Review Article

组蛋白脱乙酰酶 6 (HDAC6) 和热休克蛋白 90 (Hsp90) 的双重靶向策略

卷 29, 期 9, 2022

发表于: 11 January, 2022

页: [1474 - 1502] 页: 29

弟呕挨: 10.2174/0929867328666210902145102

open access plus

摘要

设计同时作用于多个信号通路的多靶点药物是药物化学中一个不断发展的领域,特别是用于治疗癌症等复杂疾病。组蛋白去乙酰化酶 6 (HDAC6) 是一种既定的参与肿瘤细胞转化的抗癌药物靶点。作为许多生物过程相互作用的表观遗传酶,HDAC6 已成为旨在提高抗癌药物治疗效果的多药理学研究的有吸引力的目标。例如,分子伴侣热休克蛋白 90 (Hsp90) 是 HDAC6 去乙酰化的底物,多项证据表明同时抑制 HDAC6 和 Hsp90 可促进对不同癌细胞系的协同抗肿瘤作用,突出了开发具有多靶点活性的单个分子。本综述将总结 HDAC6 和 Hsp90 之间复杂的相互作用,为该领域的多靶点药物设计和发现方法提供有用的提示。为此,HDAC6 和 Hsp90 复合物的晶体结构将根据讨论结合袋特征和药效团要求进行广泛审查,并为双重抑制剂的设计提供有用的指导。迄今为止获得的多靶点抑制剂的少数例子,主要基于嵌合方法,将被总结并放在上下文中。最后,将比较 HDAC6 和 Hsp90 抑制剂的主要特征,并提出和讨论可能对开发小分子量双重抑制剂有用的基于配体和结构的策略。

关键词: Hsp90、HDAC6、多靶点活性、多药理学、癌症、双重抑制剂。

[1]
Ho, T.C.S.; Chan, A.H.Y.; Ganesan, A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem., 2020, 63(21), 12460-12484.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00830] [PMID: 32608981]
[2]
Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther., 2019, 4, 62.
[http://dx.doi.org/10.1038/s41392-019-0095-0] [PMID: 31871779]
[3]
He, X.; Li, Z.; Zhuo, X-T.; Hui, Z.; Xie, T.; Ye, X-Y. Novel selective histone deacetylase 6 (HDAC6) inhibitors: a patent review (2016-2019). Recent Patents Anticancer Drug Discov., 2020, 15(1), 32-48.
[http://dx.doi.org/10.2174/1574892815666200217125419] [PMID: 32065106]
[4]
Qin, H-T.; Li, H-Q.; Liu, F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin. Ther. Pat., 2017, 27(5), 621-636.
[http://dx.doi.org/10.1080/13543776.2017.1276565] [PMID: 28033734]
[5]
Zhao, C.; Dong, H.; Xu, Q.; Zhang, Y. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin. Ther. Pat., 2020, 30(4), 263-274.
[http://dx.doi.org/10.1080/13543776.2020.1725470] [PMID: 32008402]
[6]
Plumb, J.A.; Finn, P.W.; Williams, R.J.; Bandara, M.J.; Romero, M.R.; Watkins, C.J.; La Thangue, N.B.; Brown, R. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther., 2003, 2(8), 721-728.
[PMID: 12939461]
[7]
Molife, L.R.; de Bono, J.S. Belinostat: clinical applications in solid tumors and lymphoma. Expert Opin. Investig. Drugs, 2011, 20(12), 1723-1732.
[http://dx.doi.org/10.1517/13543784.2011.629604] [PMID: 22046971]
[8]
Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto, T.; Okuhara, M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo), 1994, 47(3), 301-310.
[http://dx.doi.org/10.7164/antibiotics.47.301] [PMID: 7513682]
[9]
Campas-Moya, C. Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc), 2009, 45(11), 787-795.
[http://dx.doi.org/10.1358/dot.2009.45.11.1437052] [PMID: 20126671]
[10]
Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; Reeder, C.; Joske, D.; Figg, W.D.; Gardner, E.R.; Steinberg, S.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Lade, S.; Fojo, A.T.; Bates, S.E.; Phase, I.I. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol., 2009, 27(32), 5410-5417.
[http://dx.doi.org/10.1200/JCO.2008.21.6150] [PMID: 19826128]
[11]
Stowell, J.C.; Huot, R.I.; Van Voast, L. The synthesis of N-hydroxy-N'-phenyloctanediamide and its inhibitory effect on proliferation of AXC rat prostate cancer cells. J. Med. Chem., 1995, 38(8), 1411-1413.
[http://dx.doi.org/10.1021/jm00008a020] [PMID: 7731025]
[12]
Siegel, D.; Hussein, M.; Belani, C.; Robert, F.; Galanis, E.; Richon, V.M.; Garcia-Vargas, J.; Sanz-Rodriguez, C.; Rizvi, S. Vorinostat in solid and hematologic malignancies. J. Hematol. Oncol., 2009, 2, 31.
[http://dx.doi.org/10.1186/1756-8722-2-31] [PMID: 19635146]
[13]
Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J.H.; Reilly, J.F.; Ricker, J.L.; Richon, V.M.; Frankel, S.R. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood, 2007, 109(1), 31-39.
[http://dx.doi.org/10.1182/blood-2006-06-025999] [PMID: 16960145]
[14]
George, P.; Bali, P.; Annavarapu, S.; Scuto, A.; Fiskus, W.; Guo, F.; Sigua, C.; Sondarva, G.; Moscinski, L.; Atadja, P.; Bhalla, K. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood, 2005, 105(4), 1768-1776.
[http://dx.doi.org/10.1182/blood-2004-09-3413] [PMID: 15514006]
[15]
Terpos, E. The synergistic effect of panobinostat (LBH589) with melphalan or doxorubicin on multiple myeloma cells; rationale for the use of combination regimens in myeloma patients. Leuk. Res., 2011, 35(3), 295-296.
[http://dx.doi.org/10.1016/j.leukres.2010.10.019] [PMID: 21093911]
[16]
Schmitt, S.; Ho, A.D.; Goldschmidt, H. The oral histone deacetylase inhibitor LBH589 is a potential and promising therapeutic agent in multiple myeloma after at least two lines of chemotherapy including bortezomib or lenalidomide. Onkologie, 2010, 33(4), 183-186.
[http://dx.doi.org/10.1159/000286447] [PMID: 20389145]
[17]
de Ruijter, A.J.M.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B.P. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[18]
Gregoretti, I.V.; Lee, Y-M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31.
[http://dx.doi.org/10.1016/j.jmb.2004.02.006] [PMID: 15050820]
[19]
Roche, J.; Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem., 2016, 121, 451-483.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.047] [PMID: 27318122]
[20]
Grozinger, C.M.; Hassig, C.A.; Schreiber, S.L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA, 1999, 96(9), 4868-4873.
[http://dx.doi.org/10.1073/pnas.96.9.4868] [PMID: 10220385]
[21]
Zou, H.; Wu, Y.; Navre, M.; Sang, B-C. Characterization of the two catalytic domains in histone deacetylase 6. Biochem. Biophys. Res. Commun., 2006, 341(1), 45-50.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.144] [PMID: 16412385]
[22]
Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X-F.; Yao, T-P. HDAC6 is a microtubule-associated deacetylase. Nature, 2002, 417(6887), 455-458.
[http://dx.doi.org/10.1038/417455a] [PMID: 12024216]
[23]
Haggarty, S.J.; Koeller, K.M.; Wong, J.C.; Grozinger, C.M.; Schreiber, S.L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA, 2003, 100(8), 4389-4394.
[http://dx.doi.org/10.1073/pnas.0430973100] [PMID: 12677000]
[24]
Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol., 2016, 12(9), 741-747.
[http://dx.doi.org/10.1038/nchembio.2134] [PMID: 27454933]
[25]
Govindarajan, N.; Rao, P.; Burkhardt, S.; Sananbenesi, F.; Schlüter, O.M.; Bradke, F.; Lu, J.; Fischer, A. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol. Med., 2013, 5(1), 52-63.
[http://dx.doi.org/10.1002/emmm.201201923] [PMID: 23184605]
[26]
Li, T.; Zhang, C.; Hassan, S.; Liu, X.; Song, F.; Chen, K.; Zhang, W.; Yang, J. Histone deacetylase 6 in cancer. J. Hematol. Oncol., 2018, 11(1), 111.
[http://dx.doi.org/10.1186/s13045-018-0654-9] [PMID: 30176876]
[27]
Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4(4), 505-524.
[http://dx.doi.org/10.4155/fmc.12.3] [PMID: 22416777]
[28]
Peng, X.; Sun, Z.; Kuang, P.; Chen, J. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur. J. Med. Chem., 2020.208112831
[http://dx.doi.org/10.1016/j.ejmech.2020.112831] [PMID: 32961382]
[29]
Kovacs, J.J.; Murphy, P.J.M.; Gaillard, S.; Zhao, X.; Wu, J-T.; Nicchitta, C.V.; Yoshida, M.; Toft, D.O.; Pratt, W.B.; Yao, T-P. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell, 2005, 18(5), 601-607.
[http://dx.doi.org/10.1016/j.molcel.2005.04.021] [PMID: 15916966]
[30]
Finkelstein, D.B.; Strausberg, S. Identification and expression of a cloned yeast heat shock gene. J. Biol. Chem., 1983, 258(3), 1908-1913.
[http://dx.doi.org/10.1016/S0021-9258(18)33075-8] [PMID: 6296115]
[31]
Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[32]
Workman, P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett., 2004, 206(2), 149-157.
[http://dx.doi.org/10.1016/j.canlet.2003.08.032] [PMID: 15013520]
[33]
Li, L.; Chen, N-N.; You, Q-D.; Xu, X-L. An updated patent review of anticancer Hsp90 inhibitors (2013-present). Expert Opin. Ther. Pat., 2021, 31(1), 67-80.
[http://dx.doi.org/10.1080/13543776.2021.1829595] [PMID: 32990109]
[34]
Jaeger, A.M.; Whitesell, L. HSP90. Enabler of Cancer Adaptation. Annu. Rev. Cancer Biol., 2019, 3, 275-297.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055533]
[35]
Brindisi, M.; Saraswati, A.P.; Brogi, S.; Gemma, S.; Butini, S.; Campiani, G. Old but gold: tracking the new guise of histone deacetylase 6 (HDAC6) enzyme as a biomarker and therapeutic target in rare diseases. J. Med. Chem., 2020, 63(1), 23-39.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00924] [PMID: 31415174]
[36]
Yu, S.; Cai, X.; Wu, C.; Liu, Y.; Zhang, J.; Gong, X.; Wang, X.; Wu, X.; Zhu, T.; Mo, L.; Gu, J.; Yu, Z.; Chen, J.; Thiery, J.P.; Chai, R.; Chen, L. Targeting HSP90-HDAC6 regulating network implicates precision treatment of breast cancer. Int. J. Biol. Sci., 2017, 13(4), 505-517.
[http://dx.doi.org/10.7150/ijbs.18834] [PMID: 28529458]
[37]
Chai, R.C.; Vieusseux, J.L.; Lang, B.J.; Nguyen, C.H.; Kouspou, M.M.; Britt, K.L.; Price, J.T. Histone deacetylase activity mediates acquired resistance towards structurally diverse HSP90 inhibitors. Mol. Oncol., 2017, 11(5), 567-583.
[http://dx.doi.org/10.1002/1878-0261.12054] [PMID: 28306192]
[38]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S-H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Novel heat shock protein 90 inhibitor NVP-AUY922 synergizes with the histone deacetylase inhibitor PXD101 in induction of death of anaplastic thyroid carcinoma cells. J. Clin. Endocrinol. Metab., 2015, 100(2), E253-E261.
[http://dx.doi.org/10.1210/jc.2014-3101] [PMID: 25389633]
[39]
Rodrigues Moita, A.J.; Bandolik, J.J.; Hansen, F.K.; Kurz, T.; Hamacher, A.; Kassack, M.U. Priming with HDAC inhibitors sensitizes ovarian cancer cells to treatment with cisplatin and HSP90 inhibitors. Int. J. Mol. Sci., 2020, 21(21), 21.
[http://dx.doi.org/10.3390/ijms21218300] [PMID: 33167494]
[40]
Zismanov, V.; Drucker, L.; Gottfried, M. ER homeostasis and motility of NSCLC cell lines can be therapeutically targeted with combined Hsp90 and HDAC inhibitors. Pulm. Pharmacol. Ther., 2013, 26(3), 388-394.
[http://dx.doi.org/10.1016/j.pupt.2013.02.004] [PMID: 23434444]
[41]
Pinzi, L.; Caporuscio, F.; Rastelli, G. Selection of protein conformations for structure-based polypharmacology studies. Drug Discov. Today, 2018, 23(11), 1889-1896.
[http://dx.doi.org/10.1016/j.drudis.2018.08.007] [PMID: 30099123]
[42]
Anighoro, A.; Pinzi, L.; Marverti, G.; Bajorath, J.; Rastelli, G. Heat shock protein 90 and serine/threonine kinase B-Raf inhibitors have overlapping chemical space. RSC Advances, 2017, 7, 31069-31074.
[http://dx.doi.org/10.1039/C7RA05889F]
[43]
Pinzi, L.; Benedetti, R.; Altucci, L.; Rastelli, G. Design of dual inhibitors of histone deacetylase 6 and heat shock protein 90. ACS Omega, 2020, 5(20), 11473-11480.
[http://dx.doi.org/10.1021/acsomega.0c00559] [PMID: 32478236]
[44]
Pinzi, L.; Rastelli, G. Identification of target associations for polypharmacology from analysis of crystallographic ligands of the protein data bank. J. Chem. Inf. Model., 2020, 60(1), 372-390.
[http://dx.doi.org/10.1021/acs.jcim.9b00821] [PMID: 31800237]
[45]
Chaudhari, R.; Tan, Z.; Huang, B.; Zhang, S. Computational polypharmacology: a new paradigm for drug discovery. Expert Opin. Drug Discov., 2017, 12(3), 279-291.
[http://dx.doi.org/10.1080/17460441.2017.1280024] [PMID: 28067061]
[46]
Rastelli, G.; Pinzi, L. Computational polypharmacology comes of age. Front. Pharmacol., 2015, 6, 157.
[http://dx.doi.org/10.3389/fphar.2015.00157] [PMID: 26283966]
[47]
Miyake, Y.; Keusch, J.J.; Wang, L.; Saito, M.; Hess, D.; Wang, X.; Melancon, B.J.; Helquist, P.; Gut, H.; Matthias, P. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol., 2016, 12(9), 748-754.
[http://dx.doi.org/10.1038/nchembio.2140] [PMID: 27454931]
[48]
Liu, Y.; Peng, L.; Seto, E.; Huang, S.; Qiu, Y. Modulation of histone deacetylase 6 (HDAC6) nuclear import and tubulin deacetylase activity through acetylation. J. Biol. Chem., 2012, 287(34), 29168-29174.
[http://dx.doi.org/10.1074/jbc.M112.371120] [PMID: 22778253]
[49]
Simões-Pires, C.; Zwick, V.; Nurisso, A.; Schenker, E.; Carrupt, P-A.; Cuendet, M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener., 2013, 8, 7.
[http://dx.doi.org/10.1186/1750-1326-8-7] [PMID: 23356410]
[50]
Bertos, N.R.; Gilquin, B.; Chan, G.K.T.; Yen, T.J.; Khochbin, S.; Yang, X-J. Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J. Biol. Chem., 2004, 279(46), 48246-48254.
[http://dx.doi.org/10.1074/jbc.M408583200] [PMID: 15347674]
[51]
Seigneurin-Berny, D.; Verdel, A.; Curtet, S.; Lemercier, C.; Garin, J.; Rousseaux, S.; Khochbin, S. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol., 2001, 21(23), 8035-8044.
[http://dx.doi.org/10.1128/MCB.21.23.8035-8044.2001] [PMID: 11689694]
[52]
Krämer, O.H.; Mahboobi, S.; Sellmer, A. Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol. Sci., 2014, 35(10), 501-509.
[http://dx.doi.org/10.1016/j.tips.2014.08.001] [PMID: 25234862]
[53]
Young, J.C.; Moarefi, I.; Hartl, F.U. Hsp90: a specialized but essential protein-folding tool. J. Cell Biol., 2001, 154(2), 267-273.
[http://dx.doi.org/10.1083/jcb.200104079] [PMID: 11470816]
[54]
Vabulas, R.M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F.U. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb. Perspect. Biol., 2010, 2(12)a004390
[http://dx.doi.org/10.1101/cshperspect.a004390] [PMID: 21123396]
[55]
Trepel, J.; Mollapour, M.; Giaccone, G.; Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer, 2010, 10(8), 537-549.
[http://dx.doi.org/10.1038/nrc2887] [PMID: 20651736]
[56]
Echeverría, P.C.; Bernthaler, A.; Dupuis, P.; Mayer, B.; Picard, D. An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One, 2011, 6(10)e26044
[http://dx.doi.org/10.1371/journal.pone.0026044] [PMID: 22022502]
[57]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci., 2017, 38(3), 226-256.
[http://dx.doi.org/10.1016/j.tips.2016.11.009] [PMID: 28012700]
[58]
Pick, E.; Kluger, Y.; Giltnane, J.M.; Moeder, C.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res., 2007, 67(7), 2932-2937.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4511] [PMID: 17409397]
[59]
Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10(2), 86-103.
[http://dx.doi.org/10.1379/CSC-99r.1] [PMID: 16038406]
[60]
Neckers, L.; Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res., 2012, 18(1), 64-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1000] [PMID: 22215907]
[61]
Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells, 2019, 9(1), 9.
[http://dx.doi.org/10.3390/cells9010060] [PMID: 31878360]
[62]
Cercek, A.; Shia, J.; Gollub, M.; Chou, J.F.; Capanu, M.; Raasch, P.; Reidy-Lagunes, D.; Proia, D.A.; Vakiani, E.; Solit, D.B.; Saltz, L.B. Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clin. Colorectal Cancer, 2014, 13(4), 207-212.
[http://dx.doi.org/10.1016/j.clcc.2014.09.001] [PMID: 25444464]
[63]
Rajan, A.; Kelly, R.J.; Trepel, J.B.; Kim, Y.S.; Alarcon, S.V.; Kummar, S.; Gutierrez, M.; Crandon, S.; Zein, W.M.; Jain, L.; Mannargudi, B.; Figg, W.D.; Houk, B.E.; Shnaidman, M.; Brega, N.; Giaccone, G. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin. Cancer Res., 2011, 17(21), 6831-6839.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0821] [PMID: 21908572]
[64]
Li, L.; Wang, L.; You, Q-D.; Xu, X-L. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J. Med. Chem., 2020, 63(5), 1798-1822.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00940] [PMID: 31663736]
[65]
Echeverria, P.C.; Bhattacharya, K.; Joshi, A.; Wang, T.; Picard, D. The sensitivity to Hsp90 inhibitors of both normal and oncogenically transformed cells is determined by the equilibrium between cellular quiescence and activity. PLoS One, 2019, 14(2)e0208287
[http://dx.doi.org/10.1371/journal.pone.0208287] [PMID: 30726209]
[66]
Wang, Y.; Koay, Y.C.; McAlpine, S.R. How selective are Hsp90 inhibitors for cancer cells over normal cells? ChemMedChem, 2017, 12(5), 353-357.
[http://dx.doi.org/10.1002/cmdc.201600595] [PMID: 28139075]
[67]
Kryeziu, K.; Bruun, J.; Guren, T.K.; Sveen, A.; Lothe, R.A. Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 240-247.
[http://dx.doi.org/10.1016/j.bbcan.2019.01.002] [PMID: 30708039]
[68]
Solárová, Z.; Mojžiš, J.; Solár, P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies. Int. J. Oncol., 2015, 46(3), 907-926.
[PMID: 25501619]
[69]
Shevtsov, M.; Multhoff, G.; Mikhaylova, E.; Shibata, A.; Guzhova, I.; Margulis, B. Combination of anti-cancer drugs with molecular chaperone inhibitors. Int. J. Mol. Sci., 2019, 20(21), 5284.
[http://dx.doi.org/10.3390/ijms20215284] [PMID: 31652993]
[70]
Lu, X.; Xiao, L.; Wang, L.; Ruden, D.M. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem. Pharmacol., 2012, 83(8), 995-1004.
[http://dx.doi.org/10.1016/j.bcp.2011.11.011] [PMID: 22120678]
[71]
Kim, Y.S.; Alarcon, S.V.; Lee, S.; Lee, M-J.; Giaccone, G.; Neckers, L.; Trepel, J.B. Update on Hsp90 inhibitors in clinical trial. Curr. Top. Med. Chem., 2009, 9(15), 1479-1492.
[http://dx.doi.org/10.2174/156802609789895728] [PMID: 19860730]
[72]
Anighoro, A.; Stumpfe, D.; Heikamp, K.; Beebe, K.; Neckers, L.M.; Bajorath, J.; Rastelli, G. Computational polypharmacology analysis of the heat shock protein 90 interactome. J. Chem. Inf. Model., 2015, 55(3), 676-686.
[http://dx.doi.org/10.1021/ci5006959] [PMID: 25686391]
[73]
Micelli, C.; Rastelli, G. Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov. Today, 2015, 20(6), 718-735.
[http://dx.doi.org/10.1016/j.drudis.2015.01.007] [PMID: 25687212]
[74]
Kawaguchi, Y.; Kovacs, J.J.; McLaurin, A.; Vance, J.M.; Ito, A.; Yao, T-P. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell, 2003, 115(6), 727-738.
[http://dx.doi.org/10.1016/S0092-8674(03)00939-5] [PMID: 14675537]
[75]
Seto, E.; Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4)a018713
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[76]
Li, Y.; Shin, D.; Kwon, S.H. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J., 2013, 280(3), 775-793.
[PMID: 23181831]
[77]
Cosenza, M.; Pozzi, S. The therapeutic strategy of hdac6 inhibitors in lymphoproliferative disease. Int. J. Mol. Sci., 2018, 19(8), 2337.
[http://dx.doi.org/10.3390/ijms19082337] [PMID: 30096875]
[78]
Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res., 2007, 17(3), 195-211.
[http://dx.doi.org/10.1038/sj.cr.7310149] [PMID: 17325692]
[79]
Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene, 2007, 26(37), 5420-5432.
[http://dx.doi.org/10.1038/sj.onc.1210610] [PMID: 17694083]
[80]
Aldana-Masangkay, G.I.; Sakamoto, K.M. The role of HDAC6 in cancer. J. Biomed. Biotechnol., 2011.2011875824
[http://dx.doi.org/10.1155/2011/875824] [PMID: 21076528]
[81]
Pride, D.A.; Summers, A.R. The emergence of specific HDAC inhibitors and their clinical efficacy in the treatment of hematologic malignancies and breast cancer. Int J Mol Biol Open Access, 2018, 3, 203-209.
[http://dx.doi.org/10.15406/ijmboa.2018.03.00078]
[82]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[83]
Tandon, N.; Ramakrishnan, V.; Kumar, S.K. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin. Pharmacol., 2016, 8, 35-44.
[PMID: 27226735]
[84]
Chang, J.; Varghese, D.S.; Gillam, M.C.; Peyton, M.; Modi, B.; Schiltz, R.L.; Girard, L.; Martinez, E.D. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br. J. Cancer, 2012, 106(1), 116-125.
[http://dx.doi.org/10.1038/bjc.2011.532] [PMID: 22158273]
[85]
Subramanian, S.; Bates, S.E.; Wright, J.J.; Espinoza-Delgado, I.; Piekarz, R.L. Clinical Toxicities of Histone Deacetylase Inhibitors. Pharmaceuticals (Basel), 2010, 3(9), 2751-2767.
[http://dx.doi.org/10.3390/ph3092751] [PMID: 27713375]
[86]
Shah, M.H.; Binkley, P.; Chan, K.; Xiao, J.; Arbogast, D.; Collamore, M.; Farra, Y.; Young, D.; Grever, M. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin. Cancer Res., 2006, 12(13), 3997-4003.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2689] [PMID: 16818698]
[87]
Lane, A.A.; Chabner, B.A. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol., 2009, 27(32), 5459-5468.
[http://dx.doi.org/10.1200/JCO.2009.22.1291] [PMID: 19826124]
[88]
Wang, P.; Wang, Z.; Liu, J. Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer, 2020, 19(1), 5.
[http://dx.doi.org/10.1186/s12943-019-1127-7] [PMID: 31910827]
[89]
Dallavalle, S.; Pisano, C.; Zunino, F. Development and therapeutic impact of HDAC6-selective inhibitors. Biochem. Pharmacol., 2012, 84(6), 756-765.
[http://dx.doi.org/10.1016/j.bcp.2012.06.014] [PMID: 22728920]
[90]
Hontecillas-Prieto, L.; Flores-Campos, R.; Silver, A.; de Álava, E.; Hajji, N.; García-Domínguez, D.J. Synergistic enhancement of cancer therapy using hdac inhibitors: opportunity for clinical trials. Front. Genet., 2020.11578011
[http://dx.doi.org/10.3389/fgene.2020.578011] [PMID: 33024443]
[91]
Kovacs, J.J.; Cohen, T.J.; Yao, T-P. Chaperoning steroid hormone signaling via reversible acetylation. Nucl. Recept. Signal., 2005, 3, e004-e004.
[http://dx.doi.org/10.1621/nrs.03004] [PMID: 16604172]
[92]
Murphy, P.J.M.; Morishima, Y.; Kovacs, J.J.; Yao, T-P.; Pratt, W.B. Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone. J. Biol. Chem., 2005, 280(40), 33792-33799.
[http://dx.doi.org/10.1074/jbc.M506997200] [PMID: 16087666]
[93]
Ai, J.; Wang, Y.; Dar, J.A.; Liu, J.; Liu, L.; Nelson, J.B.; Wang, Z. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol. Endocrinol., 2009, 23(12), 1963-1972.
[http://dx.doi.org/10.1210/me.2009-0188] [PMID: 19855091]
[94]
Muller, P.A.J.; Vousden, K.H. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell, 2014, 25(3), 304-317.
[http://dx.doi.org/10.1016/j.ccr.2014.01.021] [PMID: 24651012]
[95]
Li, D.; Marchenko, N.D.; Schulz, R.; Fischer, V.; Velasco-Hernandez, T.; Talos, F.; Moll, U.M. Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol. Cancer Res., 2011, 9(5), 577-588.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0534] [PMID: 21478269]
[96]
Li, D.; Marchenko, N.D.; Moll, U.M. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ., 2011, 18(12), 1904-1913.
[http://dx.doi.org/10.1038/cdd.2011.71] [PMID: 21637290]
[97]
Alexandrova, E.M.; Yallowitz, A.R.; Li, D.; Xu, S.; Schulz, R.; Proia, D.A.; Lozano, G.; Dobbelstein, M.; Moll, U.M. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature, 2015, 523(7560), 352-356.
[http://dx.doi.org/10.1038/nature14430] [PMID: 26009011]
[98]
Rao, R.; Fiskus, W.; Yang, Y.; Lee, P.; Joshi, R.; Fernandez, P.; Mandawat, A.; Atadja, P.; Bradner, J.E.; Bhalla, K. HDAC6 inhibition enhances 17-AAG--mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood, 2008, 112(5), 1886-1893.
[http://dx.doi.org/10.1182/blood-2008-03-143644] [PMID: 18591380]
[99]
Tian, Z-Q.; Liu, Y.; Zhang, D.; Wang, Z.; Dong, S.D.; Carreras, C.W.; Zhou, Y.; Rastelli, G.; Santi, D.V.; Myles, D.C. Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg. Med. Chem., 2004, 12(20), 5317-5329.
[http://dx.doi.org/10.1016/j.bmc.2004.07.053] [PMID: 15388159]
[100]
Jez, J.M.; Chen, J.C-H.; Rastelli, G.; Stroud, R.M.; Santi, D.V. Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem. Biol., 2003, 10(4), 361-368.
[http://dx.doi.org/10.1016/S1074-5521(03)00075-9] [PMID: 12725864]
[101]
Rastelli, G.; Tian, Z-Q.; Wang, Z.; Myles, D.; Liu, Y. Structure-based design of 7-carbamate analogs of geldanamycin. Bioorg. Med. Chem. Lett., 2005, 15(22), 5016-5021.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.013] [PMID: 16165354]
[102]
Yu, X.; Guo, Z.S.; Marcu, M.G.; Neckers, L.; Nguyen, D.M.; Chen, G.A.; Schrump, D.S. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst., 2002, 94(7), 504-513.
[http://dx.doi.org/10.1093/jnci/94.7.504] [PMID: 11929951]
[103]
Lamottke, B.; Kaiser, M.; Mieth, M.; Heider, U.; Gao, Z.; Nikolova, Z.; Jensen, M.R.; Sterz, J.; von Metzler, I.; Sezer, O. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur. J. Haematol., 2012, 88(5), 406-415.
[http://dx.doi.org/10.1111/j.1600-0609.2012.01764.x] [PMID: 22309072]
[104]
Rahmani, M.; Yu, C.; Dai, Y.; Reese, E.; Ahmed, W.; Dent, P.; Grant, S. Coadministration of the heat shock protein 90 antagonist 17-allylamino- 17-demethoxygeldanamycin with suberoylanilide hydroxamic acid or sodium butyrate synergistically induces apoptosis in human leukemia cells. Cancer Res., 2003, 63(23), 8420-8427.
[PMID: 14679005]
[105]
Rahmani, M.; Reese, E.; Dai, Y.; Bauer, C.; Kramer, L.B.; Huang, M.; Jove, R.; Dent, P.; Grant, S. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol. Pharmacol., 2005, 67(4), 1166-1176.
[http://dx.doi.org/10.1124/mol.104.007831] [PMID: 15625278]
[106]
Kaiser, M.; Lamottke, B.; Mieth, M.; Jensen, M.R.; Quadt, C.; Garcia-Echeverria, C.; Atadja, P.; Heider, U.; von Metzler, I.; Türkmen, S.; Sezer, O. Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. Eur. J. Haematol., 2010, 84(4), 337-344.
[http://dx.doi.org/10.1111/j.1600-0609.2009.01403.x] [PMID: 20028416]
[107]
Nguyen, A.; Su, L.; Campbell, B.; Poulin, N.M.; Nielsen, T.O. Synergism of heat shock protein 90 and histone deacetylase inhibitors in synovial sarcoma. Sarcoma, 2009, 2009, 794901-794901.
[http://dx.doi.org/10.1155/2009/794901] [PMID: 19325926]
[108]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[109]
Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; Seto, E.; Bhalla, K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem., 2005, 280(29), 26729-26734.
[http://dx.doi.org/10.1074/jbc.C500186200] [PMID: 15937340]
[110]
Trzeciakiewicz, H.; Ajit, D.; Tseng, J-H.; Chen, Y.; Ajit, A.; Tabassum, Z.; Lobrovich, R.; Peterson, C.; Riddick, N.V.; Itano, M.S.; Tripathy, A.; Moy, S.S.; Lee, V.M.Y.; Trojanowski, J.Q.; Irwin, D.J.; Cohen, T.J. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline. Nat. Commun., 2020, 11(1), 5522.
[http://dx.doi.org/10.1038/s41467-020-19317-4] [PMID: 33139698]
[111]
Hsu, K-C.; Liu, C-Y.; Lin, T.E.; Hsieh, J-H.; Sung, T-Y.; Tseng, H-J.; Yang, J-M.; Huang, W-J. Novel class iia-selective histone deacetylase inhibitors discovered using an in silico virtual screening approach. Sci. Rep., 2017, 7(1), 3228.
[http://dx.doi.org/10.1038/s41598-017-03417-1] [PMID: 28607401]
[112]
Osko, J.D.; Porter, N.J.; Narayana Reddy, P.A.; Xiao, Y-C.; Rokka, J.; Jung, M.; Hooker, J.M.; Salvino, J.M.; Christianson, D.W. Exploring structural determinants of inhibitor affinity and selectivity in complexes with histone deacetylase 6. J. Med. Chem., 2020, 63(1), 295-308.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01540] [PMID: 31793776]
[113]
Watson, P.J.; Millard, C.J.; Riley, A.M.; Robertson, N.S.; Wright, L.C.; Godage, H.Y.; Cowley, S.M.; Jamieson, A.G.; Potter, B.V.L.; Schwabe, J.W.R. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun., 2016, 7, 11262.
[http://dx.doi.org/10.1038/ncomms11262] [PMID: 27109927]
[114]
Bressi, J.C.; Jennings, A.J.; Skene, R.; Wu, Y.; Melkus, R.; De Jong, R.; O’Connell, S.; Grimshaw, C.E.; Navre, M.; Gangloff, A.R. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl) benzamides. Bioorg. Med. Chem. Lett., 2010, 20(10), 3142-3145.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.091] [PMID: 20392638]
[115]
Bhatia, S.; Krieger, V.; Groll, M.; Osko, J.D.; Reßing, N.; Ahlert, H.; Borkhardt, A.; Kurz, T.; Christianson, D.W.; Hauer, J.; Hansen, F.K. Discovery of the first-in-class dual histone deacetylase-proteasome inhibitor. J. Med. Chem., 2018, 61(22), 10299-10309.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01487] [PMID: 30365892]
[116]
Porter, N.J.; Osko, J.D.; Diedrich, D.; Kurz, T.; Hooker, J.M.; Hansen, F.K.; Christianson, D.W. Histone deacetylase 6-selective inhibitors and the influence of capping groups on hydroxamate-zinc denticity. J. Med. Chem., 2018, 61(17), 8054-8060.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01013] [PMID: 30118224]
[117]
Morgen, M.; Steimbach, R.R.; Géraldy, M.; Hellweg, L.; Sehr, P.; Ridinger, J.; Witt, O.; Oehme, I.; Herbst-Gervasoni, C.J.; Osko, J.D.; Porter, N.J.; Christianson, D.W.; Gunkel, N.; Miller, A.K. Design and synthesis of dihydroxamic acids as HDAC6/8/10 inhibitors. ChemMedChem, 2020, 15(13), 1163-1174.
[http://dx.doi.org/10.1002/cmdc.202000149] [PMID: 32348628]
[118]
Mushegian, A.R.; Bassett, D.E., Jr; Boguski, M.S.; Bork, P.; Koonin, E.V. Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc. Natl. Acad. Sci. USA, 1997, 94(11), 5831-5836.
[http://dx.doi.org/10.1073/pnas.94.11.5831] [PMID: 9159160]
[119]
Ban, C.; Yang, W. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell, 1998, 95(4), 541-552.
[http://dx.doi.org/10.1016/S0092-8674(00)81621-9] [PMID: 9827806]
[120]
Guarné, A.; Junop, M.S.; Yang, W. Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J., 2001, 20(19), 5521-5531.
[http://dx.doi.org/10.1093/emboj/20.19.5521] [PMID: 11574484]
[121]
Obermann, W.M.; Sondermann, H.; Russo, A.A.; Pavletich, N.P.; Hartl, F.U. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol., 1998, 143(4), 901-910.
[http://dx.doi.org/10.1083/jcb.143.4.901] [PMID: 9817749]
[122]
Sgobba, M.; Rastelli, G. Structure-based and in silico design of Hsp90 inhibitors. ChemMedChem, 2009, 4(9), 1399-1409.
[http://dx.doi.org/10.1002/cmdc.200900256] [PMID: 19685544]
[123]
Zhang, H.; Zhou, C.; Chen, W.; Xu, Y.; Shi, Y.; Wen, Y.; Zhang, N. A dynamic view of ATP-coupled functioning cycle of Hsp90 N-terminal domain. Sci. Rep., 2015, 5, 9542.
[http://dx.doi.org/10.1038/srep09542] [PMID: 25867902]
[124]
Stebbins, C.E.; Russo, A.A.; Schneider, C.; Rosen, N.; Hartl, F.U.; Pavletich, N.P. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell, 1997, 89(2), 239-250.
[http://dx.doi.org/10.1016/S0092-8674(00)80203-2] [PMID: 9108479]
[125]
Ernst, J.T.; Liu, M.; Zuccola, H.; Neubert, T.; Beaumont, K.; Turnbull, A.; Kallel, A.; Vought, B.; Stamos, D. Correlation between chemotype-dependent binding conformations of HSP90α/β and isoform selectivity-Implications for the structure-based design of HSP90α/β selective inhibitors for treating neurodegenerative diseases. Bioorg. Med. Chem. Lett., 2014, 24(1), 204-208.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.036] [PMID: 24332488]
[126]
Wright, L.; Barril, X.; Dymock, B.; Sheridan, L.; Surgenor, A.; Beswick, M.; Drysdale, M.; Collier, A.; Massey, A.; Davies, N.; Fink, A.; Fromont, C.; Aherne, W.; Boxall, K.; Sharp, S.; Workman, P.; Hubbard, R.E. Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem. Biol., 2004, 11(6), 775-785.
[http://dx.doi.org/10.1016/j.chembiol.2004.03.033] [PMID: 15217611]
[127]
Immormino, R.M.; Kang, Y.; Chiosis, G.; Gewirth, D.T. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J. Med. Chem., 2006, 49(16), 4953-4960.
[http://dx.doi.org/10.1021/jm060297x] [PMID: 16884307]
[128]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[129]
Amaral, M.; Kokh, D.B.; Bomke, J.; Wegener, A.; Buchstaller, H.P.; Eggenweiler, H.M.; Matias, P.; Sirrenberg, C.; Wade, R.C.; Frech, M. Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat. Commun., 2017, 8(1), 2276.
[http://dx.doi.org/10.1038/s41467-017-02258-w] [PMID: 29273709]
[130]
Schuetz, D.A.; Richter, L.; Amaral, M.; Grandits, M.; Grädler, U.; Musil, D.; Buchstaller, H-P.; Eggenweiler, H-M.; Frech, M.; Ecker, G.F. Ligand desolvation steers on-rate and impacts drug residence time of heat shock protein 90 (Hsp90) inhibitors. J. Med. Chem., 2018, 61(10), 4397-4411.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00080] [PMID: 29701469]
[131]
Prodromou, C.; Roe, S.M.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90(1), 65-75.
[http://dx.doi.org/10.1016/S0092-8674(00)80314-1] [PMID: 9230303]
[132]
Shi, J.; Van de Water, R.; Hong, K.; Lamer, R.B.; Weichert, K.W.; Sandoval, C.M.; Kasibhatla, S.R.; Boehm, M.F.; Chao, J.; Lundgren, K.; Timple, N.; Lough, R.; Ibanez, G.; Boykin, C.; Burrows, F.J.; Kehry, M.R.; Yun, T.J.; Harning, E.K.; Ambrose, C.; Thompson, J.; Bixler, S.A.; Dunah, A.; Snodgrass-Belt, P.; Arndt, J.; Enyedy, I.J.; Li, P.; Hong, V.S.; McKenzie, A.; Biamonte, M.A. EC144 is a potent inhibitor of the heat shock protein 90. J. Med. Chem., 2012, 55(17), 7786-7795.
[http://dx.doi.org/10.1021/jm300810x] [PMID: 22938030]
[133]
Zhu, Y.; Chen, X.; Wu, Z.; Zheng, Y.; Chen, Y.; Tang, W.; Lu, T. Synthesis and antitumor activity of novel diaryl ether hydroxamic acids derivatives as potential HDAC inhibitors. Arch. Pharm. Res., 2012, 35(10), 1723-1732.
[http://dx.doi.org/10.1007/s12272-012-1003-0] [PMID: 23139122]
[134]
Zhang, X-H. Qin-Ma; Wu, H.P.; Khamis, M.Y.; Li, Y.H.; Ma, L.Y.; Liu, H.M. A review of progress in histone deacetylase 6 inhibitors research: structural specificity and functional diversity. J. Med. Chem., 2021, 64(3), 1362-1391.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01782] [PMID: 33523672]
[135]
Shen, S.; Hadley, M.; Ustinova, K.; Pavlicek, J.; Knox, T.; Noonepalle, S.; Tavares, M.T.; Zimprich, C.A.; Zhang, G.; Robers, M.B.; Bařinka, C.; Kozikowski, A.P.; Villagra, A. Discovery of a new isoxazole-3-hydroxamate-based histone deacetylase 6 inhibitor SS-208 with antitumor activity in syngeneic melanoma mouse models. J. Med. Chem., 2019, 62(18), 8557-8577.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00946] [PMID: 31414801]
[136]
Yang, K.; Song, Y.; Xie, H.; Wu, H.; Wu, Y-T.; Leisten, E.D.; Tang, W. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett., 2018, 28(14), 2493-2497.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.057] [PMID: 29871848]
[137]
Porter, N.J.; Mahendran, A.; Breslow, R.; Christianson, D.W. Unusual zinc-binding mode of HDAC6-selective hydroxamate inhibitors. Proc. Natl. Acad. Sci. USA, 2017, 114(51), 13459-13464.
[http://dx.doi.org/10.1073/pnas.1718823114] [PMID: 29203661]
[138]
Porter, N.J.; Shen, S.; Barinka, C.; Kozikowski, A.P.; Christianson, D.W. Molecular basis for the selective inhibition of histone deacetylase 6 by a mercaptoacetamide inhibitor. ACS Med. Chem. Lett., 2018, 9(12), 1301-1305.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00487] [PMID: 30613344]
[139]
Segretti, M.C.F.; Vallerini, G.P.; Brochier, C.; Langley, B.; Wang, L.; Hancock, W.W.; Kozikowski, A.P. Thiol-based potent and selective HDAC6 inhibitors promote tubulin acetylation and T-regulatory cell suppressive function. ACS Med. Chem. Lett., 2015, 6(11), 1156-1161.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00303] [PMID: 26617971]
[140]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325.
[http://dx.doi.org/10.1038/nchembio.1223] [PMID: 23524983]
[141]
Wünsch, M.; Senger, J.; Schultheisz, P.; Schwarzbich, S.; Schmidtkunz, K.; Michalek, C.; Klaß, M.; Goskowitz, S.; Borchert, P.; Praetorius, L.; Sippl, W.; Jung, M.; Sewald, N. Structure-activity relationship of propargylamine-based HDAC inhibitors. ChemMedChem, 2017, 12(24), 2044-2053.
[http://dx.doi.org/10.1002/cmdc.201700550] [PMID: 29120081]
[142]
Senger, J.; Melesina, J.; Marek, M.; Romier, C.; Oehme, I.; Witt, O.; Sippl, W.; Jung, M. Synthesis and biological investigation of oxazole hydroxamates as highly selective histone deacetylase 6 (HDAC6) inhibitors. J. Med. Chem., 2016, 59(4), 1545-1555.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01493] [PMID: 26653328]
[143]
Zhu, J.; Mo, J.; Lin, H-Z.; Chen, Y.; Sun, H-P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem., 2018, 26(12), 3065-3075.
[http://dx.doi.org/10.1016/j.bmc.2018.05.013] [PMID: 29853341]
[144]
Nam, G.; Jung, J.M.; Park, H-J.; Baek, S.Y.; Baek, K.S.; Mok, H.Y.; Kim, D.E.; Jung, Y.H. Structure-activity relationship study of thiazolyl-hydroxamate derivatives as selective histone deacetylase 6 inhibitors. Bioorg. Med. Chem., 2019, 27(15), 3408-3420.
[http://dx.doi.org/10.1016/j.bmc.2019.06.036] [PMID: 31235266]
[145]
Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc., 2010, 132(31), 10842-10846.
[http://dx.doi.org/10.1021/ja102758v] [PMID: 20614936]
[146]
Sellmer, A.; Stangl, H.; Beyer, M.; Grünstein, E.; Leonhardt, M.; Pongratz, H.; Eichhorn, E.; Elz, S.; Striegl, B.; Jenei-Lanzl, Z.; Dove, S.; Straub, R.H.; Krämer, O.H.; Mahboobi, S. Marbostat-100 defines a new class of potent and selective antiinflammatory and antirheumatic histone deacetylase 6 inhibitors. J. Med. Chem., 2018, 61(8), 3454-3477.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01593] [PMID: 29589441]
[147]
Olson, D.E.; Wagner, F.F.; Kaya, T.; Gale, J.P.; Aidoud, N.; Davoine, E.L.; Lazzaro, F.; Weïwer, M.; Zhang, Y-L.; Holson, E.B. Discovery of the first histone deacetylase 6/8 dual inhibitors. J. Med. Chem., 2013, 56(11), 4816-4820.
[http://dx.doi.org/10.1021/jm400390r] [PMID: 23672185]
[148]
Rodrigues, D.A.; Ferreira-Silva, G.À.; Ferreira, A.C.S.; Fernandes, R.A.; Kwee, J.K.; Sant’Anna, C.M.R.; Ionta, M.; Fraga, C.A.M. Design, synthesis, and pharmacological evaluation of novel N-acylhydrazone derivatives as potent histone deacetylase 6/8 dual inhibitors. J. Med. Chem., 2016, 59(2), 655-670.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01525] [PMID: 26705137]
[149]
Wagner, F.F.; Olson, D.E.; Gale, J.P.; Kaya, T.; Weïwer, M.; Aidoud, N.; Thomas, M.; Davoine, E.L.; Lemercier, B.C.; Zhang, Y-L.; Holson, E.B. Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif. J. Med. Chem., 2013, 56(4), 1772-1776.
[http://dx.doi.org/10.1021/jm301355j] [PMID: 23368884]
[150]
Jhaveri, K.; Taldone, T.; Modi, S.; Chiosis, G. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim. Biophys. Acta, 2012, 1823(3), 742-755.
[http://dx.doi.org/10.1016/j.bbamcr.2011.10.008] [PMID: 22062686]
[151]
Yuno, A.; Lee, M-J.; Lee, S.; Tomita, Y.; Rekhtman, D.; Moore, B.; Trepel, J.B. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol. Biol., 2018, 1709, 423-441.
[http://dx.doi.org/10.1007/978-1-4939-7477-1_29] [PMID: 29177675]
[152]
Sidera, K.; Patsavoudi, E. HSP90 inhibitors: current development and potential in cancer therapy. Recent Patents Anticancer Drug Discov., 2014, 9(1), 1-20.
[http://dx.doi.org/10.2174/15748928113089990031] [PMID: 23312026]
[153]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[154]
Honma, Y.; Kurokawa, Y.; Sawaki, A.; Naito, Y.; Iwagami, S.; Baba, H.; Komatsu, Y.; Nishida, T.; Doi, T. Randomized, Double-Blind, Placebo (PL)-Controlled, Phase III Trial of Pimitespib (TAS-116), an Oral Inhibitor of Heat Shock Protein 90 (HSP90), in Patients (Pts) with Advanced Gastrointestinal Stromal Tumor (GIST) Refractory to Imatinib (IM), Sunitinib (SU) and Regorafenib (REG). JCO, 2021, 39, 11524-11524.
[http://dx.doi.org/10.1200/JCO.2021.39.15_suppl.11524]
[155]
Ohkubo, S.; Kodama, Y.; Muraoka, H.; Hitotsumachi, H.; Yoshimura, C.; Kitade, M.; Hashimoto, A.; Ito, K.; Gomori, A.; Takahashi, K.; Shibata, Y.; Kanoh, A.; Yonekura, K. TAS-116, a highly selective inhibitor of heat shock protein 90α and β, demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models. Mol. Cancer Ther., 2015, 14(1), 14-22.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0219] [PMID: 25416789]
[156]
Kaneko, K.; Osada, T.; Morse, M.A.; Gwin, W.R.; Ginzel, J.D.; Snyder, J.C.; Yang, X-Y.; Liu, C-X.; Diniz, M.A.; Bodoor, K.; Hughes, P.F.; Haystead, T.A.; Lyerly, H.K. Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors. Commun. Biol., 2020, 3(1), 226.
[http://dx.doi.org/10.1038/s42003-020-0956-7] [PMID: 32385408]
[157]
Woodhead, A.J.; Angove, H.; Carr, M.G.; Chessari, G.; Congreve, M.; Coyle, J.E.; Cosme, J.; Graham, B.; Day, P.J.; Downham, R.; Fazal, L.; Feltell, R.; Figueroa, E.; Frederickson, M.; Lewis, J.; McMenamin, R.; Murray, C.W.; O’Brien, M.A.; Parra, L.; Patel, S.; Phillips, T.; Rees, D.C.; Rich, S.; Smith, D-M.; Trewartha, G.; Vinkovic, M.; Williams, B.; Woolford, A.J-A. Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J. Med. Chem., 2010, 53(16), 5956-5969.
[http://dx.doi.org/10.1021/jm100060b] [PMID: 20662534]
[158]
Delmotte, P.; Delmotte-Plaque, J. A new antifungal substance of fungal origin. Nature, 1953, 171(4347), 344.
[http://dx.doi.org/10.1038/171344a0] [PMID: 13036885]
[159]
Sun, H-P.; Jia, J-M.; Jiang, F.; Xu, X-L.; Liu, F.; Guo, X-K.; Cherfaoui, B.; Huang, H-Z.; Pan, Y.; You, Q-D. Identification and optimization of novel Hsp90 inhibitors with tetrahydropyrido[4,3-d]pyrimidines core through shape-based screening. Eur. J. Med. Chem., 2014, 79, 399-412.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.061] [PMID: 24763261]
[160]
Jiang, F.; Wang, H-J.; Jin, Y-H.; Zhang, Q.; Wang, Z-H.; Jia, J-M.; Liu, F.; Wang, L.; Bao, Q-C.; Li, D-D.; You, Q-D.; Xu, X-L. Novel tetrahydropyrido[4,3-d]pyrimidines as potent inhibitors of chaperone heat shock protein 90. J. Med. Chem., 2016, 59(23), 10498-10519.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00912] [PMID: 27933959]
[161]
Liang, C.; Hao, H.; Wu, X.; Li, Z.; Zhu, J.; Lu, C.; Shen, Y. Design and synthesis of N-(5-chloro-2,4-dihydroxyben-zoyl)-(R)-1,2,3,4-tetrahydroisoquinoline-3-carboxamides as novel Hsp90 inhibitors. Eur. J. Med. Chem., 2016, 121, 272-282.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.033] [PMID: 27266997]
[162]
Liang, C.; Wu, X.; Li, Z.; Zhu, J.; Lu, C.; Shen, Y. Design, synthesis and pharmacological evaluation of N-(5-chloro-2,4-dihydroxybenzoyl)-(R)-N-arylmethyl-1,2,3,4-tetrahydro- 3-isoquinolinecarboxamides as potent Hsp90 inhibitors. Eur. J. Med. Chem., 2018, 143, 85-96.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.013] [PMID: 29172085]
[163]
Taldone, T.; Patel, P.D.; Patel, M.; Patel, H.J.; Evans, C.E.; Rodina, A.; Ochiana, S.; Shah, S.K.; Uddin, M.; Gewirth, D.; Chiosis, G. Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series. J. Med. Chem., 2013, 56(17), 6803-6818.
[http://dx.doi.org/10.1021/jm400619b] [PMID: 23965125]
[164]
Jeong, J.H.; Oh, Y.J.; Lho, Y.; Park, S.Y.; Liu, K-H.; Ha, E.; Seo, Y.H. Targeting the entry region of Hsp90's ATP binding pocket with a novel 6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl amide. Eur. J. Med. Chem., 2016, 124, 1069-1080.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.038] [PMID: 27783977]
[165]
Park, S.Y.; Oh, Y.J.; Lho, Y.; Jeong, J.H.; Liu, K-H.; Song, J.; Kim, S-H.; Ha, E.; Seo, Y.H. Design, synthesis, and biological evaluation of a series of resorcinol-based N-benzyl benzamide derivatives as potent Hsp90 inhibitors. Eur. J. Med. Chem., 2018, 143, 390-401.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.054] [PMID: 29202402]
[166]
Huang, R.; Ayine-Tora, D.M.; Muhammad Rosdi, M.N.; Li, Y.; Reynisson, J.; Leung, I.K.H. Virtual screening and biophysical studies lead to HSP90 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(2), 277-281.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.059] [PMID: 27913182]
[167]
Geng, K.; Liu, H.; Song, Z.; Zhang, C.; Zhang, M.; Yang, H.; Cao, J.; Geng, M.; Shen, A.; Zhang, A. Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs. Eur. J. Med. Chem., 2018, 152, 76-86.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.019] [PMID: 29698859]
[168]
Taldone, T.; Chiosis, G. Purine-scaffold Hsp90 inhibitors. Curr. Top. Med. Chem., 2009, 9(15), 1436-1446.
[http://dx.doi.org/10.2174/156802609789895737] [PMID: 19860732]
[169]
Chiosis, G.; Timaul, M.N.; Lucas, B.; Munster, P.N.; Zheng, F.F.; Sepp-Lorenzino, L.; Rosen, N. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol., 2001, 8(3), 289-299.
[http://dx.doi.org/10.1016/S1074-5521(01)00015-1] [PMID: 11306353]
[170]
Vilenchik, M.; Solit, D.; Basso, A.; Huezo, H.; Lucas, B.; He, H.; Rosen, N.; Spampinato, C.; Modrich, P.; Chiosis, G. Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90. Chem. Biol., 2004, 11(6), 787-797.
[http://dx.doi.org/10.1016/j.chembiol.2004.04.008] [PMID: 15217612]
[171]
Chiosis, G.; Lucas, B.; Shtil, A.; Huezo, H.; Rosen, N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg. Med. Chem., 2002, 10(11), 3555-3564.
[http://dx.doi.org/10.1016/S0968-0896(02)00253-5] [PMID: 12213470]
[172]
Fadden, P.; Huang, K.H.; Veal, J.M.; Steed, P.M.; Barabasz, A.F.; Foley, B.; Hu, M.; Partridge, J.M.; Rice, J.; Scott, A.; Dubois, L.G.; Freed, T.A.; Silinski, M.A.R.; Barta, T.E.; Hughes, P.F.; Ommen, A.; Ma, W.; Smith, E.D.; Spangenberg, A.W.; Eaves, J.; Hanson, G.J.; Hinkley, L.; Jenks, M.; Lewis, M.; Otto, J.; Pronk, G.J.; Verleysen, K.; Haystead, T.A.; Hall, S.E. Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem. Biol., 2010, 17(7), 686-694.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.015] [PMID: 20659681]
[173]
Vallée, F.; Carrez, C.; Pilorge, F.; Dupuy, A.; Parent, A.; Bertin, L.; Thompson, F.; Ferrari, P.; Fassy, F.; Lamberton, A.; Thomas, A.; Arrebola, R.; Guerif, S.; Rohaut, A.; Certal, V.; Ruxer, J-M.; Gouyon, T.; Delorme, C.; Jouanen, A.; Dumas, J.; Grépin, C.; Combeau, C.; Goulaouic, H.; Dereu, N.; Mikol, V.; Mailliet, P.; Minoux, H. Tricyclic series of heat shock protein 90 (Hsp90) inhibitors part I: discovery of tricyclic imidazo[4,5-c]pyridines as potent inhibitors of the Hsp90 molecular chaperone. J. Med. Chem., 2011, 54(20), 7206-7219.
[http://dx.doi.org/10.1021/jm200784m] [PMID: 21972823]
[174]
Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S-H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. The heat shock protein 90 inhibitor SNX5422 has a synergistic activity with histone deacetylase inhibitors in induction of death of anaplastic thyroid carcinoma cells. Endocrine, 2016, 51(2), 274-282.
[http://dx.doi.org/10.1007/s12020-015-0706-7] [PMID: 26219406]
[175]
Bolognesi, M.L. Polypharmacology in a single drug: multitarget drugs. Curr. Med. Chem., 2013, 20(13), 1639-1645.
[http://dx.doi.org/10.2174/0929867311320130004] [PMID: 23410164]
[176]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[177]
Mehndiratta, S.; Lin, M-H.; Wu, Y-W.; Chen, C-H.; Wu, T-Y.; Chuang, K-H.; Chao, M-W.; Chen, Y-Y.; Pan, S-L.; Chen, M-C.; Liou, J-P. N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression. Eur. J. Med. Chem., 2020, 185111725
[http://dx.doi.org/10.1016/j.ejmech.2019.111725] [PMID: 31655430]
[178]
Wu, Y-W.; Chao, M-W.; Tu, H-J.; Chen, L-C.; Hsu, K-C.; Liou, J-P.; Yang, C-R.; Yen, S-C. HuangFu, W.C.; Pan, S.L. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis, 2021, 10(5), 39.
[http://dx.doi.org/10.1038/s41389-021-00331-0] [PMID: 33986242]
[179]
Ojha, R.; Huang, H-L. HuangFu, W.C.; Wu, Y.W.; Nepali, K.; Lai, M.J.; Su, C.J.; Sung, T.Y.; Chen, Y.L.; Pan, S.L.; Liou, J.P. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur. J. Med. Chem., 2018, 150, 667-677.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.006] [PMID: 29567459]
[180]
Ojha, R.; Nepali, K.; Chen, C-H.; Chuang, K-H.; Wu, T-Y.; Lin, T.E.; Hsu, K-C.; Chao, M-W.; Lai, M-J.; Lin, M-H.; Huang, H-L.; Chang, C-D.; Pan, S-L.; Chen, M-C.; Liou, J-P. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur. J. Med. Chem., 2020, 190112086
[http://dx.doi.org/10.1016/j.ejmech.2020.112086] [PMID: 32058238]
[181]
Yao, L.; Ohlson, S.; Dymock, B.W. Design and synthesis of triple inhibitors of janus kinase (JAK), histone deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorg. Med. Chem. Lett., 2018, 28(8), 1357-1362.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.009] [PMID: 29545103]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy