org/10.1517/13543784.11.10.1447] [PMID: 12387705]
[23]
Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov., 2007, 6(9), 734-745.
[http://dx.doi.org/10.1038/nrd2380] [PMID: 17690708]
[24]
Lv, K.; Wang, L.L.; Liu, M.L.; Zhou, X.B.; Fan, S.Y.; Liu, H.Y.; Zheng, Z.B.; Li, S. Synthesis and antitumor activity of 5-[1-(3-(dimethylamino)propyl)-5-halogenated-2-oxoindolin-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxamides. Bioorg. Med. Chem. Lett., 2011, 21(10), 3062-3065.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.031] [PMID: 21450463]
[25]
Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J.Y.; Chu, J.Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T.C.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem., 2003, 46(7), 1116-1119.
[http://dx.doi.org/10.1021/jm0204183] [PMID: 12646019]
[26]
Dhillon, S. Nintedanib: A review of its use as second-line treatment in adults with advanced non-small cell lung cancer of adenocarcinoma histology. Target. Oncol., 2015, 10(2), 303-310.
[http://dx.doi.org/10.1007/s11523-015-0367-8] [PMID: 25894578]
[27]
Rossi, A.; Latiano, T.P.; Parente, P.; Chiarazzo, C.; Limosani, F.; Di Maggio, G.; Maiello, E. The potential role of nintedanib in treating colorectal cancer. Expert Opin. Pharmacother., 2017, 18(11), 1153-1162.
[http://dx.doi.org/10.1080/14656566.2017.1346086] [PMID: 28649871]
[28]
Van Cutsem, E.; Yoshino, T.; Hocke, J.; Oum’Hamed, Z.; Studeny, M.; Tabernero, J. Rationale and design for the LUME-colon 1 study: A randomized, double-blind, placebo-controlled phase III trial of nintedanib plus best supportive care versus placebo plus best supportive care in patients with advanced colorectal cancer refractory to standard treatment. Clin. Colorectal Cancer, 2016, 15(1), 91-94.e1.
[http://dx.doi.org/10.1016/j.clcc.2015.09.005] [PMID: 26603056]
[29]
Quintela-Fandino, M.; Urruticoechea, A.; Guerra, J.; Gil, M.; Gonzalez-Martin, A.; Marquez, R.; Hernandez-Agudo, E.; Rodriguez-Martin, C.; Gil-Martin, M.; Bratos, R.; Escudero, M.J.; Vlassak, S.; Hilberg, F.; Colomer, R. Phase I clinical trial of nintedanib plus paclitaxel in early HER-2-negative breast cancer (CNIO-BR-01-2010/GEICAM-2010-10 study). Br. J. Cancer, 2014, 111(6), 1060-1064.
[http://dx.doi.org/10.1038/bjc.2014.397] [PMID: 25058346]
[30]
Sessa, C.; Viganò, L.; Grasselli, G.; Trigo, J.; Marimon, I.; Lladò, A.; Locatelli, A.; Ielmini, N.; Marsoni, S.; Gianni, L. Phase I clinical and pharmacological evaluation of the multi-tyrosine kinase inhibitor SU006668 by chronic oral dosing. Eur. J. Cancer, 2006, 42(2), 171-178.
[http://dx.doi.org/10.1016/j.ejca.2005.09.033] [PMID: 16406576]
[31]
Laird, A.D.; Vajkoczy, P.; Shawver, L.K.; Thurnher, A.; Liang, C.; Mohammadi, M.; Schlessinger, J.; Ullrich, A.; Hubbard, S.R.; Blake, R.A.; Fong, T.A.T.; Strawn, L.M.; Sun, L.; Tang, C.; Hawtin, R.; Tang, F.; Shenoy, N.; Hirth, K.P.; McMahon, G.; Cherrington, J.M. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res., 2000, 60(15), 4152-4160.
[PMID: 10945623]
[32]
London, C.; Mathie, T.; Stingle, N.; Clifford, C.; Haney, S.; Klein, M.K.; Beaver, L.; Vickery, K.; Vail, D.M.; Hershey, B.; Ettinger, S.; Vaughan, A.; Alvarez, F.; Hillman, L.; Kiselow, M.; Thamm, D.; Higginbotham, M.L.; Gauthier, M.; Krick, E.; Phillips, B.; Ladue, T.; Jones, P.; Bryan, J.; Gill, V.; Novasad, A.; Fulton, L.; Carreras, J.; McNeill, C.; Henry, C.; Gillings, S. Preliminary evidence for biologic activity of toceranib phosphate (Palladia(®)) in solid tumours. Vet. Comp. Oncol., 2012, 10(3), 194-205.
[http://dx.doi.org/10.1111/j.1476-5829.2011.00275.x] [PMID: 22236194]
[33]
Miller, K.D.; Burstein, H.J.; Elias, A.D.; Rugo, H.S.; Cobleigh, M.A.; Pegram, M.D.; Eisenberg, P.D.; Collier, M.; Adams, B.J.; Baum, C.M. Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastatic breast cancer (MBC). J. Clin. Oncol., 2005, 23(16)(Suppl.), 563-563.
[http://dx.doi.org/10.1200/jco.2005.23.16_suppl.563]
[34]
Burstein, H.J.; Elias, A.D.; Rugo, H.S.; Cobleigh, M.A.; Wolff, A.C.; Eisenberg, P.D.; Lehman, M.; Adams, B.J.; Bello, C.L.; DePrimo, S.E.; Baum, C.M.; Miller, K.D. Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol., 2008, 26(11), 1810-1816.
[http://dx.doi.org/10.1200/JCO.2007.14.5375] [PMID: 18347007]
[35]
Curigliano, G.; Pivot, X.; Cortés, J.; Elias, A.; Cesari, R.; Khosravan, R.; Collier, M.; Huang, X.; Cataruozolo, P.E.; Kern, K.A.; Goldhirsch, A. Randomized phase II study of sunitinib versus standard of care for patients with previously treated advanced triple-negative breast cancer. Breast, 2013, 22(5), 650-656.
[http://dx.doi.org/10.1016/j.breast.2013.07.037] [PMID: 23958375]
[36]
Crown, J.; Dieras, V.; Staroslawska, E.; Yardley, D.A.; Davidson, N.; Bachelot, T.D.; Tassell, V.R.; Huang, X.; Kern, K.A.; Romieu, G. Phase III trial of sunitinib (SU) in combination with capecitabine (C) versus C in previously treated advanced breast cancer (ABC). J. Clin. Oncol., 2010, 28(18)(Suppl.), LBA1011-LBA1011.
[http://dx.doi.org/10.1200/jco.2010.28.18_suppl.lba1011]
[37]
Bergh, J.; Bondarenko, I.M.; Lichinitser, M.R.; Liljegren, A.; Greil, R.; Voytko, N.L.; Makhson, A.N.; Cortes, J.; Lortholary, A.; Bischoff, J.; Chan, A.; Delaloge, S.; Huang, X.; Kern, K.A.; Giorgetti, C. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J. Clin. Oncol., 2012, 30(9), 921-929.
[http://dx.doi.org/10.1200/JCO.2011.35.7376] [PMID: 22331954]
[38]
Wang, L.; Liu, Z.; Ma, D.; Piao, Y.; Guo, F.; Han, Y.; Xie, X. SU6668 suppresses proliferation of triple negative breast cancer cells through down-regulating MTDH expression. Cancer Cell Int., 2013, 13(1), 88.
[http://dx.doi.org/10.1186/1475-2867-13-88] [PMID: 23984913]
[39]
Wali, V.B.; Langdon, C.G.; Held, M.A.; Platt, J.T.; Patwardhan, G.A.; Safonov, A.; Aktas, B.; Pusztai, L.; Stern, D.F.; Hatzis, C. Systematic drug screening identifies tractable targeted combination therapies in triple-negative breast cancer. Cancer Res., 2017, 77(2), 566-578.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1901] [PMID: 27872098]
[40]
Fabian, C.J.; Kimler, B.F. Chemoprevention for high-risk women: tamoxifen and beyond. Breast J., 2001, 7(5), 311-320.
[http://dx.doi.org/10.1046/j.1524-4741.2001.21570.x] [PMID: 11906441]
[41]
Mikelman, S.; Mardirossian, N.; Gnegy, M.E. Tamoxifen and amphetamine abuse: Are there therapeutic possibilities? J. Chem. Neuroanat., 2017, 83-84, 50-58.
[http://dx.doi.org/10.1016/j.jchemneu.2016.08.004] [PMID: 27585851]
[42]
Lipton, A.; Harvey, H.A.; Hamilton, R.W. Venous thrombosis as a side effect of tamoxifen treatment. Cancer Treat. Rep., 1984, 68(6), 887-889.
[PMID: 6733701]
[43]
Mourits, M.J.E.; De Vries, E.G.E.; Willemse, P.H.B.; Ten Hoor, K.A.; Hollema, H.; Van der Zee, A.G.J. Tamoxifen treatment and gynecologic side effects: a review. Obstet. Gynecol., 2001, 97(5 Pt 2), 855-866.
[http://dx.doi.org/10.1097/00006250-200105000-00055] [PMID: 11336777]
[44]
Varras, M.; Polyzos, D.; Akrivis, Ch. Effects of tamoxifen on the human female genital tract: review of the literature. Eur. J. Gynaecol. Oncol., 2003, 24(3-4), 258-268.
[PMID: 12807236]
[45]
Lohrmann, H.P. The problem of permanent bone marrow damage after cytotoxic drug treatment. Oncology, 1984, 41(3), 180-184.
[http://dx.doi.org/10.1159/000225819] [PMID: 6374556]
[46]
Shah, P.C.; Rao, K.R.P.; Patel, A.R. Cyclophosphamide induced nail pigmentation. Br. J. Dermatol., 1978, 98(6), 675-680.
[http://dx.doi.org/10.1111/j.1365-2133.1978.tb03587.x] [PMID: 678453]
[47]
Malik, S.W.; Myers, J.L.; DeRemee, R.A.; Specks, U. Lung toxicity associated with cyclophosphamide use. Two distinct patterns. Am. J. Respir. Crit. Care Med., 1996, 154(6 Pt 1), 1851-1856.
[http://dx.doi.org/10.1164/ajrccm.154.6.8970380] [PMID: 8970380]
[48]
Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem., 2009, 16(25), 3267-3285.
[http://dx.doi.org/10.2174/092986709788803312] [PMID: 19548866]
[49]
A. C., Tomasin, R., Luna-Dulcey, L., Graminha, A. E., Araújo Naves, M., Teles, R. H. G., da Silva, V. D., da Silva, J. A., Vieira, P. C., Annabi, B., & Cominetti, M. R. (2020). Gingerol improves doxorubicin anticancer activity and decreases its side effects in triple negative breast cancer models. Cell. Oncol., 2020, 43(5), 915-929.
[http://dx.doi.org/10.1007/s13402-020-00539-z]
[50]
Scheinfeld, N. Imatinib mesylate and dermatology part 2: a review of the cutaneous side effects of imatinib mesylate. J. Drugs Dermatol., 2006, 5(3), 228-231.
[PMID: 16573254]
[51]
Joensuu, H.; Trent, J.C.; Reichardt, P. Practical management of tyrosine kinase inhibitor-associated side effects in GIST. Cancer Treat. Rev., 2011, 37(1), 75-88.
[http://dx.doi.org/10.1016/j.ctrv.2010.04.008] [PMID: 20570050]
[52]
Rehman, H.; Hakim, N.; Sugarman, R.; Seetharamu, N.; Saif, M.W. Hyperpigmentation due to imatinib: A rare case of cutaneous involvement. J. Oncol. Pharm. Pract., 2020, 26(6), 1511-1515.
[http://dx.doi.org/10.1177/1078155220903364] [PMID: 32067560]
[53]
Gaies, E.; Jebabli, N. Methotrexate side effects: Review article. J. Drug Metab. Toxicol., 2012, 3(4), 1-5.
[http://dx.doi.org/10.4172/2157-7609.1000125]
[54]
Ong, Y.S.; Bañobre-López, M.; Costa Lima, S.A.; Reis, S. A multifunctional nanomedicine platform for co-delivery of methotrexate and mild hyperthermia towards breast cancer therapy. Mater. Sci. Eng. C, 2020, 116 ,111255
[http://dx.doi.org/10.1016/j.msec.2020.111255] [PMID: 32806240]
[55]
Iwamoto, T. Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs. Biol. Pharm. Bull., 2013, 36(5), 715-718.
[http://dx.doi.org/10.1248/bpb.b12-01102] [PMID: 23649331]
[56]
Costa, M.L.; Rodrigues, J.A.; Azevedo, J.; Vasconcelos, V.; Eiras, E.; Campos, M.G. Hepatotoxicity induced by paclitaxel interaction with turmeric in association with a microcystin from a contaminated dietary supplement. Toxicon, 2018, 150, 207-211.
[http://dx.doi.org/10.1016/j.toxicon.2018.05.022] [PMID: 29857089]
[57]
Linskens, R.K.; Golding, R.P.; van Groeningen, C.J.; Giaccone, G. Severe acute lung injury induced by gemcitabine. Neth. J. Med., 2000, 56(6), 232-235.
[http://dx.doi.org/10.1016/S0300-2977(00)00029-2] [PMID: 10821980]
[58]
Coughlin, S.; Das, S.; Lee, J.; Cooper, J. Capecitabine induced vasospastic angina. Int. J. Cardiol., 2008, 130(1), e34-e36.
[http://dx.doi.org/10.1016/j.ijcard.2007.06.152] [PMID: 17897740]
[59]
Bertolini, A.; Flumanò, M.; Fusco, O.; Muffatti, A.; Scarinci, A.; Pontiggia, G.; Scopelliti, M. Acute cardiotoxicity during capecitabine treatment: a case report. Tumori, 2001, 87(3), 200-206.
[http://dx.doi.org/10.1177/030089160108700317] [PMID: 11504378]
[60]
Simpson, D.; Curran, MP; Perry, C.M. Letrozole: a review of its use in postmenopausal women with breast cancer. Drugs, 2004, 64(11), 1213-30.
[61]
Gharia, B.; Seegobin, K.; Maharaj, S.; Marji, N.; Deutch, A.; Zuberi, L. Letrozole-induced hepatitis with autoimmune features: a rare adverse drug reaction with review of the relevant literature. Oxford Medical Case Reports, 2017, (11) ,omx074
[http://dx.doi.org/10.1093/omcr/omx074]
[62]
Hong, J.; Huang, J.; Shen, L.; Zhu, S.; Gao, W.; Wu, J.; Huang, O.; He, J.; Zhu, L.; Chen, W.; Li, Y.; Chen, X.; Shen, K. A prospective, randomized study of Toremifene vs. tamoxifen for the treatment of premenopausal breast cancer: safety and genital symptom analysis. BMC Cancer, 2020, 20(1), 663.
[http://dx.doi.org/10.1186/s12885-020-07156-x] [PMID: 32677982]
[63]
Fushimi, A.; Tabei, I.; Fuke, A.; Okamoto, T.; Takeyama, H. High-dose toremifene as a promising candidate therapy for hormone receptor-positive metastatic breast cancer with secondary resistance to aromatase inhibitors. Int. J. Breast Cancer, 2020, 2020 ,7156574
[http://dx.doi.org/10.1155/2020/7156574] [PMID: 32099680]
[64]
Hamada, N.; Ogawa, Y.; Saibara, T.; Murata, Y.; Kariya, S.; Nishioka, A.; Terashima, M.; Inomata, T.; Yoshida, S. Toremifene-induced fatty liver and NASH in breast cancer patients with breast-conservation treatment. Int. J. Oncol., 2000, 17(6), 1119-1123.
[http://dx.doi.org/10.3892/ijo.17.6.1119] [PMID: 11078796]
[65]
Osborne, C.K.; Wakeling, A.; Nicholson, R.I. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer, 2004, 90(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1038/sj.bjc.6601629] [PMID: 15094757]
[66]
Croxtall, J.D.; McKeage, K. Fulvestrant: a review of its use in the management of hormone receptor-positive metastatic breast cancer in postmenopausal women. Drugs, 2011, 71(3), 363-380.
[http://dx.doi.org/10.2165/11204810-000000000-00000] [PMID: 21319872]
[67]
Rowinsky, E.K.; Donehower, R.C.; Donehower, R.C. Paclitaxel (taxol). N. Engl. J. Med., 1995, 332(15), 1004-1014.
[http://dx.doi.org/10.1056/NEJM199504133321507] [PMID: 7885406]
[68]
Horwitz, S.B. Taxol (paclitaxel): mechanisms of action. Annals of Oncology : Official Journal of the European Society for Medical Oncology / ESMO 1994, 5(Suppl 6), 7865431.
[69]
Oakman, C.; Pestrin, M.; Zafarana, E.; Cantisani, E.; Di Leo, A. Role of lapatinib in the first-line treatment of patients with metastatic breast cancer. Cancer Manag. Res., 2010, 2(1), 13-25.
[http://dx.doi.org/10.2147/CMR.S8951] [PMID: 21188093]
[70]
Medina, P.J.; Goodin, S. Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther., 2008, 30(8), 1426-1447.
[http://dx.doi.org/10.1016/j.clinthera.2008.08.008] [PMID: 18803986]
[71]
Mukherji, S.K. Bevacizumab (Avastin). AJNR Am. J. Neuroradiol., 2010, 31(2), 235-236.
[http://dx.doi.org/10.3174/ajnr.A1987] [PMID: 20037132]
[72]
Swami, U.; Chaudhary, I.; Ghalib, M.H.; Goel, S. Eribulin -- a review of preclinical and clinical studies. Crit. Rev. Oncol. Hematol., 2012, 81(2), 163-184.
[http://dx.doi.org/10.1016/j.critrevonc.2011.03.002] [PMID: 21493087]
[73]
Capelan, M.; Pugliano, L.; De Azambuja, E.; Bozovic, I.; Saini, K.S.; Sotiriou, C.; Loi, S.; Piccart-Gebhart, M.J. Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann. Oncol., 2013, 24(2), 273-282.
[http://dx.doi.org/10.1093/annonc/mds328] [PMID: 22910839]
[74]
Royce, M.E.; Osman, D. Everolimus in the treatment of metastatic breast cancer. Breast Cancer (Auckl.), 2015, 9, 73-79.
[http://dx.doi.org/10.4137/BCBCR.S29268] [PMID: 26417203]
[75]
Corrigan, P.A.; Cicci, T.A.; Auten, J.J.; Lowe, D.K. Ado-trastuzumab emtansine: a HER2-positive targeted antibody-drug conjugate. Ann. Pharmacother., 2014, 48(11), 1484-1493.
[http://dx.doi.org/10.1177/1060028014545354] [PMID: 25082874]
[76]
Kwapisz, D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res. Treat., 2017, 166(1), 41-54.
[http://dx.doi.org/10.1007/s10549-017-4385-3] [PMID: 28741274]
[77]
Singh, H.; Walker, A.J.; Amiri-Kordestani, L.; Cheng, J.; Tang, S.; Balcazar, P.; Barnett-Ringgold, K.; Palmby, T.R.; Cao, X.; Zheng, N.; Liu, Q.; Yu, J.; Pierce, W.F.; Daniels, S.R.; Sridhara, R.; Ibrahim, A.; Kluetz, P.G.; Blumenthal, G.M.; Beaver, J.A.; Pazdur, R.U.S. Food and drug administration approval: Neratinib for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Clin. Cancer Res., 2018, 24(15), 3486-3491.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3628] [PMID: 29523624]
[78]
Deeks, E.D. Neratinib: First Global Approval. Drugs, 2017, 77(15), 1695-1704.
[http://dx.doi.org/10.1007/s40265-017-0811-4] [PMID: 28884417]
[79]
Robson, M. Im, S-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med., 2017, 377(6), 523-533.
[http://dx.doi.org/10.1056/NEJMoa1706450] [PMID: 28578601]
[80]
Hoy, S.M. Talazoparib: First global approval. Drugs, 2018, 78(18), 1939-1946.
[http://dx.doi.org/10.1007/s40265-018-1026-z] [PMID: 30506138]
[81]
Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; Bedard, P.L.; Oliveira, M.; Jakobsen, E.; Bachelot, T.; Shachar, S.S.; Müller, V.; Braga, S.; Duhoux, F.P.; Greil, R.; Cameron, D.; Carey, L.A.; Curigliano, G.; Gelmon, K.; Hortobagyi, G.; Krop, I.; Loibl, S.; Pegram, M.; Slamon, D.; Palanca-Wessels, M.C.; Walker, L.; Feng, W.; Winer, E.P. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med., 2020, 382(7), 597-609.
[http://dx.doi.org/10.1056/NEJMoa1914609] [PMID: 31825569]
[82]
Borges, V.F.; Ferrario, C.; Aucoin, N.; Falkson, C.; Khan, Q.; Krop, I.; Welch, S.; Conlin, A.; Chaves, J.; Bedard, P.L.; Chamberlain, M.; Gray, T.; Vo, A.; Hamilton, E. Tucatinib combined with ado-Trastuzumab emtansine in advanced ERBB2/HER2-positive metastatic breast cancer: A Phase 1b Clinical Trial. JAMA Oncol., 2018, 4(9), 1214-1220.
[http://dx.doi.org/10.1001/jamaoncol.2018.1812] [PMID: 29955792]
[83]
Solomon, V.R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity. Bioorg. Med. Chem., 2009, 17(21), 7585-7592.
[http://dx.doi.org/10.1016/j.bmc.2009.08.068] [PMID: 19804979]
[84]
Solomon, V.R.; Hu, C.; Lee, H. Design and synthesis of anti-breast cancer agents from 4-piperazinylquinoline: a hybrid pharmacophore approach. Bioorg. Med. Chem., 2010, 18(4), 1563-1572.
[http://dx.doi.org/10.1016/j.bmc.2010.01.001] [PMID: 20106668]
[85]
Ramshid, P.K.; Jagadeeshan, S.; Krishnan, A.; Mathew, M.; Nair, S.A.; Pillai, M.R. Synthesis and in vitro evaluation of some isatin-thiazolidinone hybrid analogues as anti-proliferative agents. Med. Chem., 2010, 6(5), 306-312.
[http://dx.doi.org/10.2174/157340610793358909] [PMID: 21073435]
[86]
Modi, N.R.; Shah, R.J.; Patel, M.J.; Suthar, M.; Chauhan, B.F.; Patel, L.J. Design, synthesis, and QSAR study of novel 2-(2,3-dioxo-2,3- dihydro-1H-indol-1-yl)-N-phenylacetamide derivatives as cytotoxic agents. Med. Chem. Res., 2011, 20(5), 615-625.
[http://dx.doi.org/10.1007/s00044-010-9361-y]
[87]
Taher, A.T.; Khalil, N.A.; Ahmed, E.M. Synthesis of novel isatin-thiazoline and isatin-benzimidazole conjugates as anti-breast cancer agents. Arch. Pharm. Res., 2011, 34(10), 1615-1621.
[http://dx.doi.org/10.1007/s12272-011-1005-3] [PMID: 22076761]
[88]
Radwan, A.A.; Alanazi, F.K.; Al-Dhfyan, A. Synthesis, and docking studies of some fused-quinazolines and quinazolines carrying biological active isatin moiety as cell-cycle inhibitors of breast cancer cell lines. Drug Res. (Stuttg.), 2013, 63(3), 129-136.
[http://dx.doi.org/10.1055/s-0032-1333306] [PMID: 23444171]
[89]
Karthikeyan, C.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: A molecular hybridization approach. Biomedicine and Preventive Nutrition, 2013, 3(4), 325-330.
[http://dx.doi.org/10.1016/j.bionut.2013.04.001]
[90]
Chakraborty, D.; Maity, A.; Jain, C.K.; Hazra, A.; Bharitkar, Y.P.; Jha, T.; Majumder, H.K.; Roychoudhury, S.; Mondal, N.B. Cytotoxic potential of dispirooxindolo/acenaphthoquino andrographolide derivatives against MCF-7 cell line. MedChemComm, 2015, 6(4), 702-707.
[http://dx.doi.org/10.1039/C4MD00469H]
[91]
Debnath, B.; Ganguly, S. Synthesis, biological evaluation, in silico docking, and virtual ADME studies of 2-[2-Oxo-3-(arylimino)indolin-1-yl]-N-arylacetamides as potent anti-breast cancer agents. Monatsh. Chem., 2016, 147(3), 565-574.
[http://dx.doi.org/10.1007/s00706-015-1566-9]
[92]
Eldehna, W.M.; Altoukhy, A.; Mahrous, H. Abdel-Aziz, H.A. Design, synthesis and QSAR study of certain isatin-pyridine hybrids as potential anti-proliferative agents. Eur. J. Med. Chem., 2015, 90, 684-694.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.010] [PMID: 25499988]
[93]
Eldehna, W.M.; Fares, M.; Ibrahim, H.S.; Alsherbiny, M.A.; Aly, M.H.; Ghabbour, H.A.; Abdel-Aziz, H.A. Synthesis and cytotoxic activity of biphenylurea derivatives containing indolin-2-one moieties. Molecules, 2016, 21(6) ,E762
[http://dx.doi.org/10.3390/molecules21060762] [PMID: 27294903]
[94]
Eldehna, W.M.; Almahli, H.; Al-Ansary, G.H.; Ghabbour, H.A.; Aly, M.H.; Ismael, O.E.; Al-Dhfyan, A.; Abdel-Aziz, H.A. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 600-613.
[http://dx.doi.org/10.1080/14756366.2017.1279155] [PMID: 28173708]
[95]
El-Azab, A.S.; Al-Dhfyan, A.; Abdel-Aziz, A.A.M.; Abou-Zeid, L.A.; Alkahtani, H.M.; Al-Obaid, A.M.; Al-Gendy, M.A. Synthesis, anticancer and apoptosis-inducing activities of quinazoline-isatin conjugates: epidermal growth factor receptor-tyrosine kinase assay and molecular docking studies. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 935-944.
[http://dx.doi.org/10.1080/14756366.2017.1344981] [PMID: 28718672]
[96]
Kumar, N.; Sharma, C.S.; Singh, H.P.; Chauhan, L.S. Synthesis and in vitro evaluation of novel isatin-incorporated thiadiazole hybrids as potential anti-breast cancer agents. Trop. J. Pharm. Res., 2017, 16(8), 1957-1963.
[http://dx.doi.org/10.4314/tjpr.v16i8.28]
[97]
Ammar, Y.A.; Fayed, E.A.; Bayoumi, A.H.; Ezz, R.R.; Alsaid, M.S.; Soliman, A.M.; Ghorab, M.M. New chalcones bearing isatin scaffold: synthesis, molecular modeling and biological evaluation as anticancer agents. Res. Chem. Intermed., 2017, 43(12), 6765-6786.
[http://dx.doi.org/10.1007/s11164-017-3019-z]
[98]
Jain, R.; Gahlyan, P.; Dwivedi, S.; Konwar, R.; Kumar, S.; Bhandari, M.; Arora, R.; Kakkar, R.; Kumar, R.; Prasad, A.K. Design, synthesis and evaluation of 1H-1,2,3-triazol-4-yl-methyl tethered 3-pyrrolylisatins as potent anti-breast cancer agents. ChemistrySelect, 2018, 3(19), 5263-5268.
[http://dx.doi.org/10.1002/slct.201800420]
[99]
Santos, I.S.; Guerra, F.S.; Bernardino, L.F.; Fernandes, P.D.; Hamerski, L.; Silva, B.V. A facile synthesis of novel isatinspirooxazine derivatives and potential in vitro anti-proliferative activity. J. Braz. Chem. Soc., 2019, 30(1), 198-209.
[http://dx.doi.org/10.21577/0103-5053.20180153]
[100]
El-Naggar, M.; Eldehna, W.M.; Almahli, H.; Elgez, A.; Fares, M.; Elaasser, M.M.; Abdel-Aziz, H.A. Novel thiazolidinone/thiazolo[3,2-a] benzimidazolone-isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation. Molecules, 2018, 23(6) ,E1420
[http://dx.doi.org/10.3390/molecules23061420] [PMID: 29895744]
[101]
Alkahtani, H.M.; Alanazi, M.M.; Aleanizy, F.S.; Alqahtani, F.Y.; Alhoshani, A.; Alanazi, F.E.; Almehizia, A.A.; Abdalla, A.N.; Alanazi, M.G.; El-Azab, A.S.; Abdel-Aziz, A.A.M. Synthesis, anticancer, apoptosis-inducing activities and EGFR and VEGFR2 assay mechanistic studies of 5,5-diphenylimidazolidine-2,4-dione derivatives: Molecular docking studies. Saudi Pharm. J., 2019, 27(5), 682-693.
[http://dx.doi.org/10.1016/j.jsps.2019.04.003] [PMID: 31297023]
[102]
Wang, S.; Zhao, Y.; Zhang, G.; Lv, Y.; Zhang, N.; Gong, P. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent. Eur. J. Med. Chem., 2011, 46(8), 3509-3518.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.017] [PMID: 21621880]
[103]
Rani, A.; Singh, G.I.; Kaur, R.; Palma, G.; Perumal, S.; Kaur, M.; Ebenezer, O.; Awolade, P.; Singh, P.; Kumar, V. Azide-alkyne cycloaddition en route to ferrocenyl-methoxy-methyl-isatin-conjugates: Synthesis, anti-breast cancer activities and molecular docking studies. J. Organomet. Chem., 2020, 907 ,121072
[http://dx.doi.org/10.1016/j.jorganchem.2019.121072]
[104]
Rajesh Kumar, M.; Violet Dhayabaran, V.; Sudhapriya, N.; Manikandan, A.; Gideon, D.A.; Annapoorani, S. p-TSA.H2O mediated one-pot, multi-component synthesis of isatin derived imidazoles as dual-purpose drugs against inflammation and cancer. Bioorg. Chem., 2020, 102 ,104046
[http://dx.doi.org/10.1016/j.bioorg.2020.104046] [PMID: 32688115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy