Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Letter Article

Robust Discovery of Mild Cognitive Impairment Subtypes and Their Risk of Alzheimer's Disease Conversion Using Unsupervised Machine Learning and Gaussian Mixture Modeling

Author(s): Fahimeh Nezhadmoghadam*, Antonio Martinez-Torteya, Victor Treviño, Emmanuel Martínez, Alejandro Santos, Jose Tamez-Peña and Alzheimer’s Disease Neuroimaging Initiative

Volume 18, Issue 7, 2021

Published on: 31 August, 2021

Page: [595 - 606] Pages: 12

DOI: 10.2174/1567205018666210831145825

Price: $65

conference banner
Abstract

Background: Alzheimer’s Disease (AD) is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills. The ability to correctly predict the diagnosis of Alzheimer’s disease in its earliest stages can help physicians make more informed clinical decisions on therapy plans.

Objective: This study aimed to determine whether the unsupervised discovering of latent classes of subjects with Mild Cognitive Impairment (MCI) may be useful in finding different prodromal AD stages and/or subjects with a low MCI to AD conversion risk.

Methods: Total 18 features relevant to the MCI to AD conversion process led to the identification of 681 subjects with early MCI. Subjects were divided into training (70%) and validation (30%) sets. Subjects from the training set were analyzed using consensus clustering, and Gaussian Mixture Models (GMM) were used to describe the latent classes. The discovered GMM predicted the latent class of the validation set. Finally, descriptive statistics, rates of conversion, and Odds Ratios (OR) were computed for each discovered class.

Results: Through consensus clustering, we discovered three different clusters among MCI subjects. The three clusters were associated with low-risk (OR = 0.12, 95%CI = 0.04 to 0.3|), medium-risk (OR = 1.33, 95%CI = 0.75 to 2.37), and high-risk (OR = 3.02, 95%CI = 1.64 to 5.57) of converting from MCI to AD, with the high-risk and low-risk groups highly contrasting. Hence, prodromal AD subjects were present in only two clusters.

Conclusion: We successfully discovered three different latent classes among MCI subjects with varied risks of MCI-to-AD conversion through consensus clustering. Two of the discovered classes may represent two different prodromal presentations of Alzheimer´s disease.

Keywords: Alzheimer's disease, mild cognitive impairment, latent class analysis, consensus clustering, Gaussian mixture model, intracranial volume.

« Previous
[1]
Association As. 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[2]
Patterson C. World Alzheimer report 2018: The state of the art of dementia research: New frontiers. London, UK: Alzheimer’s Disease International (ADI) 2018.
[3]
Alexiou A, Mantzavinos VD, Greig NH, Kamal MA. A Bayesian model for the prediction and early diagnosis of Alzheimer’s disease. Front Aging Neurosci 2017; 9: 77.
[http://dx.doi.org/10.3389/fnagi.2017.00077] [PMID: 28408880]
[4]
Bronner K, Perneczky R, McCabe R, Kurz A, Hamann J. Which medical and social decision topics are important after early diagnosis of Alzheimer’s Disease from the perspectives of people with Alzheimer’s Disease, spouses and professionals? BMC Res Notes 2016; 9(1): 149.
[http://dx.doi.org/10.1186/s13104-016-1960-3] [PMID: 26956520]
[5]
Frozza RL, Lourenco MV, De Felice FG. Challenges for Alzheimer’s disease therapy: Insights from novel mechanisms beyond memory defects. Front Neurosci 2018; 12: 37.
[http://dx.doi.org/10.3389/fnins.2018.00037] [PMID: 29467605]
[6]
Lanctôt KL, Rajaram RD, Herrmann N. Therapy for Alzheimer’s disease: How effective are current treatments? Ther Adv Neurol Disord 2009; 2(3): 163-80.
[http://dx.doi.org/10.1177/1756285609102724] [PMID: 21179526]
[7]
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 280-92.
[http://dx.doi.org/10.1016/j.jalz.2011.03.003] [PMID: 21514248]
[8]
Rozzini L. Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. Intern J Geriatric Psychiatry 2007; 22(12): 1217-22.
[http://dx.doi.org/10.1002/gps.1816]
[9]
Ward A, Tardiff S, Dye C, Arrighi HM. Rate of conversion from prodromal Alzheimer’s disease to Alzheimer’s dementia: A systematic review of the literature. Dement Geriatr Cogn Disord Extra 2013; 3(1): 320-32.
[http://dx.doi.org/10.1159/000354370] [PMID: 24174927]
[10]
Knopman DS, Petersen RC. Mild cognitive impairment and mild dementia: A clinical perspective.Mayo Clin Proc. 2014; 89(10): 1452-9..
[http://dx.doi.org/10.1016/j.mayocp.2014.06.019]
[11]
Atluri G, Padmanabhan K, Fang G, et al. Complex biomarker discovery in neuroimaging data: Finding a needle in a haystack. Neuroimage Clin 2013; 3: 123-31.
[http://dx.doi.org/10.1016/j.nicl.2013.07.004] [PMID: 24179856]
[12]
Bai F, Yuan Y, Shi Y, Zhang Z. Multiple genetic imaging study of the association between cholesterol metabolism and brain functional alterations in individuals with risk factors for Alzheimer’s disease. Oncotarget 2016; 7(13): 15315-28.
[http://dx.doi.org/10.18632/oncotarget.8100] [PMID: 26985771]
[13]
Khoury R, Ghossoub E. Diagnostic Biomarkers of Alzheimer’s Disease: A State-of-the-Art Review. Biomarkers in Neuropsychiatry 2019; p. 100005.
[14]
Alashwal H, El Halaby M, Crouse JJ, Abdalla A, Moustafa AA. The Application of Unsupervised Clustering Methods to Alzheimer’s Disease. Front Comput Neurosci 2019; 13: 31.
[http://dx.doi.org/10.3389/fncom.2019.00031] [PMID: 31178711]
[15]
Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging β-amyloid pathology. JAMA 2011; 305(3): 275-83.
[http://dx.doi.org/10.1001/jama.2010.2008] [PMID: 21245183]
[16]
Weiner M, Khachaturian Z. The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: A consensus report. Alzheimer’s Assoc Chicago, IL 2005; 1: 1-15.
[17]
Prince MJ, Wu F, Guo Y, et al. The burden of disease in older people and implications for health policy and practice. Lancet 2015; 385(9967): 549-62.
[http://dx.doi.org/10.1016/S0140-6736(14)61347-7] [PMID: 25468153]
[18]
Ezzati A. Detecting biological heterogeneity patterns in ADNI amnestic mild cognitive impairment based on volumetric MRI. Brain Imaging Behav 2020; 14(5): 1792-1804.
[PMID: 31104279]
[19]
Bernell S, Howard SW. Use your words carefully: What is a chronic disease? Front Public Health 2016; 4: 159.
[http://dx.doi.org/10.3389/fpubh.2016.00159] [PMID: 27532034]
[20]
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics. Phys Med 2017; 38: 122-39.
[http://dx.doi.org/10.1016/j.ejmp.2017.05.071] [PMID: 28595812]
[21]
Moscoso A, Silva-Rodríguez J, Aldrey JM, et al. Staging the cognitive continuum in prodromal Alzheimer’s disease with episodic memory. Neurobiol Aging 2019; 84: 1-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.07.014] [PMID: 31479859]
[22]
Martorelli M, Sudo FK, Charchat-Fichman H. This is not only about memory: A systematic review on neuropsychological heterogeneity in Alzheimer’s disease. Psychol Neurosci 2018; 12(2), 271-81..
[23]
Gamberger D, Lavrač N, Srivatsa S, Tanzi RE, Doraiswamy PM. Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease. Sci Rep 2017; 7(1): 6763.
[http://dx.doi.org/10.1038/s41598-017-06624-y] [PMID: 28755001]
[24]
Fraley C, Raftery AE. MCLUST version 3: An R package for normal mixture modeling and model-based clustering. Statistics 2006.
[http://dx.doi.org/10.21236/ADA456562]
[25]
García-Escudero LA. A review of robust clustering methods. Adv Data Anal Classif 2010; 4(2-3): 89-109.
[http://dx.doi.org/10.1007/s11634-010-0064-5]
[26]
Gallegos MT, Ritter G. A robust method for cluster analysis. Ann Stat 2005; 33(1): 347-80.
[http://dx.doi.org/10.1214/009053604000000940]
[27]
Șenbabaoğlu Y, Michailidis G, Li JZ. Critical limitations of consensus clustering in class discovery. Sci Rep 2014; 4(1): 6207.
[http://dx.doi.org/10.1038/srep06207] [PMID: 25158761]
[28]
Reynolds DA. Gaussian Mixture Models.Encyclopedia of biometrics. 2009; 741.
[http://dx.doi.org/10.1007/978-0-387-73003-5_196]
[29]
Marinescu RV. TADPOLE Challenge: Accurate Alzheimer’s disease prediction through crowdsourced forecasting of future data. Predict Intell. Med 2019; 11843: 1-10.
[http://dx.doi.org/10.1007/978-3-030-32281-6_1]
[30]
Marinescu RV. Tadpole challenge: Prediction of longitudinal evolution in Alzheimer's disease. arXiv preprint 2018; arXiv:1805.03909
[31]
Edmonds EC, McDonald CR, Marshall A, et al. Early versus late MCI: Improved MCI staging using a neuropsychological approach. Alzheimers Dement 2019; 15(5): 699-708.
[http://dx.doi.org/10.1016/j.jalz.2018.12.009] [PMID: 30737119]
[32]
Aisen PS, Petersen RC, Donohue MC, et al. Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative: Progress and plans. Alzheimers Dement 2010; 6(3): 239-46.
[http://dx.doi.org/10.1016/j.jalz.2010.03.006] [PMID: 20451872]
[33]
Aisen PS. Exploring survival models associated with MCI to AD conversion: A machine learning approach. bioRxiv 2019; 836510.
[34]
Isella V, Villa L, Russo A, Regazzoni R, Ferrarese C, Appollonio IM. Discriminative and predictive power of an informant report in mild cognitive impairment. J Neurol Neurosurg Psychiatry 2006; 77(2): 166-71.
[http://dx.doi.org/10.1136/jnnp.2005.069765] [PMID: 16421116]
[35]
Welsh M, Begg S. The Cognitive Reflection Test: Familiarity and predictive power in professionals. In: CogSci. 2017.
[36]
Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43(8): 1467-72.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[37]
Blacker D, Haines JL, Rodes L, et al. ApoE-4 and age at onset of Alzheimer’s disease: The NIMH genetics initiative. Neurology 1997; 48(1): 139-47.
[http://dx.doi.org/10.1212/WNL.48.1.139] [PMID: 9008509]
[38]
Devanand DP, Bansal R, Liu J, Hao X, Pradhaban G, Peterson BS. MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. Neuroimage 2012; 60(3): 1622-9.
[http://dx.doi.org/10.1016/j.neuroimage.2012.01.075] [PMID: 22289801]
[39]
Apostolova LG, Thompson PM. Mapping progressive brain structural changes in early Alzheimer’s disease and mild cognitive impairment. Neuropsychologia 2008; 46(6): 1597-612.
[http://dx.doi.org/10.1016/j.neuropsychologia.2007.10.026] [PMID: 18395760]
[40]
Sullivan Gail M, Feinn Richard. Using effect size—or why the P value is not enough. J Graduate medical education 43 2012; 279-82.
[41]
Song C, Ristenpart T, Shmatikov V. Machine learning models that remember too much. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
[http://dx.doi.org/10.1145/3133956.3134077]
[42]
Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J 2016; 8(1): 289-317.
[http://dx.doi.org/10.32614/RJ-2016-021] [PMID: 27818791]
[43]
Maćkiewicz A, Ratajczak W. Principal components analysis (PCA). Comput Geosci 1993; 19(3): 303-42.
[http://dx.doi.org/10.1016/0098-3004(93)90090-R]
[44]
Bernatavičienė J. , Dzemyda G, Kurasova O, Marcinkevičius V, Medvedev V, Treigys P. Cloud Computing approach for intelligent visualization of multidimensional data. In: Pardalos PM, Zhigljavsky A, Žilinskas J, EdsAdvances in stochastic and deterministic global optimization. Springer 2016; pp. 73-85.
[http://dx.doi.org/10.1007/978-3-319-29975-4_5]
[45]
Jolliffe I. Principal component analysis. Technometrics 2003; 45(3): 276.
[http://dx.doi.org/10.1198/tech.2003.s783]
[46]
Topchy A, Jain AK, Punch W. Clustering ensembles: Models of consensus and weak partitions. IEEE Trans Pattern Anal Mach Intell 2005; 27(12): 1866-81.
[http://dx.doi.org/10.1109/TPAMI.2005.237] [PMID: 16355656]
[47]
Fred ALN, Jain AK. Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 2005; 27(6): 835-50.
[http://dx.doi.org/10.1109/TPAMI.2005.113] [PMID: 15943417]
[48]
Li F. Clustering ensemble based on sample’s stability. Artif Intell 2019; 273: 37-55.
[http://dx.doi.org/10.1016/j.artint.2018.12.007]
[49]
Peter J, Abdulkadir A, Kaller C, et al. Subgroups of Alzheimer’s disease: Stability of empirical clusters over time. J Alzheimers Dis 2014; 42(2): 651-61.
[http://dx.doi.org/10.3233/JAD-140261] [PMID: 24927700]
[50]
Fraley C. , Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington..
[51]
Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry 2010; 19(3): 227-9.
[PMID: 20842279]
[52]
Kassambara A. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’ 2017.
[53]
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50(3): 163-70.
[PMID: 5910392]
[54]
Ferreira JA. The Benjamini-Hochberg method in the case of discrete test statistics. Int J Biostat 2007; 3(1): 11.
[http://dx.doi.org/10.2202/1557-4679.1065] [PMID: 22550651]
[55]
Edmonds EC, Weigand AJ, Hatton SN, et al. Patterns of longitudinal cortical atrophy over 3 years in empirically derived MCI subtypes. Neurology 2020; 94(24): e2532-44.
[http://dx.doi.org/10.1212/WNL.0000000000009462] [PMID: 32393648]
[56]
Weiner MW, Veitch DP, Aisen PS, et al. Impact of the Alzheimer’s disease neuroimaging initiative, 2004 to 2014. Alzheimers Dement 2015; 11(7): 865-84.
[http://dx.doi.org/10.1016/j.jalz.2015.04.005] [PMID: 26194320]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy