Review Article

3-吲哚啉-2-1衍生物作为癌症治疗的激酶抑制剂的发展

卷 29, 期 11, 2022

发表于: 31 August, 2021

页: [1891 - 1919] 页: 29

弟呕挨: 10.2174/0929867328666210831142311

价格: $65

摘要

激酶通过直接或间接地调节癌基因的表达和抗原基因的转录,是肿瘤发生和转移的关键调控因子。相应地,多种3-吲哚啉-2-1衍生物作为癌症治疗的选择性激酶抑制剂,表现出低纳摩尔活性,具有显著的疗效、优越的反应率和令人钦佩的耐受性。特别是,某些3-吲哚啉-2-1衍生物已经满足了临床试验或药物市场的要求。在此,我们关注了3-吲哚啉-2-1衍生物作为癌症治疗激酶抑制剂的特点,概述了3-吲哚啉-2-1衍生物作为癌症治疗激酶抑制剂的最新进展,分析了酪氨酸激酶抑制剂和丝氨酸/丝氨酸/苏氨酸激酶抑制剂的选择性,总结了作为选择性激酶抑制剂的构效关系(SARs),并为3-吲哚啉-2-1衍生物作为癌症治疗激酶抑制剂的开发提供了前景。

关键词: 3-吲哚啉-2-1,激酶抑制剂,构效关系,癌症治疗,恶性肿瘤,ATP结合。

[1]
Bai, L.; Wang, S. Targeting apoptosis pathways for new cancer therapeutics. Annu. Rev. Med., 2014, 65, 139-155.
[http://dx.doi.org/10.1146/annurev-med-010713-141310] [PMID: 24188661]
[2]
Smith, R.A.; Brooks, D.; Cokkinides, V.; Saslow, D.; Brawley, O.W. Cancer screening in the United States, 2013: a review of current American Cancer Society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. CA Cancer J. Clin., 2013, 63(2), 88-105.
[http://dx.doi.org/10.3322/caac.21174] [PMID: 23378235]
[3]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[4]
Mao, Y.J.; Li, H.H.; Li, J.F.; Shen, J.S. [Signal transduction by protein tyrosine kinases and antitumor agents] Yao Xue Xue Bao, 2008, 43(4), 323-334.
[PMID: 18664191]
[5]
Bain, J.; Plater, L.; Elliott, M.; Shpiro, N.; Hastie, C.J.; McLauchlan, H.; Klevernic, I.; Arthur, J.S.; Alessi, D.R.; Cohen, P. The selectivity of protein kinase inhibitors: a further update. Biochem. J., 2007, 408(3), 297-315.
[http://dx.doi.org/10.1042/BJ20070797] [PMID: 17850214]
[6]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[7]
Shroff, G.S.; de Groot, P.M.; Papadimitrakopoulou, V.A.; Truong, M.T.; Carter, B.W. Targeted therapy and immunotherapy in the treatment of non-small cell lung cancer. Radiol. Clin. North Am., 2018, 56(3), 485-495.
[http://dx.doi.org/10.1016/j.rcl.2018.01.012] [PMID: 29622080]
[8]
Bouérat, L.; Fensholdt, J.; Liang, X.; Havez, S.; Nielsen, S.F.; Hansen, J.R.; Bolvig, S.; Andersson, C. Indolin-2-ones with high in vivo efficacy in a model for multiple sclerosis. J. Med. Chem., 2005, 48(17), 5412-5414.
[http://dx.doi.org/10.1021/jm0504151] [PMID: 16107139]
[9]
Chen, B.; Lei, J.; Zhao, J. Michael addition of aryl thiols to 3-(2,2,2- trifluoroethylidene) oxindoles under catalyst-free conditions: the rapid synthesis of sulfur-containing oxindole derivatives. J. Chem. Res.-S, 2018, 42, 210-214.
[http://dx.doi.org/10.3184/174751918X15240724383170]
[10]
Vintonyak, V.V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. Engl., 2010, 49(34), 5902-5905.
[http://dx.doi.org/10.1002/anie.201002138] [PMID: 20632348]
[11]
Millemaggi, Alessia 3-alkenyl-oxindoles: natural products, pharmaceuticals, and recent synthetic advances in tandem/telescoped approaches. Eur. J. Org. Chem., 2010, 24, 4527-4547.
[http://dx.doi.org/10.1002/ejoc.201000643]
[12]
Prakash, C.R.; Theivendren, P.; Raja, S. Indolin-2-ones in clinical trials as potential kinase inhibitors: a review. J. Pharm. Pharmacol., 2012, 3, 62-71.
[http://dx.doi.org/10.4236/pp.2012.31010]
[13]
Hu, X.; Zheng, X.; Yang, S.; Wang, L.; Hao, X.; Cui, X.; Ding, L.; Mao, L.; Hu, P.; Shi, Y. First-in-human phase I study of BPI-9016M, a dual MET/Axl inhibitor, in patients with non-small cell lung cancer. J. Hematol. Oncol., 2020, 13(1), 6-10.
[http://dx.doi.org/10.1186/s13045-019-0834-2] [PMID: 31948451]
[14]
Lin, W.; Luo, J.; Sun, Y.; Lin, C.; Li, G.; Niu, Y.; Chang, C. ASC-J9® suppresses prostate cancer cell invasion via altering the sumoylation-phosphorylation of STAT3. Cancer Lett., 2018, 425, 21-30.
[http://dx.doi.org/10.1016/j.canlet.2018.02.007] [PMID: 29425687]
[15]
Deeks, E.D.; Keating, G.M. Sunitinib. Drugs, 2006, 66(17), 2255-2266.
[http://dx.doi.org/10.2165/00003495-200666170-00007] [PMID: 17137406]
[16]
London, C.A.; Malpas, P.B.; Wood-Follis, S.L.; Boucher, J.F.; Rusk, A.W.; Rosenberg, M.P.; Henry, C.J.; Mitchener, K.L.; Klein, M.K.; Hintermeister, J.G.; Bergman, P.J.; Couto, G.C.; Mauldin, G.N.; Michels, G.M. Multi-center, placebo-controlled, double-blind, randomized study of oral toceranib phosphate (SU11654), a receptor tyrosine kinase inhibitor, for the treatment of dogs with recurrent (either local or distant) mast cell tumor following surgical excision. Clin. Cancer Res., 2009, 15(11), 3856-3865.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1860] [PMID: 19470739]
[17]
Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; Kim, D.S.; Kolb, M.; Nicholson, A.G.; Noble, P.W.; Selman, M.; Taniguchi, H.; Brun, M.; Le Maulf, F.; Girard, M.; Stowasser, S.; Schlenker-Herceg, R.; Disse, B.; Collard, H.R. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med., 2014, 370(22), 2071-2082.
[http://dx.doi.org/10.1056/NEJMoa1402584] [PMID: 24836310]
[18]
Roth, G.J.; Binder, R.; Colbatzky, F.; Dallinger, C.; Schlenker-Herceg, R.; Hilberg, F.; Wollin, S.L.; Kaiser, R. Nintedanib: from discovery to the clinic. J. Med. Chem., 2015, 58(3), 1053-1063.
[http://dx.doi.org/10.1021/jm501562a] [PMID: 25474320]
[19]
Xiao, F.; Luo, Y.; Lu, W. Synthesis and antitumor evaluation of 3-substituted indolin-2-ones. Youji Huaxue, 2009, 29, 459-461.http://sioc-journal.cn/Jwk_yjhx/EN/Y2009/V29/I03/459
[20]
Zou, H.; Zhang, L.; Ouyang, J.; Giulianotti, M.A.; Yu, Y. Synthesis and biological evaluation of 2-indolinone derivatives as potential antitumor agents. Eur. J. Med. Chem., 2011, 46(12), 5970-5977.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.009] [PMID: 22019188]
[21]
Mokhtari, S.; Mosaddegh, M.; Hamzeloo Moghadam, M.; Soleymani, Z.; Ghafari, S.; Kobarfard, F. Synthesis and cytotoxic evaluation of novel 3-substituted derivatives of 2-indolinone. Iran. J. Pharm. Res., 2012, 11(2), 411-421.
[PMID: 24250465]
[22]
Cho, T.P.; Dong, S.Y.; Jun, F.; Hong, F.J.; Liang, Y.J.; Lu, X.; Hua, P.J.; Li, L.Y.; Lei, Z.; Bing, H.; Ying, Z.; Qiong, L.F.; Bei, F.B.; Guang, L.L.; Shen, G.A.; Hong, S.G.; Hong, S.W.; Tai, M.X. Novel potent orally active multitargeted receptor tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of 2-indolinone derivatives. J. Med. Chem., 2010, 53(22), 8140-8149.
[http://dx.doi.org/10.1021/jm101036c] [PMID: 21028894]
[23]
Huang, Z.; Li, H.; Zhang, Q.; Lu, F.; Hong, M.; Zhang, Z.; Guo, X.; Zhu, Y.; Li, S.; Liu, H. Discovery of indolinone-based multikinase inhibitors as potential therapeutics for idiopathic pulmonary fibrosis. ACS Med. Chem. Lett., 2017, 8(11), 1142-1147.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00164] [PMID: 29152045]
[24]
Zhang, L.; Zheng, Q.; Yang, Y.; Zhou, H.; Gong, X.; Zhao, S.; Fan, C. Synthesis and in vivo SAR study of indolin-2-one-based multi-targeted inhibitors as potential anticancer agents. Eur. J. Med. Chem., 2014, 82, 139-151.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.051] [PMID: 24904961]
[25]
Shukla, S.; Robey, R.W.; Bates, S.E.; Ambudkar, S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab. Dispos., 2009, 37(2), 359-365.
[http://dx.doi.org/10.1124/dmd.108.024612] [PMID: 18971320]
[26]
Rabuck-Gibbons, J.N.; Keating, J.E.; Ruotolo, B.T. Collision induced unfolding and dissociation differentiates ATP-competitive from allosteric protein tyrosine kinase inhibitors. Int. J. Mass Spectrom., 2018, 427, 151-156.
[http://dx.doi.org/10.1016/j.ijms.2017.12.002]
[27]
Zhou, A.; Yan, L.; Lai, F.; Chen, X.; Goto, M.; Lee, K.H.; Xiao, Z. Design, synthesis and biological evaluation of novel indolin-2-ones as potent anticancer compounds. Bioorg. Med. Chem. Lett., 2017, 27(15), 3326-3331.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.019] [PMID: 28625363]
[28]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[29]
Bellodi, C.; Lidonnici, M.R.; Hamilton, A.; Helgason, G.V.; Soliera, A.R.; Ronchetti, M.; Galavotti, S.; Young, K.W.; Selmi, T.; Yacobi, R.; Van Etten, R.A.; Donato, N.; Hunter, A.; Dinsdale, D.; Tirrò, E.; Vigneri, P.; Nicotera, P.; Dyer, M.J.; Holyoake, T.; Salomoni, P.; Calabretta, B. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J. Clin. Invest., 2009, 119(5), 1109-1123.
[http://dx.doi.org/10.1172/JCI35660] [PMID: 19363292]
[30]
Yu, H.A.; Sima, C.S.; Huang, J.; Solomon, S.B.; Rimner, A.; Paik, P.; Pietanza, M.C.; Azzoli, C.G.; Rizvi, N.A.; Krug, L.M.; Miller, V.A.; Kris, M.G.; Riely, G.J. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol., 2013, 8(3), 346-351.
[http://dx.doi.org/10.1097/JTO.0b013e31827e1f83] [PMID: 23407558]
[31]
Huang, X.L.; Khan, M.I.; Wang, J.; Ali, R.; Ali, S.W.; Zahra, Q.U.; Kazmi, A.; Lolai, A.; Huang, Y.L.; Hussain, A.; Bilal, M.; Li, F.; Qiu, B. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int. J. Biol. Macromol., 2021, 180, 739-752.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.075] [PMID: 33737188]
[32]
Jabbour, E.; Cortes, J.; Kantarjian, H. Long-term outcomes in the second-line treatment of chronic myeloid leukemia: a review of tyrosine kinase inhibitors. Cancer, 2011, 117(5), 897-906.
[http://dx.doi.org/10.1002/cncr.25656] [PMID: 20945321]
[33]
Banno, E.; Togashi, Y.; Nakamura, Y.; Chiba, M.; Kobayashi, Y.; Hayashi, H.; Terashima, M.; de Velasco, M.A.; Sakai, K.; Fujita, Y.; Mitsudomi, T.; Nishio, K. Sensitivities to various epidermal growth factor receptor-tyrosine kinase inhibitors of uncommon epidermal growth factor receptor mutations L861Q and S768I: What is the optimal epidermal growth factor receptor-tyrosine kinase inhibitor? Cancer Sci., 2016, 107(8), 1134-1140.
[http://dx.doi.org/10.1111/cas.12980] [PMID: 27240419]
[34]
Guagnano, V.; Furet, P.; Spanka, C. Discovery of 3-(2,6-Dichloro-3,5-dimethoxy- phenyl)-1-{6-[4-(4-ethyl-piperazin- 1-yl)-phenylamino]-pyrimidin-4-yl }-1-methyl-urea (NVP- BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem., 2011, 54, 7066-7083.
[http://dx.doi.org/10.1021/jm2006222] [PMID: 21936542]
[35]
Pyne, N.J.; Pyne, S. Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol. Sci., 2011, 32(8), 443-450.
[http://dx.doi.org/10.1016/j.tips.2011.04.002] [PMID: 21612832]
[36]
Valiathan, R.R.; Marco, M.; Leitinger, B.; Kleer, C.G.; Fridman, R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev., 2012, 31(1-2), 295-321.
[http://dx.doi.org/10.1007/s10555-012-9346-z] [PMID: 22366781]
[37]
Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J. Med. Chem., 1998, 41(14), 2588-2603.
[http://dx.doi.org/10.1021/jm980123i] [PMID: 9651163]
[38]
Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L.K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J. Med. Chem., 1999, 42(25), 5120-5130.
[http://dx.doi.org/10.1021/jm9904295] [PMID: 10602697]
[39]
Fiedler, W.; Mesters, R.; Tinnefeld, H.; Loges, S.; Staib, P.; Duhrsen, U.; Flasshove, M.; Ottmann, O.G.; Jung, W.; Cavalli, F.; Kuse, R.; Thomalla, J.; Serve, H.; O’Farrell, A.M.; Jacobs, M.; Brega, N.M.; Scigalla, P.; Hossfeld, D.K.; Berdel, W.E. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood, 2003, 102(8), 2763-2767.
[http://dx.doi.org/10.1182/blood-2002-10-2998] [PMID: 12843001]
[40]
Johan, K.; Olsson, A.K.; Lena, C.W. VEGF receptor signalling? in control of vascular function. Nature reviews. J. Mol. Cell Biol., 2006, 5, 359-371.
[http://dx.doi.org/10.1038/nrm1911]
[41]
Goel, H.L. Mercurio, Arthur M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2003, 12, 871-882.
[http://dx.doi.org/10.1038/nrc3627]
[42]
Kim, E.H.; Lee, H.; Jeong, Y.K.; Jung, W.G. Mechanisms of SU5416, an inhibitor of vascular endothelial growth factor receptor, as a radiosensitizer for colon cancer cells. Oncol. Rep., 2016, 36(2), 763-770.
[http://dx.doi.org/10.3892/or.2016.4868] [PMID: 27373272]
[43]
Kieran, M.W.; Supko, J.G.; Wallace, D.; Fruscio, R.; Poussaint, T.Y.; Phillips, P.; Pollack, I.; Packer, R.; Boyett, J.M.; Blaney, S.; Banerjee, A.; Geyer, R.; Friedman, H.; Goldman, S.; Kun, L.E.; Macdonald, T. Phase I study of SU5416, a small molecule inhibitor of the vascular endothelial growth factor receptor (VEGFR) in refractory pediatric central nervous system tumors. Pediatr. Blood Cancer, 2009, 52(2), 169-176.
[http://dx.doi.org/10.1002/pbc.21873] [PMID: 19065567]
[44]
Kuenen, B.C.; Tabernero, J.; Baselga, J.; Cavalli, F.; Pfanner, E.; Conte, P.F.; Seeber, S.; Madhusudan, S.; Deplanque, G.; Huisman, H.; Scigalla, P.; Hoekman, K.; Harris, A.L. Efficacy and toxicity of the angiogenesis inhibitor SU5416 as a single agent in patients with advanced renal cell carcinoma, melanoma, and soft tissue sarcoma. Clin. Cancer Res., 2003, 9(5), 1648-1655.
[PMID: 12738717]
[45]
Hempel, C.; Hoyer, N.; Staalsø, T.; Kurtzhals, J.A. Effects of the vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in vitro cultures of Plasmodium falciparum. Malar. J., 2014, 13, 201-210.
[http://dx.doi.org/10.1186/1475-2875-13-201] [PMID: 24885283]
[46]
Naumova, E.; Ubezio, P.; Garofalo, A.; Borsotti, P.; Cassis, L.; Riccardi, E.; Scanziani, E.; Eccles, S.A.; Bani, M.R.; Giavazzi, R. The vascular targeting property of paclitaxel is enhanced by SU6668, a receptor tyrosine kinase inhibitor, causing apoptosis of endothelial cells and inhibition of angiogenesis. Clin. Cancer Res., 2006, 12(6), 1839-1849.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1615] [PMID: 16551869]
[47]
Ueda, Y.; Shimoyama, T.; Murakami, H.; Yamamoto, N.; Yamada, Y.; Arioka, H.; Tamura, T. Phase I and pharmacokinetic study of TSU-68, a novel multiple receptor tyrosine kinase inhibitor, by twice daily oral administration between meals in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2011, 67(5), 1101-1109.
[http://dx.doi.org/10.1007/s00280-010-1404-z] [PMID: 20676675]
[48]
Kanai, F.; Yoshida, H.; Tateishi, R.; Sato, S.; Kawabe, T.; Obi, S.; Kondo, Y.; Taniguchi, M.; Tagawa, K.; Ikeda, M.; Morizane, C.; Okusaka, T.; Arioka, H.; Shiina, S.; Omata, M. A phase I/II trial of the oral antiangiogenic agent TSU-68 in patients with advanced hepatocellular carcinoma. Cancer Chemother. Pharmacol., 2011, 67(2), 315-324.
[http://dx.doi.org/10.1007/s00280-010-1320-2] [PMID: 20390419]
[49]
Qian, B.; Yao, Y.; Liu, C.; Zhang, J.; Chen, H.; Li, H. SU6668 modulates prostate cancer progression by downregulating MTDH/AKT signaling pathway. Int. J. Oncol., 2017, 50(5), 1601-1611.
[http://dx.doi.org/10.3892/ijo.2017.3926] [PMID: 28339027]
[50]
Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; Powles, T.; Donskov, F.; Neiman, V.; Kollmannsberger, C.K.; Salman, P.; Gurney, H.; Hawkins, R.; Ravaud, A.; Grimm, M.O.; Bracarda, S.; Barrios, C.H.; Tomita, Y.; Castellano, D.; Rini, B.I.; Chen, A.C.; Mekan, S.; McHenry, M.B.; Wind-Rotolo, M.; Doan, J.; Sharma, P.; Hammers, H.J.; Escudier, B. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med., 2018, 378(14), 1277-1290.
[http://dx.doi.org/10.1056/NEJMoa1712126] [PMID: 29562145]
[51]
Motzer, R.; Hutson, T.; Tomczak, P. Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-α) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol., 2006, 24, LBA3.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.lba3]
[52]
Cui, J.J. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J. Med. Chem., 2014, 57(11), 4427-4453.
[http://dx.doi.org/10.1021/jm401427c] [PMID: 24320965]
[53]
Maroun, C.R.; Rowlands, T. The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol. Ther., 2014, 142(3), 316-338.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.014] [PMID: 24384534]
[54]
Bhardwaj, V.; Cascone, T.; Cortez, M.A.; Amini, A.; Evans, J.; Komaki, R.U.; Heymach, J.V.; Welsh, J.W. Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer, 2013, 119(10), 1768-1775.
[http://dx.doi.org/10.1002/cncr.27965] [PMID: 23423860]
[55]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[56]
Hu, C.J.; Wang, L.Y.; Chodosh, L.A.; Keith, B.; Simon, M.C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell. Biol., 2003, 23(24), 9361-9374.
[http://dx.doi.org/10.1128/MCB.23.24.9361-9374.2003] [PMID: 14645546]
[57]
Prabhakar, N.R.; Semenza, G.L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev., 2012, 92(3), 967-1003.
[http://dx.doi.org/10.1152/physrev.00030.2011] [PMID: 22811423]
[58]
Bouattour, M.; Raymond, E.; Qin, S.; Cheng, A.L.; Stammberger, U.; Locatelli, G.; Faivre, S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018, 67(3), 1132-1149.
[http://dx.doi.org/10.1002/hep.29496] [PMID: 28862760]
[59]
Crosswell, H.E.; Dasgupta, A.; Alvarado, C.S.; Watt, T.; Christensen, J.G.; De, P.; Durden, D.L.; Findley, H.W. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells. BMC Cancer, 2009, 9, 411-420.
[http://dx.doi.org/10.1186/1471-2407-9-411] [PMID: 19939254]
[60]
Nakazawa, T.; Kondo, T.; Kobayashi, Y.; Takamura, N.; Murata, S.; Kameyama, K.; Muramatsu, A.; Ito, K.; Kobayashi, M.; Katoh, R. RET gene rearrangements (RET/PTC1 and RET/PTC3) in papillary thyroid carcinomas from an iodine-rich country (Japan). Cancer, 2005, 104(5), 943-951.
[http://dx.doi.org/10.1002/cncr.21270] [PMID: 16015630]
[61]
Kohno, T.; Ichikawa, H.; Totoki, Y.; Yasuda, K.; Hiramoto, M.; Nammo, T.; Sakamoto, H.; Tsuta, K.; Furuta, K.; Shimada, Y.; Iwakawa, R.; Ogiwara, H.; Oike, T.; Enari, M.; Schetter, A.J.; Okayama, H.; Haugen, A.; Skaug, V.; Chiku, S.; Yamanaka, I.; Arai, Y.; Watanabe, S.; Sekine, I.; Ogawa, S.; Harris, C.C.; Tsuda, H.; Yoshida, T.; Yokota, J.; Shibata, T. KIF5B-RET fusions in lung adenocarcinoma. Nat. Med., 2012, 18(3), 375-377.
[http://dx.doi.org/10.1038/nm.2644] [PMID: 22327624]
[62]
Gautschi, O.; Milia, J.; Filleron, T.; Wolf, J.; Carbone, D.P.; Owen, D.; Camidge, R.; Narayanan, V.; Doebele, R.C.; Besse, B.; Remon-Masip, J.; Janne, P.A.; Awad, M.M.; Peled, N.; Byoung, C.C.; Karp, D.D.; Van Den Heuvel, M.; Wakelee, H.A.; Neal, J.W.; Mok, T.S.K.; Yang, J.C.H.; Ou, S.I.; Pall, G.; Froesch, P.; Zalcman, G.; Gandara, D.R.; Riess, J.W.; Velcheti, V.; Zeidler, K.; Diebold, J.; Früh, M.; Michels, S.; Monnet, I.; Popat, S.; Rosell, R.; Karachaliou, N.; Rothschild, S.I.; Shih, J.Y.; Warth, A.; Muley, T.; Cabillic, F.; Mazières, J.; Drilon, A. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry. J. Clin. Oncol., 2017, 35(13), 1403-1410.
[http://dx.doi.org/10.1200/JCO.2016.70.9352] [PMID: 28447912]
[63]
Kodama, T.; Tsukaguchi, T.; Satoh, Y.; Yoshida, M.; Watanabe, Y.; Kondoh, O.; Sakamoto, H. Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Mol. Cancer Ther., 2014, 13(12), 2910-2918.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0274] [PMID: 25349307]
[64]
Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; Wilson, K.J.; DiPietro, L.; Fleming, P.; Palmer, M.; Hu, M.I.; Wirth, L.; Brose, M.S.; Ou, S.I.; Taylor, M.; Garralda, E.; Miller, S.; Wolf, B.; Lengauer, C.; Guzi, T.; Evans, E.K. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov., 2018, 8(7), 836-849.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0338] [PMID: 29657135]
[65]
Ban, K.; Feng, S.; Shao, L.; Ittmann, M. RET signaling in prostate cancer. Clin. Cancer Res., 2017, 23(16), 4885-4896.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0528] [PMID: 28490466]
[66]
Jhiang, S.M. The RET proto-oncogene in human cancers. Oncogene, 2000, 19(49), 5590-5597.
[http://dx.doi.org/10.1038/sj.onc.1203857] [PMID: 11114739]
[67]
Gujral, T.S.; van Veelen, W.; Richardson, D.S.; Myers, S.M.; Meens, J.A.; Acton, D.S.; Duñach, M.; Elliott, B.E.; Höppener, J.W.; Mulligan, L.M. A novel RET kinase-β-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res., 2008, 68(5), 1338-1346.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6052] [PMID: 18316596]
[68]
Castellone, M.D.; De Falco, V.; Rao, D.M.; Bellelli, R.; Muthu, M.; Basolo, F.; Fusco, A.; Gutkind, J.S.; Santoro, M. The β-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res., 2009, 69(5), 1867-1876.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1982] [PMID: 19223551]
[69]
Song, M. Progress in discovery of KIF5B-RET kinase inhibitors for the treatment of non-small-cell lung cancer. J. Med. Chem., 2015, 58(9), 3672-3681.
[http://dx.doi.org/10.1021/jm501464c] [PMID: 25625428]
[70]
Zuercher, W.J.; Turunen, B.J.; Lackey, K.E. Current review of small molecule Ret kinase inhibitors. Mini Rev. Med. Chem., 2010, 10(2), 138-146.
[http://dx.doi.org/10.2174/138955710791185154] [PMID: 20105131]
[71]
Rizzi, E.; Cassinelli, G.; Dallavalle, S.; Lanzi, C.; Cincinelli, R.; Nannei, R.; Cuccuru, G.; Zunino, F. Synthesis and RET protein kinase inhibitory activity of 3-arylureidobenzylidene-indolin-2-ones. Bioorg. Med. Chem. Lett., 2007, 17(14), 3962-3968.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.091] [PMID: 17499504]
[72]
Mologni, L.; Rostagno, R.; Brussolo, S.; Knowles, P.P.; Kjaer, S.; Murray-Rust, J.; Rosso, E.; Zambon, A.; Scapozza, L.; McDonald, N.Q.; Lucchini, V.; Gambacorti-Passerini, C. Synthesis, structure-activity relationship and crystallographic studies of 3-substituted indolin-2-one RET inhibitors. Bioorg. Med. Chem., 2010, 18(4), 1482-1496.
[http://dx.doi.org/10.1016/j.bmc.2010.01.011] [PMID: 20117004]
[73]
Jetani, H.; Garcia-Cadenas, I.; Nerreter, T.; Thomas, S.; Rydzek, J.; Meijide, J.B.; Bonig, H.; Herr, W.; Sierra, J.; Einsele, H.; Hudecek, M. CAR T-cells targeting FLT3 have potent activity against FLT3-ITD+ AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia, 2018, 32(5), 1168-1179.
[http://dx.doi.org/10.1038/s41375-018-0009-0] [PMID: 29472720]
[74]
Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; Lo-Coco, F.; Klisovic, R.B.; Wei, A.; Sierra, J.; Sanz, M.A.; Brandwein, J.M.; de Witte, T.; Niederwieser, D.; Appelbaum, F.R.; Medeiros, B.C.; Tallman, M.S.; Krauter, J.; Schlenk, R.F.; Ganser, A.; Serve, H.; Ehninger, G.; Amadori, S.; Larson, R.A.; Döhner, H. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl. J. Med., 2017, 377(5), 454-464.
[http://dx.doi.org/10.1056/NEJMoa1614359] [PMID: 28644114]
[75]
Jeong, P.; Moon, Y.; Lee, J.H.; Lee, S.D.; Park, J.; Lee, J.; Kim, J.; Lee, H.J.; Kim, N.Y.; Choi, J.; Heo, J.D.; Shin, J.E.; Park, H.W.; Kim, Y.G.; Han, S.Y.; Kim, Y.C. Discovery of orally active indirubin-3'-oxime derivatives as potent type 1 FLT3 inhibitors for acute myeloid leukemia. Eur. J. Med. Chem., 2020, 195, 112205-112221.
[http://dx.doi.org/10.1016/j.ejmech.2020.112205] [PMID: 32272419]
[76]
Molli, P.R.; Li, D.Q.; Murray, B.W.; Rayala, S.K.; Kumar, R. PAK signaling in oncogenesis. Oncogene, 2009, 28(28), 2545-2555.
[http://dx.doi.org/10.1038/onc.2009.119] [PMID: 19465939]
[77]
Zhao, Y.; Wang, X. PLK4: a promising target for cancer therapy. J. Cancer Res. Clin. Oncol., 2019, 145(10), 2413-2422.
[http://dx.doi.org/10.1007/s00432-019-02994-0] [PMID: 31492983]
[78]
Whale, A.D.; Dart, A.; Holt, M.; Jones, G.E.; Wells, C.M. PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Oncogene, 2013, 32(16), 2114-2120.
[http://dx.doi.org/10.1038/onc.2012.233] [PMID: 22689056]
[79]
Choudhry, Z.S.; Tripathi, V.; Sutton, M.; Bao, B.; Mohammad, R.M.; Azmi, A.S. Regulation of KRAS-PAK4 axis by microRNAs in cancer. Curr. Pharm. Des., 2014, 20(33), 5275-5278.
[http://dx.doi.org/10.2174/1381612820666140128203452] [PMID: 24479809]
[80]
Vershinin, Z.; Feldman, M.; Levy, D. PAK4 methylation by the methyltransferase SETD6 attenuates cell adhesion. Sci. Rep., 2020, 10(1), 17068-17079.
[http://dx.doi.org/10.1038/s41598-020-74081-1] [PMID: 33051544]
[81]
Guo, J.; Zhao, F.; Yin, W.; Zhu, M.; Hao, C.; Pang, Y.; Wu, T.; Wang, J.; Zhao, D.; Li, H.; Cheng, M. Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors. Eur. J. Med. Chem., 2018, 155, 197-209.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.051] [PMID: 29886323]
[82]
Taylor, S.; Peters, J.M. Polo and Aurora kinases-lessons derived from chemical biology. Curr. Opin. Cell Biol., 2007, 20(1), 77-84.
[http://dx.doi.org/10.1016/j.ceb.2007.11.008]
[83]
Kollareddy, M.; Zheleva, D.; Dzubak, P.; Brahmkshatriya, P.S.; Lepsik, M.; Hajduch, M. Aurora kinase inhibitors: progress towards the clinic. Invest. New Drugs, 2012, 30(6), 2411-2432.
[http://dx.doi.org/10.1007/s10637-012-9798-6] [PMID: 22350019]
[84]
Lens, S.M.A.; Voest, E.E.; Medema, R.H. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat. Rev. Cancer, 2010, 10(12), 825-841.
[http://dx.doi.org/10.1038/nrc2964] [PMID: 21102634]
[85]
Boehringer Ingelheim Usa Corporation. Indoline derivatives and their use in treating disease states such as cancer. US201001084747A1, 2010. Available at: https://www. boehringer-ingelheim.com/
[86]
Liu, Y.; Jiang, N.; Wu, J.; Dai, W.; Rosenblum, J.S. Polo-like kinases inhibited by wortmannin. Labeling site and downstream effects. J. Biol. Chem., 2007, 282(4), 2505-2511.
[http://dx.doi.org/10.1074/jbc.M609603200] [PMID: 17135248]
[87]
de Cárcer, G.; Manning, G.; Malumbres, M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle, 2011, 10(14), 2255-2262.
[http://dx.doi.org/10.4161/cc.10.14.16494] [PMID: 21654194]
[88]
Moyer, T.C.; Clutario, K.M.; Lambrus, B.G.; Daggubati, V.; Holland, A.J. Binding of STIL to Plk4 activates kinase activity to promote centriole assembly. J. Cell Biol., 2015, 209(6), 863-878.
[http://dx.doi.org/10.1083/jcb.201502088] [PMID: 26101219]
[89]
Janssen Pharmaceutica. Indolin-2-ones and aza-indolin-2-ones. WO2008155421A3 2008. Available at: https://patents.google.com/patent/WO2008155421A3/en
[90]
Laufer, R.; Forrest, B.; Li, S.W.; Liu, Y.; Sampson, P.; Edwards, L.; Lang, Y.; Awrey, D.E.; Mao, G.; Plotnikova, O.; Leung, G.; Hodgson, R.; Beletskaya, I.; Mason, J.M.; Luo, X.; Wei, X.; Yao, Y.; Feher, M.; Ban, F.; Kiarash, R.; Green, E.; Mak, T.W.; Pan, G.; Pauls, H.W. The discovery of PLK4 inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as novel antiproliferative agents. J. Med. Chem., 2013, 56(15), 6069-6087.
[http://dx.doi.org/10.1021/jm400380m] [PMID: 23829549]
[91]
Sampson, P.B.; Liu, Y.; Forrest, B.; Cumming, G.; Li, S.W.; Patel, N.K.; Edwards, L.; Laufer, R.; Feher, M.; Ban, F.; Awrey, D.E.; Mao, G.; Plotnikova, O.; Hodgson, R.; Beletskaya, I.; Mason, J.M.; Luo, X.; Nadeem, V.; Wei, X.; Kiarash, R.; Madeira, B.; Huang, P.; Mak, T.W.; Pan, G.; Pauls, H.W. The discovery of Polo-like kinase 4 inhibitors: identification of (1R,2S).2-(3-((E).4-(((cis).2,6-dimethylmorpholino)methyl)styryl). 1H.indazol-6-yl)-5'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (CFI-400945) as a potent, orally active antitumor agent. J. Med. Chem., 2015, 58(1), 147-169.
[http://dx.doi.org/10.1021/jm5005336] [PMID: 25723005]
[92]
Carrassa, L.; Damia, G. Unleashing Chk1 in cancer therapy. Cell Cycle, 2011, 10(13), 2121-2128.
[http://dx.doi.org/10.4161/cc.10.13.16398] [PMID: 21610326]
[93]
Qiu, Z.; Oleinick, N.L.; Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol., 2018, 126(3), 450-464.
[http://dx.doi.org/10.1016/j.radonc.2017.09.043] [PMID: 29054375]
[94]
Lin, N.H.; Xia, P.; Kovar, P.; Park, C.; Chen, Z.; Zhang, H.; Rosenberg, S.H.; Sham, H.L. Synthesis and biological evaluation of 3-ethylidene-1,3-dihydro-indol-2-ones as novel checkpoint 1 inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(2), 421-426.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.064] [PMID: 16242328]
[95]
Hong, P.C.; Chen, L.J.; Lai, T.Y.; Yang, H.Y.; Chiang, S.J.; Lu, Y.Y.; Tsai, P.K.; Hsu, H.Y.; Wei, W.Y.; Liao, C.B. Synthesis of selenophene derivatives as novel CHK1 inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(17), 5065-5068.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.034] [PMID: 20674356]
[96]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122-132.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[97]
Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci., 2005, 30(11), 630-641.
[http://dx.doi.org/10.1016/j.tibs.2005.09.005] [PMID: 16236519]
[98]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[99]
Xiong, X.; Zhang, Y.; Gao, X.; Dong, Z.; Li, L.; Ji, C.; Fu, L.; Luo, X.; Liu, H.; Mei, C. B5, a novel pyrrole-substituted indolinone, exerts potent antitumor efficacy through G2/M cell cycle arrest. Invest. New Drugs, 2010, 28(1), 26-34.
[http://dx.doi.org/10.1007/s10637-008-9211-7] [PMID: 19139818]
[100]
Hughes, B.T.; Sidorova, J.; Swanger, J.; Monnat, R.J., Jr; Clurman, B.E. Essential role for Cdk2 inhibitory phosphorylation during replication stress revealed by a human Cdk2 knockin mutation. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 8954-8959.
[http://dx.doi.org/10.1073/pnas.1302927110] [PMID: 23671119]
[101]
Raimondi, C.; Falasca, M. Targeting PDK1 in cancer. Curr. Med. Chem., 2011, 18(18), 2763-2769.
[http://dx.doi.org/10.2174/092986711796011238] [PMID: 21568903]
[102]
Higuchi, M.; Onishi, K.; Kikuchi, C.; Gotoh, Y. Scaffolding function of PAK in the PDK1-Akt pathway. Nat. Cell Biol., 2008, 10(11), 1356-1364.
[http://dx.doi.org/10.1038/ncb1795] [PMID: 18931661]
[103]
Haga, S.; Ozaki, M.; Inoue, H.; Okamoto, Y.; Ogawa, W.; Takeda, K.; Akira, S.; Todo, S. The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Hepatology, 2009, 49(1), 204-214.
[http://dx.doi.org/10.1002/hep.22583] [PMID: 19065678]
[104]
Yoshizaki, H.; Mochizuki, N.; Gotoh, Y.; Matsuda, M. Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol. Biol. Cell, 2007, 18(1), 119-128.
[http://dx.doi.org/10.1091/mbc.e06-05-0467] [PMID: 17079732]
[105]
Islam, I.; Bryant, J.; Chou, Y.L.; Kochanny, M.J.; Lee, W.; Phillips, G.B.; Yu, H.; Adler, M.; Whitlow, M.; Ho, E.; Lentz, D.; Polokoff, M.A.; Subramanyam, B.; Wu, J.M.; Zhu, D.; Feldman, R.I.; Arnaiz, D.O. Indolinone based phosphoinositide-dependent kinase-1 (PDK1) inhibitors. Part 1: design, synthesis and biological activity. Bioorg. Med. Chem. Lett., 2007, 17(14), 3814-3818.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.071] [PMID: 17531483]
[106]
Zhang, Y.; Li, R.; Meng, Y.; Li, S.; Donelan, W.; Zhao, Y.; Qi, L.; Zhang, M.; Wang, X.; Cui, T.; Yang, L.J.; Tang, D. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014, 63(2), 514-525.
[http://dx.doi.org/10.2337/db13-1106] [PMID: 24150604]
[107]
Del Reino, P.; Alsina-Beauchamp, D.; Escós, A.; Cerezo-Guisado, M.I.; Risco, A.; Aparicio, N.; Zur, R.; Fernandez-Estévez, M.; Collantes, E.; Montans, J.; Cuenda, A. Pro-oncogenic role of alternative p38 mitogen-activated protein kinases p38γ and p38δ, linking inflammation and cancer in colitis-associated colon cancer. Cancer Res., 2014, 74(21), 6150-6160.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0870] [PMID: 25217523]
[108]
Zhou, Y.; Ling, E.A.; Dheen, S.T. Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J. Neurochem., 2007, 102(3), 667-678.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04535.x] [PMID: 17403137]
[109]
Eastwood, P.R.; Gonzalez, R.J.; Giulio, M.V. New substituted indolin-2-one derivatives and their use as p38 mitogenactivated kinase inhibitors. WO2009132774A8, 2009. Available at: https://patents.google.com/patent/WO200913 2774A8/en
[110]
Chrestensen, C.A.; Sturgill, T.W. Characterization of the p90 ribosomal S6 kinase 2 carboxyl-terminal domain as a protein kinase. J. Biol. Chem., 2002, 277(31), 27733-27741.
[http://dx.doi.org/10.1074/jbc.M202663200] [PMID: 12016217]
[111]
Kang, S.; Elf, S.; Lythgoe, K.; Hitosugi, T.; Taunton, J.; Zhou, W.; Xiong, L.; Wang, D.; Muller, S.; Fan, S.; Sun, S.Y.; Marcus, A.I.; Gu, T.L.; Polakiewicz, R.D.; Chen, Z.G.; Khuri, F.R.; Shin, D.M.; Chen, J. p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. J. Clin. Invest., 2010, 120(4), 1165-1177.
[http://dx.doi.org/10.1172/JCI40582] [PMID: 20234090]
[112]
Carrière, A.; Cargnello, M.; Julien, L.A.; Gao, H.; Bonneil, E.; Thibault, P.; Roux, P.P. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol., 2008, 18(17), 1269-1277.
[http://dx.doi.org/10.1016/j.cub.2008.07.078] [PMID: 18722121]
[113]
Zhong, Y.; Xue, M.; Zhao, X.; Yuan, J.; Liu, X.; Huang, J.; Zhao, Z.; Li, H.; Xu, Y. Substituted indolin-2-ones as p90 ribosomal S6 protein kinase 2 (RSK2) inhibitors: Molecular docking simulation and structure-activity relationship analysis. Bioorg. Med. Chem., 2013, 21(7), 1724-1734.
[http://dx.doi.org/10.1016/j.bmc.2013.01.047] [PMID: 23434140]
[114]
Roskoski, R., Jr A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res., 2015, 100, 1-23.
[http://dx.doi.org/10.1016/j.phrs.2015.07.010] [PMID: 26207888]
[115]
Abdeldayem, A.; Raouf, Y.S.; Constantinescu, S.N.; Moriggl, R.; Gunning, P.T. Advances in covalent kinase inhibitors. Chem. Soc. Rev., 2020, 49(9), 2617-2687.
[http://dx.doi.org/10.1039/C9CS00720B] [PMID: 32227030]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy