Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Neuroprotective Role of the B Vitamins in the Modulation of the Central Glutamatergic Neurotransmission

Author(s): Shu-Kuei Huang*, Cheng-Wei Lu, Tzu-Yu Lin and Su-Jane Wang

Volume 21, Issue 4, 2022

Published on: 02 September, 2021

Page: [292 - 301] Pages: 10

DOI: 10.2174/1871527320666210902165739

Price: $65

Abstract

Background: Regulation of glutamate release is crucial for maintaining normal brain function, but excess glutamate release is implicated in many neuropathological conditions. Therefore, the minimum glutamate release from presynaptic nerve terminals is an important neuroprotective mechanism.

Objective: In this mini-review, we analyze the three B vitamins, namely vitamin B2 (riboflavin), vitamin B6 (pyridoxine), and vitamin B12 (cyanocobalamin), that affect the 4-aminopyridine (4- AP)-evoked glutamate release from presynaptic nerve terminal in rat and discuss their neuroprotective role.

Methods: In this study, the measurements include glutamate release, DiSC3(5), and Fura-2.

Results: The riboflavin, pyridoxine, and cyanocobalamin produced significant inhibitory effects on 4-aminopyridine-evoked glutamate release from rat cerebrocortical nerve terminals (synaptosomes) in a dose-dependent relationship. These presynaptic inhibitory actions of glutamate release are attributed to inhibition of physiologic Ca2+-dependent vesicular exocytosis but not Ca2+-independent nonvesicular release. These effects also did not affect membrane excitability, while diminished cytosolic (Ca2+)c through a reduction of direct Ca2+ influx via Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, rather than through indirect Ca2+induced Ca2+ release from ryanodine-sensitive intracellular stores. Furthermore, their effects were attenuated by GF109203X and Ro318220, two protein kinase C (PKC) inhibitors, suggesting suppression of PKC activity. Taken together, these results suggest that riboflavin, pyridoxine, and cyanocobalamin inhibit presynaptic vesicular glutamate release from rat cerebrocortical synaptosomes, through the depression Ca2+ influx via voltage- dependent Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels, and PKC signaling cascade.

Conclusion: Therefore, these B vitamins may reduce the strength of glutamatergic synaptic transmission and is of considerable importance as potential targets for therapeutic agents in glutamate- induced excitation-related diseases.

Keywords: Riboflavin, pyridoxine, cyanocobalamin, presynaptic inhibition, glutamate release, nerve terminals.

Graphical Abstract

[1]
Baxter P. Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 2003; 1647(1-2): 36-41.
[http://dx.doi.org/10.1016/S1570-9639(03)00045-1] [PMID: 12686105]
[2]
Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr 2003; 77(6): 1352-60.
[http://dx.doi.org/10.1093/ajcn/77.6.1352] [PMID: 12791609]
[3]
McCaddon A, Regland B, Hudson P, Davies G. Functional vitamin B(12) deficiency and Alzheimer disease. Neurology 2002; 58(9): 1395-9.
[http://dx.doi.org/10.1212/WNL.58.9.1395] [PMID: 12011287]
[4]
Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol 2006; 5(11): 949-60.
[http://dx.doi.org/10.1016/S1474-4422(06)70598-1] [PMID: 17052662]
[5]
Akaike A, Tamura Y, Sato Y, Yokota T. Protective effects of a vitamin B12 analog, methylcobalamin, against glutamate cytotoxicity in cultured cortical neurons. Eur J Pharmacol 1993; 241(1): 1-6.
[http://dx.doi.org/10.1016/0014-2999(93)90925-8] [PMID: 7901032]
[6]
Kaneda K, Kikuchi M, Kashii S, et al. Effects of B vitamins on glutamate-induced neurotoxicity in retinal cultures. Eur J Pharmacol 1997; 322(2-3): 259-64.
[http://dx.doi.org/10.1016/S0014-2999(96)00997-1] [PMID: 9098696]
[7]
Kikuchi M, Kashii S, Honda Y, Tamura Y, Kaneda K, Akaike A. Protective effects of methylcobalamin, a vitamin B12 analog, against glutamate-induced neurotoxicity in retinal cell culture. Invest Ophthalmol Vis Sci 1997; 38(5): 848-54.
[PMID: 9112980]
[8]
Lin Y, Desbois A, Jiang S, Hou ST. Group B vitamins protect murine cerebellar granule cells from glutamate/NMDA toxicity. Neuroreport 2004; 15(14): 2241-4.
[http://dx.doi.org/10.1097/00001756-200410050-00020] [PMID: 15371742]
[9]
Betz AL, Ren XD, Ennis SR, Hultquist DE. Riboflavin reduces edema in focal cerebral ischemia. Acta Neurochir (Wien) 1994; 60: 314-7.
[PMID: 7976577]
[10]
Geng MY, Saito H, Nishiyama N. Protective effects of pyridoxal phosphate against glucose deprivation-induced damage in cultured hippocampal neurons. J Neurochem 1997; 68: 2500-6.
[11]
Yamashima T, Zhao L, Wang XD, Tsukada T, Tonchev AB. Neuroprotective effects of pyridoxal phosphate and pyridoxal against ischemia in monkeys. Nutr Neurosci 2001; 4(5): 389-97.
[http://dx.doi.org/10.1080/1028415X.2001.11747375] [PMID: 11842915]
[12]
Wang XD, Kashii S, Zhao L, et al. Vitamin B6 protects primate retinal neurons from ischemic injury. Brain Res 2002; 940(1-2): 36-43.
[http://dx.doi.org/10.1016/S0006-8993(02)02587-8] [PMID: 12020872]
[13]
Dakshinamurti K, Sharma SK, Geiger JD. Neuroprotective actions of pyridoxine. Biochim Biophys Acta 2003; 1647(1-2): 225-9.
[http://dx.doi.org/10.1016/S1570-9639(03)00054-2] [PMID: 12686137]
[14]
Hwang IK, Yoo KY, Kim DH, Lee BH, Kwon YG, Won MH. Time course of changes in pyridoxal 5′-phosphate (vitamin B6 active form) and its neuroprotection in experimental ischemic damage. Exp Neurol 2007; 206(1): 114-25.
[http://dx.doi.org/10.1016/j.expneurol.2007.04.005] [PMID: 17531224]
[15]
Geng MY, Saito H, Katsuki H. Effects of vitamin B6 and its related compounds on survival of cultured brain neurons. Neurosci Res 1995; 24(1): 61-5.
[http://dx.doi.org/10.1016/0168-0102(96)81279-X] [PMID: 8848291]
[16]
Araujo JA, Landsberg GM, Milgram NW, Miolo A. Improvement of short-term memory performance in aged beagles by a nutraceutical supplement containing phosphatidylserine, Ginkgo biloba, vitamin E, and pyridoxine. Can Vet J 2008; 49(4): 379-85.
[PMID: 18481547]
[17]
Greenamyre JT, Porter RH. Anatomy and physiology of glutamate in the CNS. Neurology 1994; 44(11)(Suppl. 8): S7-S13.
[PMID: 7526272]
[18]
Danbolt NC. Glutamate uptake. Prog Neurobiol 2001; 65(1): 1-105.
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[19]
Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262(5134): 689-95.
[http://dx.doi.org/10.1126/science.7901908]
[20]
Schinder AF, Olson EC, Spitzer NC, Montal M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 1996; 16(19): 6125-33.
[21]
Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 1997; 51(1): 39-87.
[http://dx.doi.org/10.1016/S0301-0082(96)00049-4] [PMID: 9044428]
[22]
Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 2000; 130(4S)(Suppl.): 1007S-15S.
[http://dx.doi.org/10.1093/jn/130.4.1007S] [PMID: 10736372]
[23]
Raiteri L, Stigliani S, Zappettini S, Mercuri NB, Raiteri M, Bonanno G. Excessive and precocious glutamate release in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 2004; 46(6): 782-92.
[http://dx.doi.org/10.1016/j.neuropharm.2003.11.025] [PMID: 15033338]
[24]
Lu CW, Lin TY, Huang SK, Wang SJ. 5-HT1B receptor agonist CGS12066 presynaptically inhibits glutamate release in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86: 122-30.
[http://dx.doi.org/10.1016/j.pnpbp.2018.05.019] [PMID: 29803926]
[25]
Dunkley PR, Jarvie PE, Heath JW, Kidd GJ, Rostas JA. A rapid method for isolation of synaptosomes on Percoll gradients. Brain Res 1986; 372(1): 115-29.
[http://dx.doi.org/10.1016/0006-8993(86)91464-2] [PMID: 3011205]
[26]
Nicholls DG. Presynaptic modulation of glutamate release. Prog Brain Res 1998; 116: 15-22.
[http://dx.doi.org/10.1016/S0079-6123(08)60427-6] [PMID: 9932367]
[27]
Lu CW, Lin TY, Chang CY, Huang SK, Wang SJ. Ciproxifan, a histamine H3 receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus. Toxicol Appl Pharmacol 2017; 319: 12-21.
[http://dx.doi.org/10.1016/j.taap.2017.01.017] [PMID: 28132918]
[28]
Akerman KE, Scott IG, Heikkilä JE, Heinonen E. Ionic dependence of membrane potential and glutamate receptor-linked responses in synaptoneurosomes as measured with a cyanine dye, DiS-C2-(5). J Neurochem 1987; 48(2): 552-9.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb04128.x] [PMID: 2432186]
[29]
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260(6): 3440-50.
[http://dx.doi.org/10.1016/S0021-9258(19)83641-4] [PMID: 3838314]
[30]
Holliday J, Spitzer NC. Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture. Dev Biol 1990; 141(1): 13-23.
[http://dx.doi.org/10.1016/0012-1606(90)90098-4] [PMID: 2167857]
[31]
Holliday J, Adams RJ, Sejnowski TJ, Spitzer NC. Calcium-induced release of calcium regulates differentiation of cultured spinal neurons. Neuron 1991; 7(5): 787-96.
[http://dx.doi.org/10.1016/0896-6273(91)90281-4] [PMID: 1742025]
[32]
Yang TT, Wang SJ. Pyridoxine inhibits depolarization-evoked glutamate release in nerve terminals from rat cerebral cortex: a possible neuroprotective mechanism? J Pharmacol Exp Ther 2009; 331(1): 244-54.
[http://dx.doi.org/10.1124/jpet.109.155176] [PMID: 19628631]
[33]
Wang SJ, Wu WM, Yang FL, Hsu GS, Huang CY. Vitamin B2 inhibits glutamate release from rat cerebrocortical nerve terminals. Neuroreport 2008; 19(13): 1335-8.
[http://dx.doi.org/10.1097/WNR.0b013e32830b8afa] [PMID: 18695519]
[34]
Hung KL, Wang CC, Huang CY, Wang SJ. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol 2009; 602(2-3): 230-7.
[http://dx.doi.org/10.1016/j.ejphar.2008.11.059] [PMID: 19073169]
[35]
Calderón-Ospina CA, Nava-Mesa MOB. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 2020; 26(1): 5-13.
[http://dx.doi.org/10.1111/cns.13207] [PMID: 31490017]
[36]
Williams AL, Cotter A, Sabina A, Girard C, Goodman J, Katz DL. The role for vitamin B-6 as treatment for depression: a systematic review. Fam Pract 2005; 22(5): 532-7.
[http://dx.doi.org/10.1093/fampra/cmi040] [PMID: 15964874]
[37]
Guo L, Salt TE, Maass A, et al. Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 2006; 47(2): 626-33.
[http://dx.doi.org/10.1167/iovs.05-0754] [PMID: 16431960]
[38]
Thompson SM, Capogna M, Scanziani M. Presynaptic inhibition in the hippocampus. Trends Neurosci 1993; 16(6): 222-7.
[http://dx.doi.org/10.1016/0166-2236(93)90160-N] [PMID: 7688163]
[39]
Sihra TS, Nichols RA. Mechanisms in the regulation of neurotransmitter release from brain nerve terminals: current hypotheses. Neurochem Res 1993; 18(1): 47-58.
[http://dx.doi.org/10.1007/BF00966922] [PMID: 8096629]
[40]
Scanziani M, Gahwiler BH, Thompson SM. Presynaptic inhibition of excitatory synaptic transmission by muscarinic and metabotropic glutamate receptor activation in the hippocampus: are Ca2+ channels involved? Neuropharmacology 1995; 34(11): 1549-57.
[http://dx.doi.org/10.1016/0028-3908(95)00119-Q] [PMID: 8606802]
[41]
Sánchez-Prieto J, Budd DC, Herrero I, Vázquez E, Nicholls DG. Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci 1996; 19(6): 235-9.
[http://dx.doi.org/10.1016/0166-2236(96)10031-X] [PMID: 8761959]
[42]
Wu LG, Saggau P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 1997; 20(5): 204-12.
[http://dx.doi.org/10.1016/S0166-2236(96)01015-6] [PMID: 9141196]
[43]
Perkinton MS, Sihra TS. Presynaptic GABA(B) receptor modulation of glutamate exocytosis from rat cerebrocortical nerve terminals: receptor decoupling by protein kinase C. J Neurochem 1998; 70(4): 1513-22.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70041513.x] [PMID: 9523568]
[44]
Song CY, Xi HJ, Yang L, et al. Propofol inhibited the delayed rectifier potassium current (I(k)) via activation of protein kinase C epsilon in rat parietal cortical neurons. Eur J Pharmacol 2011; 653(1-3): 16-20.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.072] [PMID: 21114997]
[45]
Kochegarov AA. Pharmacological modulators of voltage-gated calcium channels and their therapeutical application. Cell Calcium 2003; 33(3): 145-62.
[http://dx.doi.org/10.1016/S0143-4160(02)00239-7] [PMID: 12600802]
[46]
Nicholls DG, Sihra TS, Sanchez-Prieto J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 1987; 49(1): 50-7.
[http://dx.doi.org/10.1111/j.1471-4159.1987.tb03393.x] [PMID: 2884279]
[47]
Kochegarov AA. Therapeutical application of voltage-gated calcium channel modulators. Expert Opin Ther Pat 2002; 12: 243-87.
[http://dx.doi.org/10.1517/13543776.12.2.243]
[48]
Vázquez E, Sánchez-Prieto J. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Eur J Neurosci 1997; 9(10): 2009-18.
[http://dx.doi.org/10.1111/j.1460-9568.1997.tb01369.x] [PMID: 9421162]
[49]
Millán C, Sánchez-Prieto J. Differential coupling of N- and P/Q- type calcium channels to glutamate exocytosis in the rat cerebral cortex. Neurosci Lett 2002; 330(1): 29-32.
[http://dx.doi.org/10.1016/S0304-3940(02)00719-X] [PMID: 12213627]
[50]
Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004; 27: 509-47.
[http://dx.doi.org/10.1146/annurev.neuro.26.041002.131412] [PMID: 15217342]
[51]
Ruiz A, Matute C, Alberdi E. Endoplasmic reticulum Ca(2+) release through ryanodine and IP(3) receptors contributes to neuronal excitotoxicity. Cell Calcium 2009; 46(4): 273-81.
[http://dx.doi.org/10.1016/j.ceca.2009.08.005] [PMID: 19747726]
[52]
Shearman MS, Shinomura T, Oda T, Nishizuka Y. Synaptosomal protein kinase C subspecies: A. Dynamic changes in the hippocampus and cerebellar cortex concomitant with synaptogenesis. J Neurochem 1991; 56(4): 1255-62.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb11419.x] [PMID: 2002339]
[53]
Favaron M, Manev H, Siman R, et al. Down-regulation of protein kinase C protects cerebellar granule neurons in primary culture from glutamate-induced neuronal death. Proc Natl Acad Sci USA 1990; 87(5): 1983-7.
[http://dx.doi.org/10.1073/pnas.87.5.1983] [PMID: 1689850]
[54]
Kaasinen SK, Goldsteins G, Alhonen L, Jänne J, Koistinaho J. Induction and activation of protein kinase C delta in hippocampus and cortex after kainic acid treatment. Exp Neurol 2002; 176(1): 203-12.
[http://dx.doi.org/10.1006/exnr.2002.7919] [PMID: 12093097]
[55]
Bartschat DK, Rhodes TE. Protein kinase C modulates calcium channels in isolated presynaptic nerve terminals of rat hippocampus. J Neurochem 1995; 64(5): 2064-72.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64052064.x] [PMID: 7536806]
[56]
Jarvis SE, Zamponi GW. Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends Pharmacol Sci 2001; 22(10): 519-25.
[http://dx.doi.org/10.1016/S0165-6147(00)01800-9] [PMID: 11583809]
[57]
Vaughan PF, Walker JH, Peers C. The regulation of neurotransmitter secretion by protein kinase C. Mol Neurobiol 1998; 18(2): 125-55.
[http://dx.doi.org/10.1007/BF02914269] [PMID: 10065877]
[58]
Coffey ET, Herrero I, Sihra TS, Sánchez-Prieto J, Nicholls DG. Glutamate exocytosis and MARCKS phosphorylation are enhanced by a metabotropic glutamate receptor coupled to a protein kinase C synergistically activated by diacylglycerol and arachidonic acid. J Neurochem 1994; 63(4): 1303-10.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63041303.x] [PMID: 7931282]
[59]
Fujita Y, Sasaki T, Fukui K, et al. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 1996; 271(13): 7265-8.
[http://dx.doi.org/10.1074/jbc.271.13.7265] [PMID: 8631738]
[60]
Shimazaki Y, Nishiki T, Omori A, et al. Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 1996; 271(24): 14548-53.
[http://dx.doi.org/10.1074/jbc.271.24.14548] [PMID: 8662851]
[61]
Turner KM, Burgoyne RD, Morgan A. Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci 1999; 22(10): 459-64.
[http://dx.doi.org/10.1016/S0166-2236(99)01436-8] [PMID: 10481193]
[62]
Craig TJ, Evans GJ, Morgan A. Physiological regulation of Munc18/nSec1 phosphorylation on serine-313. J Neurochem 2003; 86(6): 1450-7.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01955.x] [PMID: 12950453]
[63]
Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke 2005; 36(12): 2781-90.
[http://dx.doi.org/10.1161/01.STR.0000189996.71237.f7] [PMID: 16254221]
[64]
McNamara RK, Wees EA, Lenox RH. Differential subcellular redistribution of protein kinase C isozymes in the rat hippocampus induced by kainic acid. J Neurochem 1999; 72(4): 1735-43.
[http://dx.doi.org/10.1046/j.1471-4159.1999.721735.x] [PMID: 10098884]
[65]
Kurkinen K, Busto R, Goldsteins G, Koistinaho J, Pérez-Pinzón MA. Isoform-specific membrane translocation of protein kinase C after ischemic preconditioning. Neurochem Res 2001; 26(10): 1139-44.
[http://dx.doi.org/10.1023/A:1012322906824] [PMID: 11700956]
[66]
Chen L, Huang LY. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 1992; 356(6369): 521-3.
[http://dx.doi.org/10.1038/356521a0] [PMID: 1373227]
[67]
Doerner D, Pitler TA, Alger BE. Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons. J Neurosci 1988; 8(11): 4069-78.
[http://dx.doi.org/10.1523/JNEUROSCI.08-11-04069.1988] [PMID: 2846795]
[68]
Cardell M, Bingren H, Wieloch T, Zivin J, Saitoh T. Protein kinase C is translocated to cell membranes during cerebral ischemia. Neurosci Lett 1990; 119(2): 228-32.
[http://dx.doi.org/10.1016/0304-3940(90)90840-6] [PMID: 2280899]
[69]
Hara H, Onodera H, Kogure K. Protein kinase C activity in the gerbil hippocampus after transient forebrain ischemia: morphological and autoradiographic analysis using [3H]phorbol 12,13-dibutyrate. Neurosci Lett 1990; 120(1): 120-3.
[http://dx.doi.org/10.1016/0304-3940(90)90183-A] [PMID: 2293082]
[70]
Louis JC, Magal E, Yavin E. Protein kinase C alterations in the fetal rat brain after global ischemia. J Biol Chem 1988; 263(36): 19282-5.
[http://dx.doi.org/10.1016/S0021-9258(19)77631-5] [PMID: 3198627]
[71]
Joó F, Tósaki A, Oláh Z, Koltai M. Inhibition by H-7 of the protein kinase C prevents formation of brain edema in Sprague-Dawley CFY rats. Brain Res 1989; 490(1): 141-3.
[http://dx.doi.org/10.1016/0006-8993(89)90439-3] [PMID: 2758320]
[72]
Mizukami H, Ogasawara S, Yamagishi S, Takahashi K, Yagihashi S. Methylcobalamin effects on diabetic neuropathy and nerve protein kinase C in rats. Eur J Clin Invest 2011; 41(4): 442-50.
[http://dx.doi.org/10.1111/j.1365-2362.2010.02430.x] [PMID: 21128935]
[73]
Hung MC, Shibasaki K, Yoshida R, Sato M, Imaizumi K. Learning behaviour and cerebral protein kinase C, antioxidant status, lipid composition in senescence-accelerated mouse: influence of a phosphatidylcholine-vitamin B12 diet. Br J Nutr 2001; 86(2): 163-71.
[http://dx.doi.org/10.1079/BJN2001391] [PMID: 11502229]
[74]
Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J 1992; 6(15): 3338-44.
[http://dx.doi.org/10.1096/fasebj.6.15.1464368] [PMID: 1464368]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy