Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Parathyroid Hormone-regulation of Runx2 by MiR-290 for Matrix Metalloproteinase-13 Expression in Rat Osteoblastic Cells

Author(s): N. Akshaya, N. Srinaath, M. Rohini, R. Ilangovan and N. Selvamurugan*

Volume 22, Issue 6, 2022

Published on: 30 August, 2021

Page: [549 - 561] Pages: 13

DOI: 10.2174/1566524021666210830093232

Price: $65

Abstract

Background: The dynamic changes that bone undergoes during the ensemble of remodeling are administered by vital factors like Runx2 (a bone transcription factor) and matrix metalloproteinases (MMPs).

Aims: Parathyroid hormone (PTH), an FDA approved drug for bone-related ailments, was seen to stimulate MMP-13 expression via Runx2 to ultimately aid in the bone remodeling process. MicroRNAs (miRNAs) have been shown to play a major role in controlling bone metabolism, and the use of miRNAs has recently become promising therapeutic avenues for the treatment of many diseases, including bone disorders. Thus, in this study, we attempted to investigate and evaluate the expression of MMP-13 via a miRNA profile targeting Runx2 under PTH-regulation in rat osteoblastic cells.

Methods: PTH stimulated the expression of MMP-13 mRNA significantly at 4 h in rat osteoblastic cells (UMR106-01). Runx2 was required for PTH-stimulation of MMP-13 expression, in silico scrutiny generated 14 unique miRNAs targeting Runx2, and among these miRNAs, miR-290 was significantly downregulated by PTH-treatment in UMR106- 01 cells and in rat primary osteoblasts.

Results: Overexpression of miR-290 decreased the expression of Runx2, the binding of Runx2 at the MMP-13 promoter, and the expression of MMP-13 mRNA in PTH-treated UMR106-01 cells. A dual luciferase reporter assay identified the direct targeting of Runx2 mRNA by miR-290 in these cells.

Conclusion: Our findings indicate that the PTH-responsive miR-290 regulated Runx2- mediated MMP-13 expression in rat osteoblastic cells, suggesting miR-290 as a molecular marker or target in bone and bone-related diseases.

Keywords: Osteoblasts, Parathyroid hormone, Runx2, Matrix metalloproteinase-13, miR-290, Bone remodeling.

« Previous
[1]
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res Int 2015; 2015: 421746.
[http://dx.doi.org/10.1155/2015/421746] [PMID: 26247020]
[2]
Mohamed AM. An overview of bone cells and their regulating factors of differentiation. Malays J Med Sci 2008; 15(1): 4-12.
[PMID: 22589609]
[3]
Long MW. Osteogenesis and bone-marrow-derived cells. Blood Cells Mol Dis 2001; 27(3): 677-90.
[http://dx.doi.org/10.1006/bcmd.2001.0431] [PMID: 11482883]
[4]
Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 2010; 658: 43-9.
[http://dx.doi.org/10.1007/978-1-4419-1050-9_5] [PMID: 19950014]
[5]
Arumugam B, Balagangadharan K, Selvamurugan N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J Cell Commun Signal 2018; 12(3): 561-73.
[http://dx.doi.org/10.1007/s12079-018-0449-3] [PMID: 29350343]
[6]
Srinaath N, Balagangadharan K, Pooja V, Paarkavi U, Trishla A, Selvamurugan N. Osteogenic potential of zingerone, a phenolic compound in mouse mesenchymal stem cells. Biofactors 2019; 45(4): 575-82.
[http://dx.doi.org/10.1002/biof.1515] [PMID: 31091349]
[7]
Chandran SV, Vairamani M, Selvamurugan N. Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Sci Rep 2019; 9(1): 11900.
[http://dx.doi.org/10.1038/s41598-019-48429-1] [PMID: 31417150]
[8]
Sanjeev G, Sidharthan DS, Pranavkrishna S, et al. An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett 2020; 30(11): 127137.
[http://dx.doi.org/10.1016/j.bmcl.2020.127137] [PMID: 32245598]
[9]
Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol 2013; 15(1): 7-18.
[PMID: 22581832]
[10]
Bruderer M, Richards RG, Alini M, Stoddart MJ. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 2014; 28(28): 269-86.
[http://dx.doi.org/10.22203/eCM.v028a19] [PMID: 25340806]
[11]
Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N. Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 2015; 74: 404-12.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.034] [PMID: 25543062]
[12]
Narayanan A, Srinaath N, Rohini M, Selvamurugan N. Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 2019; 232: 116676.
[http://dx.doi.org/10.1016/j.lfs.2019.116676] [PMID: 31340165]
[13]
Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 2020; 245: 117389.
[http://dx.doi.org/10.1016/j.lfs.2020.117389] [PMID: 32007573]
[14]
Knäuper V, Bailey L, Worley JR, Soloway P, Patterson ML, Murphy G. Cellular activation of proMMP‐13 by MT1‐MMP depends on the C‐terminal domain of MMP-13. FEBS Lett 2002; 532(1-2): 127-30.
[15]
S S, R S, v U, B A, M V, N S. Matrix metalloproteinase-13: A special focus on its regulation by signaling cascades and microRNAs in bone. Int J Biol Macromol 2018; 109: 338-49.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.091] [PMID: 29273522]
[16]
Liang HPH, Xu J, Xue M, Jackson CJ. Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility. Metalloproteinases Med 2016; 3: 93-102.
[http://dx.doi.org/10.2147/MNM.S92187]
[17]
Kennedy AM, Inada M, Krane SM, et al. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). J Clin Invest 2005; 115(10): 2832-42.
[http://dx.doi.org/10.1172/JCI22900] [PMID: 16167086]
[18]
Pivetta E, Scapolan M, Pecolo M, et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases. Breast Cancer Res 2011; 13(5): R105.
[http://dx.doi.org/10.1186/bcr3047] [PMID: 22032644]
[19]
Kudo Y, Iizuka S, Yoshida M, et al. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem 2012; 287(46): 38716-28.
[http://dx.doi.org/10.1074/jbc.M112.373159] [PMID: 22992737]
[20]
Kotepui M, Punsawad C, Chupeerach C, Songsri A, Charoenkijkajorn L, Petmitr S. Differential expression of matrix metalloproteinase-13 in association with invasion of breast cancer. Contemp Oncol (Pozn) 2016; 20(3): 225-8.
[http://dx.doi.org/10.5114/wo.2016.61565] [PMID: 27647987]
[21]
Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-54.
[http://dx.doi.org/10.1016/S0092-8674(00)80257-3] [PMID: 9182762]
[22]
Jiménez MJ, Balbín M, López JM, Alvarez J, Komori T, López-Otín C. Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 1999; 19(6): 4431-42.
[http://dx.doi.org/10.1128/MCB.19.6.4431] [PMID: 10330183]
[23]
Selvamurugan N, Chou WY, Pearman AT, Pulumati MR, Partridge NC. Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J Biol Chem 1998; 273(17): 10647-57.
[http://dx.doi.org/10.1074/jbc.273.17.10647] [PMID: 9553127]
[24]
Selvamurugan N, Jefcoat SC, Kwok S, Kowalewski R, Tamasi JA, Partridge NC. Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo. J Cell Biochem 2006; 99(2): 545-57.
[http://dx.doi.org/10.1002/jcb.20878] [PMID: 16639721]
[25]
Selvamurugan N, Pulumati MR, Tyson DR, Partridge NC. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor α1. J Biol Chem 2000; 275(7): 5037-42.
[http://dx.doi.org/10.1074/jbc.275.7.5037] [PMID: 10671545]
[26]
Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC. Transforming growth factor-β 1 regulation of collagenase-3 expression in osteoblastic cells by cross-talk between the Smad and MAPK signaling pathways and their components, Smad2 and Runx2. J Biol Chem 2004; 279(18): 19327-34.
[http://dx.doi.org/10.1074/jbc.M314048200] [PMID: 14982932]
[27]
Saiganesh S, Saathvika R, Arumugam B, et al. TGF-β1-stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. Int J Biol Macromol 2019; 132: 541-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.003] [PMID: 30951775]
[28]
Takaishi H, Kimura T, Dalal S, Okada Y, D’Armiento J. Joint diseases and matrix metalloproteinases: A role for MMP-13. Curr Pharm Biotechnol 2008; 9(1): 47-54.
[http://dx.doi.org/10.2174/138920108783497659] [PMID: 18289056]
[29]
Vimalraj S, Partridge NC, Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol 2014; 229(9): 1236-44.
[http://dx.doi.org/10.1002/jcp.24557] [PMID: 24435757]
[30]
Vishal M, Vimalraj S, Ajeetha R, et al. MicroRNA‐590‐5p stabilizes Runx2 by targeting Smad7 during osteoblast differentiation. J Cell Physiol 2017; 232(2): 371-80.
[http://dx.doi.org/10.1002/jcp.25434] [PMID: 27192628]
[31]
Malavika D, Shreya S, Raj Priya V, et al. miR-873-3p targets HDAC4 to stimulate matrix metalloproteinase-13 expression upon parathyroid hormone exposure in rat osteoblasts. J Cell Physiol 2020; 235(11): 7996-8009.
[http://dx.doi.org/10.1002/jcp.29454] [PMID: 31960421]
[32]
Zhang Y, Deng X, Scheller EL, et al. The effects of Runx2 immobilization on poly (epsilon-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro. Biomaterials 2010; 31(12): 3231-6.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.029] [PMID: 20129661]
[33]
Mohanakrishnan V, Balasubramanian A, Mahalingam G, Partridge NC, Ramachandran I, Selvamurugan N. Parathyroid hormone-induced down-regulation of miR-532-5p for matrix metalloproteinase-13 expression in rat osteoblasts. J Cell Biochem 2018; 119(7): 6181-93.
[http://dx.doi.org/10.1002/jcb.26827] [PMID: 29626351]
[34]
Griffiths-Jones S, Grocock R J, Van Dongen S, Bateman A, Enright A J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res Spec 2006; 34(suppl_1): D140-4.
[35]
Vejnar CE, Blum M, Zdobnov EM. miRmap web: Comprehensive microRNA target prediction online. Nucleic Acids Res 2013; 41(Web Server issue): W165-8.
[http://dx.doi.org/10.1093/nar/gkt430] [PMID: 23716633]
[36]
Kanoria S, Rennie W, Liu C, Carmack CS, Lu J, Ding Y. STarMir Tools for Prediction of microRNA binding sites. Methods Mol Biol 2016; 1490: 73-82.
[http://dx.doi.org/10.1007/978-1-4939-6433-8_6] [PMID: 27665594]
[37]
Miranda PJ, Vimalraj S, Selvamurugan N. A feedback expression of microRNA-590 and activating transcription factor-3 in human breast cancer cells. Int J Biol Macromol 2015; 72: 145-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.051] [PMID: 25150595]
[38]
Nelson JD, Denisenko O, Bomsztyk K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 2006; 1(1): 179-85.
[http://dx.doi.org/10.1038/nprot.2006.27] [PMID: 17406230]
[39]
Rohini M, Arumugam B, Vairamani M, Selvamurugan N. Stimulation of ATF3 interaction with Smad4 via TGF-β1 for matrix metalloproteinase 13 gene activation in human breast cancer cells. Int J Biol Macromol 2019; 134: 954-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.062] [PMID: 31082421]
[40]
Porte D, Tuckermann J, Becker M, et al. Both AP-1 and Cbfa1-like factors are required for the induction of interstitial collagenase by parathyroid hormone. Oncogene 1999; 18(3): 667-78.
[http://dx.doi.org/10.1038/sj.onc.1202333] [PMID: 9989817]
[41]
Selvamurugan N, Shimizu E, Lee M, Liu T, Li H, Partridge NC. Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett 2009; 583(7): 1141-6.
[http://dx.doi.org/10.1016/j.febslet.2009.02.040] [PMID: 19264160]
[42]
Lee M, Partridge NC. Parathyroid hormone activation of matrix metalloproteinase-13 transcription requires the histone acetyltransferase activity of p300 and PCAF and p300-dependent acetylation of PCAF. J Biol Chem 2010; 285(49): 38014-22.
[http://dx.doi.org/10.1074/jbc.M110.142141] [PMID: 20870727]
[43]
Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol 2007; 14(4): 287-94.
[http://dx.doi.org/10.1038/nsmb1226] [PMID: 17401373]
[44]
Bartel D P. MicroRNAs: Target recognition and regulatory functions. cell 2009; 136(2): 215-33.
[45]
Mondry A, Wang Z, Dhar PK. Bone and the kidney: A systems biology approach to the molecular mechanisms of renal osteodystrophy. Curr Mol Med 2005; 5(5): 489-96.
[http://dx.doi.org/10.2174/1566524054553531] [PMID: 16101478]
[46]
Campbell EJ, Campbell GM, Hanley DA. The effect of parathyroid hormone and teriparatide on fracture healing. Expert Opin Biol Ther 2015; 15(1): 119-29.
[http://dx.doi.org/10.1517/14712598.2015.977249] [PMID: 25363308]
[47]
Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol 2004; 14(2): 86-93.
[http://dx.doi.org/10.1016/j.tcb.2003.12.003] [PMID: 15102440]
[48]
Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH. Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthritis Cartilage 2004; 12(12): 963-73.
[http://dx.doi.org/10.1016/j.joca.2004.08.008] [PMID: 15564063]
[49]
Tardif G, Reboul P, Pelletier JP, Martel-Pelletier J. Ten years in the life of an enzyme: the story of the human MMP-13 (collagenase-3). Mod Rheumatol 2004; 14(3): 197-204.
[http://dx.doi.org/10.3109/s10165-004-0292-7] [PMID: 17143675]
[50]
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 2008; 40(1): 46-62.
[http://dx.doi.org/10.1016/j.biocel.2007.06.009] [PMID: 17659995]
[51]
Qin L, Qiu P, Wang L, et al. Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 2003; 278(22): 19723-31.
[http://dx.doi.org/10.1074/jbc.M212226200] [PMID: 12644456]
[52]
Wong A, Loots GG, Yellowley CE, Dosé AC, Genetos DC. Parathyroid hormone regulation of hypoxia-inducible factor signaling in osteoblastic cells. Bone 2015; 81: 97-103.
[http://dx.doi.org/10.1016/j.bone.2015.07.002] [PMID: 26151122]
[53]
Gennari L, Bianciardi S, Merlotti D. MicroRNAs in bone diseases. Osteoporos Int 2017; 28(4): 1191-213.
[http://dx.doi.org/10.1007/s00198-016-3847-5] [PMID: 27904930]
[54]
Feng Q, Zheng S, Zheng J. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep 2018; 38(3): BSR20180453.
[http://dx.doi.org/10.1042/BSR20180453] [PMID: 29848766]
[55]
Arumugam B, Vishal M, Shreya S, et al. Parathyroid hormone-stimulation of Runx2 during osteoblast differentiation via the regulation of lnc-SUPT3H-1:16 (RUNX2-AS1:32) and miR-6797-5p. Biochimie 2019; 158: 43-52.
[http://dx.doi.org/10.1016/j.biochi.2018.12.006] [PMID: 30562548]
[56]
Rohini M, Gokulnath M, Miranda PJ, Selvamurugan N. miR-590-3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells. Biochimie 2018; 154: 10-8.
[http://dx.doi.org/10.1016/j.biochi.2018.07.023] [PMID: 30076901]
[57]
O’Hara AJ, Vahrson W, Dittmer DP. Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma. Blood 2008; 111(4): 2347-53.
[http://dx.doi.org/10.1182/blood-2007-08-104463] [PMID: 18079361]
[58]
Gan L, Denecke B. Profiling pre-microrna and mature microrna expressions using a single microarray and avoiding separate sample preparation. Microarrays (Basel) 2013; 2(1): 24-33.
[http://dx.doi.org/10.3390/microarrays2010024] [PMID: 27605179]
[59]
Schmittgen TD, Lee EJ, Jiang J, et al. Real-time PCR quantification of precursor and mature microRNA. Methods 2008; 44(1): 31-8.
[http://dx.doi.org/10.1016/j.ymeth.2007.09.006] [PMID: 18158130]
[60]
Johnson M. MicroRNA Experimental Protocols. Mater Methods 2012; 2: 128.
[http://dx.doi.org/10.13070/mm.en.2.128]
[61]
Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet 2011; 43(9): 854-9.
[http://dx.doi.org/10.1038/ng.905] [PMID: 21857679]
[62]
Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell 2014; 56(3): 347-59.
[http://dx.doi.org/10.1016/j.molcel.2014.09.018] [PMID: 25449132]
[63]
Shu J, Xia Z, Li L, et al. Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs. RNA Biol 2012; 9(10): 1275-87.
[http://dx.doi.org/10.4161/rna.21998] [PMID: 22995834]
[64]
Li P, Chen Y, Juma CA, et al. Differential Inhibition of Target Gene Expression by Human microRNAs. Cells 2019; 8(8): 791.
[http://dx.doi.org/10.3390/cells8080791] [PMID: 31366019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy