Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Approaches for Ear-targeted Delivery Systems in Neurosensory Disorders to avoid Chronic Hearing Loss Mediated Neurological Diseases

Author(s): Rishabh Verma, Preeti Vyas, Jasmeet Kaur, Md. Noushad Javed, Mohammad Sarafroz, Makhmur Ahmad, Sadaf Jamal Gilani and Mohamad Taleuzzaman*

Volume 21, Issue 6, 2022

Published on: 23 November, 2021

Page: [479 - 491] Pages: 13

DOI: 10.2174/1871527320666210903102704

Price: $65

Abstract

Background and Objective: Hearing loss is a common audio-vestibular-related neurosensory disability of inner ears, in which patients exhibit clinical symptoms of dizziness, gait unsteadiness, and oscillopsia, at an initial stage. While, if such disorders are untreated for a prolonged duration then the progression of disease into a chronic state significantly decreases GABA level as well as an alteration in the neurotransmission of CNS systems. Hence, to control the progression of disease into a chronic approaches for timely and targeted delivery of the drugs at the site of action in the ear is now attracting the interest of neurologists for effective and safe treatment of such disorders. Among delivery systems, owing to small dimension, better penetration, rate-controlled release, higher bioavailability; nanocarriers are preferred to overcome delivery barriers, improvement in residence time, and enhanced the performance of loaded drugs. Subsequently, these carriers also stabilize encapsulated drugs while also provide an opportunity to modify the surface of carriers to favor guided direction for site-specific targeting. Contrary to this; conventional routes of drug delivery such as oral, intravenous, and intramuscular are poorer in performance because of inadequate blood supply to the inner ear and limited penetration of blood–inner ear barrier.

Conclusion: This review summarized novel aspects of non-invasive and biocompatible nanoparticles- based approaches for targeted delivery of drugs into the cochlea of the ear to reduce the rate, and extent of the emergence of any hearing loss mediated neurological disorders.

Keywords: Neurosensory, neurological disorders, CNS systems nanoparticles, GABA level, ear drug delivery, inner ear.

[1]
Southall K, Gagné JP, Jennings MB. Stigma: A negative and a positive influence on help-seeking for adults with acquired hearing loss. Int J Audiol 2010; 49(11): 804-14.
[http://dx.doi.org/10.3109/14992027.2010.498447] [PMID: 20831460]
[2]
Chadha S, Cieza A. Guest editorial: promoting global action on hearing loss: world hearing day. Ear Hear 2017; 38(2): 133-4.
[http://dx.doi.org/10.1097/AUD.0000000000000413] [PMID: 28225360]
[3]
Cunningham LL, Tucci DL. Hearing loss in adults. N Engl J Med 2017; 377(25): 2465-73.
[http://dx.doi.org/10.1056/NEJMra1616601] [PMID: 29262274]
[4]
Mittal R, Pena SA, Zhu A, et al. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities. Artif Cells Nanomed Biotechnol 2019; 47(1): 1312-20.
[http://dx.doi.org/10.1080/21691401.2019.1573182] [PMID: 30987439]
[5]
Mittal R, Patel AP, Nguyen D, et al. Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene 2018; 647: 297-305.
[http://dx.doi.org/10.1016/j.gene.2018.01.027] [PMID: 29331482]
[6]
Eshraghi AA, Nazarian R, Telischi FF, Rajguru SM, Truy E, Gupta C. The cochlear implant: historical aspects and future prospects. Anat Rec (Hoboken) 2012; 295(11): 1967-80.
[http://dx.doi.org/10.1002/ar.22580] [PMID: 23044644]
[7]
Roche JP, Hansen MR. On the horizon: cochlear implant technology. Otolaryngol Clin North Am 2015; 48(6): 1097-116.
[http://dx.doi.org/10.1016/j.otc.2015.07.009] [PMID: 26443490]
[8]
Wong ACY, Ryan AF. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front Aging Neurosci 2015; 7(58): 58.
[http://dx.doi.org/10.3389/fnagi.2015.00058] [PMID: 25954196]
[9]
Pottoo FH, Tabassum N, Javed MN, et al. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci 2020; 146: 105261.
[http://dx.doi.org/10.1016/j.ejps.2020.105261] [PMID: 32061655]
[10]
Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN. Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Medi Pharmaceut Sci 2016; 1-9.
[http://dx.doi.org/10.9734/JAMPS/2016/24441]
[11]
Pottoo FH, Javed MN, Barkat MA, et al. Estrogen and serotonin: Complexity of interactions and implications for epileptic seizures and epileptogenesis. Curr Neuropharmacol 2019; 17(3): 214-31.
[http://dx.doi.org/10.2174/1570159X16666180628164432] [PMID: 29956631]
[12]
Pandey M, Saleem S, Nautiyal H, Pottoo FH, Javed MN. PINK1/Parkin in neurodegenerative disorders: Crosstalk between mitochondrial stress and neurodegeneration. In: Quality Control of Cellular Protein in Neurodegenerative Disorders IGI Global. 2020; pp. 282-301.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch011]
[13]
Wingfield A, Peelle JE. How does hearing loss affect the brain? Aging Health 2012; 8(2): 107-9.
[http://dx.doi.org/10.2217/ahe.12.5] [PMID: 27034704]
[14]
Pottoo FH, Tabassum N, Javed MN, et al. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol Neurobiol 2019; 56(2): 1233-47. b
[http://dx.doi.org/10.1007/s12035-018-1121-x] [PMID: 29881945]
[15]
Gilles A, Ihtijarevic B, Wouters K, Van de Heyning P. Using prophylactic antioxidants to prevent noise-induced hearing damage in young adults: a protocol for a double-blind, randomized controlled trial. Trials 2014; 15: 110.
[http://dx.doi.org/10.1186/1745-6215-15-110] [PMID: 24708640]
[16]
Kil J, Lobarinas E, Spankovich C, et al. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2017; 390(10098): 969-79.
[http://dx.doi.org/10.1016/S0140-6736(17)31791-9] [PMID: 28716314]
[17]
Metrailer AM, Babu SC. Management of sudden sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 2016; 24(5): 403-6.
[http://dx.doi.org/10.1097/MOO.0000000000000287] [PMID: 27379548]
[18]
Mohanta BC, Javed MN, Hasnain MS, Nayak AK. Polyelectrolyte complexes of alginate for controlling drug release. In: In: Alginates in Drug Delivery USA Academic Press. 2020; pp. 297-321.
[http://dx.doi.org/10.1016/B978-0-12-817640-5.00012-1]
[19]
Bowe SN, Jacob A. Round window perfusion dynamics: implications for intracochlear therapy. Curr Opin Otolaryngol Head Neck Surg 2010; 18(5): 377-85.
[http://dx.doi.org/10.1097/MOO.0b013e32833d30f0] [PMID: 20808222]
[20]
Raman S, Mahmood S, Hilles AR, Javed MN, Azmana M, Al-Japairai KAS. Polymeric nanoparticles for brain drug delivery - a review. Curr Drug Metab 2020; 21(9): 649-60.
[http://dx.doi.org/10.2174/1389200221666200508074348] [PMID: 32384025]
[21]
Kim DK. Nanomedicine for inner ear diseases: a review of recent in vivo studies. BioMed Res Int 2017; 2017: 3098230.
[http://dx.doi.org/10.1155/2017/3098230] [PMID: 29130038]
[22]
Schuknecht HF. Ablation therapy for the relief of Ménière’s disease. Laryngoscope 1956; 66(7): 859-70.
[http://dx.doi.org/10.1288/00005537-195607000-00005] [PMID: 13358249]
[23]
Li L, Chao T, Brant J, O’Malley B Jr, Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 2017; 108: 2-12.
[http://dx.doi.org/10.1016/j.addr.2016.01.004] [PMID: 26796230]
[24]
Luo J, Xu L. Distribution of gentamicin in inner ear after local administration via a chitosan glycerophosphate hydrogel delivery system. Ann Otol Rhinol Laryngol 2012; 121(3): 208-16.
[http://dx.doi.org/10.1177/000348941212100311] [PMID: 22530482]
[25]
Hao J, Li SK. Inner ear drug delivery: Recent advances, challenges, and perspective. Eur J Pharm Sci 2019; 126: 82-92.
[http://dx.doi.org/10.1016/j.ejps.2018.05.020] [PMID: 29792920]
[26]
Pottoo FH, Sharma S, Javed MN, et al. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev 2020; 52(1): 185-204. b
[http://dx.doi.org/10.1080/03602532.2020.1726942] [PMID: 32116044]
[27]
Aslam M, Javed MN, Deeb HH, et al. Lipid carriers mediated targeted delivery of nutraceuticals: Challenges, role of blood brain barrier and promises of nanotechnology based ap-proaches in neuronal disorders. Curr Drug Metab 2020.
[http://dx.doi.org/10.2174/1389200221999200728143511]
[28]
Javed MN, Dahiya ES, Ibrahim AM, Alam MS, Khan FA, Pottoo FH. Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs. In: Nanophytomedicine Singapore Springer. 2020; pp. 151-72.
[29]
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol Biol 2016; 1427: 363-415.
[http://dx.doi.org/10.1007/978-1-4939-3615-1_21] [PMID: 27259938]
[30]
Praetorius M, Brunner C, Lehnert B, et al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol 2007; 127(5): 486-90.
[http://dx.doi.org/10.1080/00016480600895102] [PMID: 17453474]
[31]
Tamura T, Kita T, Nakagawa T, et al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope 2005; 115(11): 2000-5.
[http://dx.doi.org/10.1097/01.mlg.0000180174.81036.5a] [PMID: 16319613]
[32]
Zou J, Saulnier P, Perrier T, et al. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J Biomed Mater Res B Appl Biomater 2008; 87(1): 10-8.
[http://dx.doi.org/10.1002/jbm.b.31058] [PMID: 18437698]
[33]
Ge X, Jackson RL, Liu J, et al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol Head Neck Surg 2007; 137(4): 619-23.
[http://dx.doi.org/10.1016/j.otohns.2007.04.013] [PMID: 17903580]
[34]
Lee JH, Lee MY, Lim Y, Knowles J, Kim HW. Auditory disorders and future therapies with delivery systems. J Tissue Eng 2018; 9: 2041731418808455.
[35]
Nakano K, Matoba T, Koga JI, et al. Safety, Tolerability, and Pharmacokinetics of NK-104-NP. Int Heart J 2018; 59(5): 1015-25.
[http://dx.doi.org/10.1536/ihj.17-555] [PMID: 30158384]
[36]
Singh SK, Singh S, Lillard JW Jr, Singh R. Drug delivery approaches for breast cancer. Int J Nanomedicine 2017; 12: 6205-18.
[http://dx.doi.org/10.2147/IJN.S140325] [PMID: 28883730]
[37]
Pottoo FH, Javed N, Rahman J, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Seminars in Cancer Biology 2020; 69: 391-8.
[38]
Kelso CM, Watanabe H, Wazen JM, et al. Microperforations significantly enhance diffusion across round window membrane. Otol Neurotol 2015; 36(4): 694-700.
[http://dx.doi.org/10.1097/MAO.0000000000000629] [PMID: 25310125]
[39]
Lichtenhan JT, Hartsock JJ, Gill RM, Guinan JJ Jr, Salt AN. The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex. J Assoc Res Otolaryngol 2014; 15(3): 395-411.
[http://dx.doi.org/10.1007/s10162-014-0447-y] [PMID: 24515339]
[40]
Yoon JY, Yang KJ, Kim DE, et al. Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear. Biomaterials 2015; 73: 243-53.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.025] [PMID: 26414408]
[41]
Ding S, Xie S, Chen W, et al. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur J Pharm Sci 2019; 126: 11-22.
[http://dx.doi.org/10.1016/j.ejps.2018.02.031] [PMID: 29499347]
[42]
King EB, Salt AN, Kel GE, Eastwood HT, O’Leary SJ. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs. Hear Res 2013; 304: 159-66.
[http://dx.doi.org/10.1016/j.heares.2013.07.013] [PMID: 23899413]
[43]
Tao Y, Huang M, Shu Y, et al. Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther 2018; 29(4): 492-506.
[http://dx.doi.org/10.1089/hum.2017.120] [PMID: 29130354]
[44]
Sharma S, Javed MN, Pottoo FH, et al. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm Nanotechnol 2019; 7(3): 220-33.
[http://dx.doi.org/10.2174/2211738507666190429103814] [PMID: 31486751]
[45]
Hoskison E, Daniel M, Al-Zahid S, Shakesheff KM, Bayston R, Birchall JP. Drug delivery to the ear. Ther Deliv 2013; 4(1): 115-24.
[http://dx.doi.org/10.4155/tde.12.130] [PMID: 23323784]
[46]
Liu H, Hao J, Li KS. Current strategies for drug delivery to the inner ear. Acta Pharm Sin B 2013; 3(2): 86-96.
[http://dx.doi.org/10.1016/j.apsb.2013.02.003]
[47]
Mishra S, Sharma S, Javed MN, et al. Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharm Nanotechnol 2019; 7(3): 206-19.
[http://dx.doi.org/10.2174/2211738507666190425121509] [PMID: 31030662]
[48]
Suryanarayanan R, Srinivasan VR, O’Sullivan G. Transtympanic gentamicin treatment using Silverstein MicroWick in Ménière’s disease patients: long term outcome. J Laryngol Otol 2009; 123(1): 45-9.
[http://dx.doi.org/10.1017/S0022215108002776] [PMID: 18533050]
[49]
El Kechai N, Agnely F, Mamelle E, Nguyen Y, Ferrary E, Bochot A. Recent advances in local drug delivery to the inner ear. Int J Pharm 2015; 494(1): 83-101.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.015] [PMID: 26260230]
[50]
Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008; 60(15): 1583-99.
[http://dx.doi.org/10.1016/j.addr.2008.08.001] [PMID: 18848590]
[51]
Plontke SK, Löwenheim H, Mertens J, et al. Randomized, double blind, placebo controlled trial on the safety and efficacy of continuous intratympanic dexamethasone delivered via a round window catheter for severe to profound sudden idiopathic sensorineural hearing loss after failure of systemic therapy. Laryngoscope 2009; 119(2): 359-69.
[http://dx.doi.org/10.1002/lary.20074] [PMID: 19172627]
[52]
Borden RC, Saunders JE, Berryhill WE, Krempl GA, Thompson DM, Queimado L. Hyaluronic acid hydrogel sustains the delivery of dexamethasone across the round window membrane. Audiol Neurotol 2011; 16(1): 1-11.
[http://dx.doi.org/10.1159/000313506] [PMID: 20431286]
[53]
Inaoka T, Nakagawa T, Kikkawa YS, et al. Local application of hepatocyte growth factor using gelatin hydrogels attenuates noise-induced hearing loss in guinea pigs. Acta Otolaryngol 2009; 129(4): 453-7.
[http://dx.doi.org/10.1080/00016480902725197] [PMID: 19214837]
[54]
Iwai K, Nakagawa T, Endo T, et al. Cochlear protection by local insulin-like growth factor-1 application using biodegradable hydrogel. Laryngoscope 2006; 116(4): 529-33.
[http://dx.doi.org/10.1097/01.mlg.0000200791.77819.eb] [PMID: 16585854]
[55]
Fujiwara T, Hato N, Nakagawa T, et al. Insulin-like growth factor 1 treatment via hydrogels rescues cochlear hair cells from ischemic injury. Neuroreport 2008; 19(16): 1585-8.
[http://dx.doi.org/10.1097/WNR.0b013e328311ca4b] [PMID: 18845939]
[56]
Feng L, Ward JA, Li SK, Tolia G, Hao J, Choo DI. Assessment of PLGA-PEG-PLGA copolymer hydrogel for sustained drug delivery in the ear. Curr Drug Deliv 2014; 11(2): 279-86.
[http://dx.doi.org/10.2174/1567201811666140118224616] [PMID: 24438444]
[57]
Roy S, Glueckert R, Johnston AH, et al. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine (Lond) 2012; 7(1): 55-63.
[http://dx.doi.org/10.2217/nnm.11.84] [PMID: 22106854]
[58]
Ozbakir B, Crielaard BJ, Metselaar JM, Storm G, Lammers T. Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J Control Release 2014; 190: 624-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.039] [PMID: 24878183]
[59]
Pai Y-C, Lee C-F. Intratympanic steroid injection for inner ear disease. Tzu-Chi Med J 2013; 25(3): 146-9.
[http://dx.doi.org/10.1016/j.tcmj.2013.01.012]
[60]
Aksit A, Rastogi S, Nadal ML, Parker AM, Lalwani AK, West AC. Drug delivery device for the inner ear: Ultra-sharp fully metallic microneedles. 2020; Drug Deliv Transl Res 2021; 11(1): 214-26.
[http://dx.doi.org/10.1007/s13346-020-00782-9] [PMID: 32488817]
[61]
Wright JC. Critical variables associated with nonbiodegradable osmotically controlled implants. AAPS J 2010; 12(3): 437-42.
[http://dx.doi.org/10.1208/s12248-010-9199-8] [PMID: 20490735]
[62]
Park AH, Jackson A, Hunter L, et al. Cross-linked hydrogels for middle ear packing. otol. neurotol. 2006; 27(8): 1170-5.
[http://dx.doi.org/10.1097/01.mao.0000227893.50162.9e]
[63]
Sewell WF, Borenstein JT, Chen Z, et al. Development of a microfluidics-based intracochlear drug delivery device. Audiol Neurotol 2009; 14(6): 411-22.
[http://dx.doi.org/10.1159/000241898] [PMID: 19923811]
[64]
Mäder K, Lehner E, Liebau A, Plontke SK. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hear Res 2018; 368: 49-66.
[http://dx.doi.org/10.1016/j.heares.2018.03.006] [PMID: 29576310]
[65]
Hildebrand MS, Newton SS, Gubbels SP, Sheffield AM, Kochhar A, de Silva MG. Advances in molecular and cellular therapies for hearing loss. Mol ther 2008; 16(2): 224-36.
[http://dx.doi.org/10.1038/sj.mt.6300351]
[66]
Ekdale EG. Form and function of the mammalian inner ear. J Anat 2016; 228(2): 324-37.
[http://dx.doi.org/10.1111/joa.12308] [PMID: 25911945]
[67]
Cao Z, Yue F, Huang W, Rajenderkumar D, Zhao F. Different medications for the treatment of Ménière's disease by intratympanic injection: A systematic review and network meta-analysis. Clin Otolaryngol 2019; 44(4): 619-27.
[http://dx.doi.org/10.1111/coa.13350]
[68]
Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig Otolaryngol 2019; 5(1): 122-31.
[http://dx.doi.org/10.1002/lio2.336] [PMID: 32128438]
[69]
Silverstein H, Thompson J, Rosenberg SI, Brown N, Light J. Silverstein MicroWick. Otolaryngol Clin North Am 2004; 37(5): 1019-34.
[http://dx.doi.org/10.1016/j.otc.2004.04.002] [PMID: 15474108]
[70]
Van Wijck F, Staecker H, Lefebvre PP. Topical steroid therapy using the Silverstein Microwick in sudden sensorineural hearing loss after failure of conventional treatment. Acta Otolaryngol 2007; 127(10): 1012-7.
[http://dx.doi.org/10.1080/00016480601126952] [PMID: 17851934]
[71]
Pararas EE, Borkholder DA, Borenstein JT. Microsystems technologies for drug delivery to the inner ear. Adv Drug Deliv Rev 2012; 64(14): 1650-60.
[http://dx.doi.org/10.1016/j.addr.2012.02.004] [PMID: 22386561]
[72]
Mahnama A, Nourbakhsh A, Ghorbaniasl G. A survey on the applications of implantable micropump systems in drug delivery. Curr Drug Deliv 2014; 11(1): 123-31.
[http://dx.doi.org/10.2174/156720181101140212165729] [PMID: 24533725]
[73]
Forouzandeh F, Borkholder DA. Microtechnologies for inner ear drug delivery. Curr Opin Otolaryngol Head Neck Surg 2020; 28(5): 323-8.
[http://dx.doi.org/10.1097/MOO.0000000000000648] [PMID: 32796268]
[75]
Borenstein JT. Intracochlear drug delivery systems. Expert Opin Drug Deliv 2011; 8(9): 1161-74.
[http://dx.doi.org/10.1517/17425247.2011.588207] [PMID: 21615213]
[76]
Javed MN, Alam MS, Waziri A, Pottoo FH, Yadav AK, Hasnain MS. QbD applications for the development of nanopharmaceutical products. In: In: Pharmaceutical Quality by Design USA Academic Press. 2019; pp. 229-53.
[77]
Javed MN, Kohli K, Amin S. Risk assessment integrated QbD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech 2018; 19(3): 1377-91.
[http://dx.doi.org/10.1208/s12249-018-0951-1] [PMID: 29388027]
[78]
Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg 2010; 3(1): 32-3.
[http://dx.doi.org/10.4103/0974-2077.63301] [PMID: 20606992]
[79]
Sun C, Wang X, Chen D, Lin X, Yu D, Wu H. Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration. Neurosci Lett 2016; 619: 142-8.
[http://dx.doi.org/10.1016/j.neulet.2016.03.012] [PMID: 26971701]
[80]
Sun C, Wang X, Zheng Z, et al. A single dose of dexamethasone encapsulated in polyethylene glycol-coated polylactic acid nanoparticles attenuates cisplatin-induced hearing loss following round window membrane administration. Int J Nanomedicine 2015; 10: 3567-79.
[PMID: 25999718]
[81]
Cervantes B, Arana L, Murillo-Cuesta S, Bruno M, Alkorta I, Varela-Nieto I. Solid lipid nanoparticles loaded with glucocorticoids protect auditory cells from cisplatin-induced ototoxicity. J Clin Med 2019; 8(9): 1464.
[http://dx.doi.org/10.3390/jcm8091464] [PMID: 31540035]
[82]
Kakadia PG, Conway BR. Solid lipid nanoparticles for targeted delivery of triclosan into skin for infection prevention. J Microencapsul 2018; 35(7-8): 695-704.
[http://dx.doi.org/10.1080/02652048.2019.1576796] [PMID: 30699002]
[83]
Ziąbka M, Dziadek M, Menaszek E, Banasiuk R, Królicka A. Middle ear prosthesis with bactericidal efficacy-in vitro investigation. Molecules 2017; 22(10): 1681.
[http://dx.doi.org/10.3390/molecules22101681] [PMID: 28994723]
[84]
Duda F, Bradel S, Bleich A, et al. Biocompatibility of silver containing silica films on Bioverit® II middle ear prostheses in rabbits. J Biomater Appl 2015; 30(1): 17-29.
[http://dx.doi.org/10.1177/0885328215570103] [PMID: 25659947]
[85]
Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. Fabrication of levofloxacin polyethylene glycol decorated nanoliposomes for enhanced management of acute otitis media: Statistical optimization, trans-tympanic permeation and in vivo evaluation. Int J Pharm 2019; 559: 201-9.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.037] [PMID: 30684597]
[86]
Li X, Wang Y, Xu F, et al. Artemisinin loaded mpeg-pcl nanoparticle based photosensitive gelatin methacrylate hydrogels for the treatment of gentamicin induced hearing loss. Int J Nanomedicine 2020; 15: 4591-606.
[http://dx.doi.org/10.2147/IJN.S245188] [PMID: 32612358]
[87]
Schmidt N, Schulze J, Warwas DP, Ehlert N, Lenarz T, Warnecke A. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS ONE 2018; 13(3): e0194778.
[88]
Yang KJ, Son J, Jung SY, et al. Optimized phospholipid-based nanoparticles for inner ear drug delivery and therapy. Biomaterials 2018; 171: 133-43.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.038] [PMID: 29689410]
[89]
Wang X, Chen Y, Tao Y, Gao Y, Yu D, Wu H. A666-conjugated nanoparticles target prestin of outer hair cells preventing cisplatin-induced hearing loss. Int J Nanomedicine 2018; 13: 7517-31.
[http://dx.doi.org/10.2147/IJN.S170130] [PMID: 30532536]
[90]
Kayyali MN, Wooltorton JRA, Ramsey AJ, et al. A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss. J Control Release 2018; 279: 243-50.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.028] [PMID: 29673641]
[91]
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int J Nanomedicine 2015; 10: 3245-67.
[http://dx.doi.org/10.2147/IJN.S77480] [PMID: 25995632]
[92]
Horie RT, Sakamoto T, Nakagawa T, Ishihara T, Higaki M, Ito J. Stealth-nanoparticle strategy for enhancing the efficacy of steroids in mice with noise-induced hearing loss. Nanomedicine (Lond) 2010; 5(9): 1331-40.
[http://dx.doi.org/10.2217/nnm.10.88] [PMID: 21128717]
[93]
Ramos PT, Pedra NS, Soares MSP, da Silveira EF, Oliveira PS, Grecco FB. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. Mater Sci Eng C Mater Biol Appl 2019; 03: 109742.
[http://dx.doi.org/10.1016/j.msec.2019.109742]
[94]
Hesse D, Ehlert N, Lüenhop T, et al. Nanoporous silica coatings as a drug delivery system for ciprofloxacin: outcome of variable release rates in the infected middle ear of rabbits. Otol Neurotol 2013; 34(6): 1138-45.
[http://dx.doi.org/10.1097/MAO.0b013e3182839671] [PMID: 23598698]
[95]
Yu H, Zeng P, Liang Y, et al. A Tanshinone IIA loaded hybrid nanocomposite with enhanced therapeutic effect for otitis media. Int J Pharm 2020; 574: 118846.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118846] [PMID: 31821877]
[96]
Kayyali MN, Ramsey AJ, Higbee-Dempsey EM, et al. The development of a nano-based approach to alleviate cisplatin-induced ototoxicity. J Assoc Res Otolaryngol 2018; 19(2): 123-32.
[http://dx.doi.org/10.1007/s10162-017-0648-2] [PMID: 29349595]
[97]
Kopke RD, Wassel RA, Mondalek F, et al. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol Neurotol 2006; 11(2): 123-33.
[http://dx.doi.org/10.1159/000090685] [PMID: 16439835]
[98]
Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Glioblastoma targeted gene therapy based on pEGFP/p53-loaded superparamagnetic iron oxide nanoparticles. Curr Gene Ther 2017; 17(1): 59-69.
[http://dx.doi.org/10.2174/1566523217666170605115829] [PMID: 28578643]
[99]
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36(13): R167.
[http://dx.doi.org/10.1088/0022-3727/36/13/201]
[100]
Hasnain MS, Javed MN, Alam MS, et al. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater Sci Eng C 2019; 99: 1105-14.
[http://dx.doi.org/10.1016/j.msec.2019.02.061] [PMID: 30889643]
[101]
Alam MS, Garg A, Pottoo FH, et al. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 2017; 104(Pt A): 758-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.129] [PMID: 28601649]
[102]
Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 2012; 7(9): 1425-42.
[http://dx.doi.org/10.2217/nnm.12.109] [PMID: 22994959]
[103]
Leterme G, Guigou C, Oudot A, et al. Superparamagnetic nanoparticle delivery to the cochlea through round window by external magnetic field: feasibility and toxicity. Surg Innov 2019; 26(6): 646-55.
[http://dx.doi.org/10.1177/1553350619867217] [PMID: 31478462]
[104]
Alam MS, Javed MN, Pottoo FH, et al. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nitro dye. Appl Organomet Chem 2019; 33(9): e5071.
[105]
Tang M, Russell PJ, Khatri A. Magnetic nanoparticles: prospects in cancer imaging and therapy. Discov Med 2007; 7(38): 68-74.
[PMID: 18093468]
[106]
Ahmad MZ, Akhter S, Jain GK, et al. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv 2010; 7(8): 927-42.
[http://dx.doi.org/10.1517/17425247.2010.498473] [PMID: 20645671]
[107]
Pottoo FH, Barkat MA, Ansari MA, Javed MN, Jamal QM, Kamal MA. Nanotechnological based miRNA intervention in the therapeutic management of neuroblastoma. In: 2021; 69: pp. 100-8.
[108]
Du X, Chen K, Kuriyavar S, et al. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol Neurotol 2013; 34(1): 41-7.
[http://dx.doi.org/10.1097/MAO.0b013e318277a40e] [PMID: 23187928]
[109]
Hill SL III, Digges EN, Silverstein H. Long-term follow-up after gentamicin application via the Silverstein MicroWick in the treatment of Ménière’s disease. Ear Nose Throat J 2006; 85(8): 494-, 496, 498.
[http://dx.doi.org/10.1177/014556130608500811] [PMID: 16999055]
[110]
Wenzel GI, Warnecke A, Stöver T, Lenarz T. Effects of extracochlear gacyclidine perfusion on tinnitus in humans: a case series. Eur Arch Otorhinolaryngol 2010; 267(5): 691-9.
[http://dx.doi.org/10.1007/s00405-009-1126-1] [PMID: 19847455]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy