Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A Prognostic Nomogram for Predicting Overall Survival in Pediatric Wilms Tumor Based on an Autophagy-related Gene Signature

Author(s): Longkai He, Xiaotong Wang, Ya Jin, Weipeng Xu, Jun Lyu, Yi Guan, Jingchao Wu, Shasha Han* and Guosheng Liu*

Volume 25, Issue 8, 2022

Published on: 26 August, 2021

Page: [1385 - 1397] Pages: 13

DOI: 10.2174/1386207324666210826143727

Price: $65

Abstract

Background: Wilms Tumor (WT) is the most common primary renal malignancy in children. Autophagy plays dual roles in the promotion and suppression of various cancers.

Objective: The goal of our study was to develop a novel autophagy-related gene (ARG) prognostic nomogram for WT.

Methods: The Cancer Genome Atlas (TCGA) database was used. We screened the expression profiles of ARGs in 136 WT patients. The differentially expressed prognostic ARGs were evaluated by multivariate Cox regression analysis and survival analysis. A novel prognostic nomogram based on the ARGs and clinical characteristics was established using multivariate Cox regression analysis.

Results: First, 69 differentially expressed ARGs were identified in WT patients. Then, multivariate Cox regression analysis was used to determine 4 key prognostic ARGs (CC3CL1, ERBB2, HIF-α and CXCR4) in WT. According to their ARG expression levels, the patients were clustered into high- and low-risk groups. Next, survival analysis indicated that high-risk patients had significantly poorer overall survival than low-risk patients. The results of functional enrichment analysis suggested that autophagy may play a tumor-suppressive role in the initiation of WT. Finally, a prognostic nomogram with a Harrell's concordance index (C-index) of 0.841 was used to predict the survival probability of WT patients by integrating clinical characteristics and the 4-ARG signature. The calibration curve indicated its excellent predictive performance.

Conclusion: In summary, the ARG signature could be a promising biomarker for monitoring the outcomes of WT. We established a novel nomogram based on the ARG signature, which accurately predicts the overall survival of WT patients.

Keywords: Wilms tumor, autophagy, gene signature, prognostic model, nomogram, TCGA.

« Previous
Graphical Abstract

[1]
Pastore, G.; Znaor, A.; Spreafico, F.; Graf, N.; Pritchard-Jones, K.; Steliarova-Foucher, E. Malignant renal tumours incidence and survival in European children (1978-1997): Report from the automated childhood cancer information system project. Eur. J. Cancer, 2006, 42(13), 2103-2114.
[2]
Dome, J.S.; Graf, N.; Geller, J.I.; Fernandez, C.V.; Mullen, E.A.; Spreafico, F.; Van den Heuvel-Eibrink, M.; Pritchard-Jones, K. Advances in wilms tumor treatment and biology: Progress through international collaboration. J. Clin. Oncol., 2015, 33(27), 2999-3007.
[http://dx.doi.org/10.1200/JCO.2015.62.1888] [PMID: 26304882]
[3]
Dix, D.B.; Seibel, N.L.; Chi, Y.Y.; Khanna, G.; Gratias, E.; Anderson, J.R.; Mullen, E.A.; Geller, J.I.; Kalapurakal, J.A.; Paulino, A.C.; Perlman, E.J.; Ehrlich, P.F.; Malogolowkin, M.; Gastier-Foster, J.M.; Wagner, E.; Grundy, P.E.; Fernandez, C.V.; Dome, J.S. Treatment of stage IV favorable histology wilms tumor with lung metastases: A report from the children’s oncology group AREN0533 study. J. Clin. Oncol., 2018, 36(16), 1564-1570.
[http://dx.doi.org/10.1200/JCO.2017.77.1931] [PMID: 29659330]
[4]
Pritchard-Jones, K.; Bergeron, C.; de Camargo, B.; van den Heuvel-Eibrink, M.M.; Acha, T.; Godzinski, J.; Oldenburger, F.; Boccon-Gibod, L.; Leuschner, I.; Vujanic, G.; Sandstedt, B.; de Kraker, J.; van Tinteren, H.; Graf, N. Omission of doxorubicin from the treatment of stage II-III, intermediate-risk Wilms’ tumour (SIOP WT 2001): An open-label, non-inferiority, randomised controlled trial. Lancet, 2015, 386(9999), 1156-1164.
[http://dx.doi.org/10.1016/S0140-6736(14)62395-3] [PMID: 26164096]
[5]
Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[6]
Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting autophagy in cancer. Cancer, 2018, 124(16), 3307-3318.
[http://dx.doi.org/10.1002/cncr.31335] [PMID: 29671878]
[7]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[8]
Tan, Q.; Wang, M.; Yu, M.; Zhang, J.; Bristow, R.G.; Hill, R.P.; Tannock, I.F. Role of autophagy as a survival mechanism for hypoxic cells in tumors. Neoplasia, 2016, 18(6), 347-355.
[http://dx.doi.org/10.1016/j.neo.2016.04.003] [PMID: 27292024]
[9]
Masui, A.; Hamada, M.; Kameyama, H.; Wakabayashi, K.; Takasu, A.; Imai, T.; Iwai, S.; Yura, Y. Autophagy as a survival mechanism for squamous cell carcinoma cells in endonuclease G-Mediated apoptosis. PLoS One, 2016, 11(9), e0162786.
[http://dx.doi.org/10.1371/journal.pone.0162786] [PMID: 27658240]
[10]
Liu, Y.; Levine, B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ., 2015, 22(3), 367-376.
[http://dx.doi.org/10.1038/cdd.2014.143] [PMID: 25257169]
[11]
Rangwala, R.; Leone, R.; Chang, Y.C.; Fecher, L.A.; Schuchter, L.M.; Kramer, A.; Tan, K.S.; Heitjan, D.F.; Rodgers, G.; Gallagher, M.; Piao, S.; Troxel, A.B.; Evans, T.L.; DeMichele, A.M.; Nathanson, K.L.; O’Dwyer, P.J.; Kaiser, J.; Pontiggia, L.; Davis, L.E.; Amaravadi, R.K. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy, 2014, 10(8), 1369-1379.
[http://dx.doi.org/10.4161/auto.29118] [PMID: 24991839]
[12]
Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; McAfee, Q.; Fisher, J.; Troxel, A.B.; Piao, S.; Heitjan, D.F.; Tan, K.S.; Pontiggia, L.; O’Dwyer, P.J.; Davis, L.E.; Amaravadi, R.K. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 2014, 10(8), 1359-1368.
[http://dx.doi.org/10.4161/auto.28984] [PMID: 24991840]
[13]
Li, L.J.; Wang, Y.L.; Yuan, L.Q.; Gu, W.Z.; Zhu, K.; Yang, M.; Zhou, D.; Lv, Y.; Li, M.J.; Zhao, Z.Y.; Wang, J.H.; Chen, X. Autophagy inhibition in childhood nephroblastoma and the therapeutic significance. Curr. Cancer Drug Targets, 2018, 18(3), 295-303.
[http://dx.doi.org/10.2174/1568009617666170330105433] [PMID: 28359249]
[14]
Zhang, M.; Xue, E.; Shao, W. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway. Drug Des. Devel. Ther., 2016, 10, 3143-3152.
[http://dx.doi.org/10.2147/DDDT.S113838] [PMID: 27729773]
[15]
Guimei, M.; Eladl, M.A.; Ranade, A.V.; Manzoor, S. Autophagy related markers (Beclin-1 and ATG4B) are strongly expressed in Wilms’ tumor and correlate with favorable histology. Histol. Histopathol., 2019, 34(1), 47-56.
[PMID: 29989143]
[16]
Moussay, E.; Kaoma, T.; Baginska, J.; Muller, A.; Van Moer, K.; Nicot, N.; Nazarov, P.V.; Vallar, L.; Chouaib, S.; Berchem, G.; Janji, B. The acquisition of resistance to TNF in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy, 2011, 7(7), 760-770.
[http://dx.doi.org/10.4161/auto.7.7.15454] [PMID: 21490427]
[17]
McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res., 2012, 40(10), 4288-4297.
[http://dx.doi.org/10.1093/nar/gks042] [PMID: 22287627]
[18]
Wang, Z.; Gao, L.; Guo, X.; Feng, C.; Deng, K.; Lian, W.; Xing, B. Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis. Oncol. Rep., 2019, 42(2), 533-548.
[http://dx.doi.org/10.3892/or.2019.7173] [PMID: 31173251]
[19]
Li, B.; Cui, Y.; Diehn, M.; Li, R. Development and validation of an individualized immune prognostic signature in early-stage nonsquamous non-small cell lung cancer. JAMA Oncol., 2017, 3(11), 1529-1537.
[http://dx.doi.org/10.1001/jamaoncol.2017.1609] [PMID: 28687838]
[20]
Nagashima, K.; Sato, Y. Information criteria for Firth’s penalized partial likelihood approach in Cox regression models. Stat. Med., 2017, 36(21), 3422-3436.
[http://dx.doi.org/10.1002/sim.7368] [PMID: 28608396]
[21]
Liu, Y.; Wu, L.; Ao, H.; Zhao, M.; Leng, X.; Liu, M.; Ma, J.; Zhu, J. Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer. Aging (Albany NY), 2019, 11(23), 11440-11462.
[http://dx.doi.org/10.18632/aging.102544] [PMID: 31811814]
[22]
Harrell, F.E., Jr; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med., 1996, 15(4), 361-387.
[http://dx.doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361:AID-SIM168>3.0.CO;2-4] [PMID: 8668867]
[23]
Alba, A.C.; Agoritsas, T.; Walsh, M.; Hanna, S.; Iorio, A.; Devereaux, P.J.; McGinn, T.; Guyatt, G. Discrimination and calibration of clinical prediction models: Users’ guides to the medical literature. JAMA, 2017, 318(14), 1377-1384.
[http://dx.doi.org/10.1001/jama.2017.12126] [PMID: 29049590]
[24]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[25]
Zhang, M.; Dong, Y.; Hu, F.; Yang, D.; Zhao, Q.; Lv, C.; Wang, Y.; Xia, C.; Weng, Q.; Liu, X.; Li, C.; Zhou, P.; Wang, T.; Guan, Y.; Guo, R.; Liu, L.; Geng, Y.; Wu, H.; Du, J.; Hu, Z.; Xu, S.; Chen, J.; He, A.; Liu, B.; Wang, D.; Yang, Y.G.; Wang, J. Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nat. Immunol., 2018, 19(3), 279-290.
[http://dx.doi.org/10.1038/s41590-018-0046-x] [PMID: 29434353]
[26]
Reimand, J.; Isserlin, R.; Voisin, V.; Kucera, M.; Tannus-Lopes, C.; Rostamianfar, A.; Wadi, L.; Meyer, M.; Wong, J.; Xu, C.; Merico, D.; Bader, G.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc., 2019, 14(2), 482-517.
[http://dx.doi.org/10.1038/s41596-018-0103-9] [PMID: 30664679]
[27]
Song, K.; Shi, X.; Wang, H.; Zou, F.; Lu, F.; Ma, X.; Xia, X.; Jiang, J. Can a nomogram help to predict the overall and cancer-specific survival of patients with chondrosarcoma? Clin. Orthop. Relat. Res., 2018, 476(5), 987-996.
[http://dx.doi.org/10.1007/s11999.0000000000000152] [PMID: 29470233]
[28]
Kawai, K.; Sunami, E.; Yamaguchi, H.; Ishihara, S.; Kazama, S.; Nozawa, H.; Hata, K.; Kiyomatsu, T.; Tanaka, J.; Tanaka, T.; Nishikawa, T.; Kitayama, J.; Watanabe, T. Nomograms for colorectal cancer: A systematic review. World J. Gastroenterol., 2015, 21(41), 11877-11886.
[http://dx.doi.org/10.3748/wjg.v21.i41.11877] [PMID: 26557011]
[29]
Huang, Y.; Li, W.; Macheret, F.; Gabriel, R.A.; Ohno-Machado, L. A tutorial on calibration measurements and calibration models for clinical prediction models. J. Am. Med. Inform. Assoc., 2020, 27(4), 621-633.
[http://dx.doi.org/10.1093/jamia/ocz228] [PMID: 32106284]
[30]
Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Making, 2006, 26(6), 565-574.
[http://dx.doi.org/10.1177/0272989X06295361] [PMID: 17099194]
[31]
Mulcahy Levy, J.M.; Thorburn, A. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ., 2020, 27(3), 843-857.
[http://dx.doi.org/10.1038/s41418-019-0474-7] [PMID: 31836831]
[32]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[33]
Nazio, F.; Strappazzon, F.; Antonioli, M.; Bielli, P.; Cianfanelli, V.; Bordi, M.; Gretzmeier, C.; Dengjel, J.; Piacentini, M.; Fimia, G.M.; Cecconi, F. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol., 2013, 15(4), 406-416.
[http://dx.doi.org/10.1038/ncb2708] [PMID: 23524951]
[34]
Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999, 402(6762), 672-676.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[35]
Egan, D.F.; Chun, M.G.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.C.; Sheffler, D.J.; Teriete, P.; Asara, J.M.; Turk, B.E.; Cosford, N.D.; Shaw, R.J. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell, 2015, 59(2), 285-297.
[http://dx.doi.org/10.1016/j.molcel.2015.05.031] [PMID: 26118643]
[36]
Dowdle, W.E.; Nyfeler, B.; Nagel, J.; Elling, R.A.; Liu, S.; Triantafellow, E.; Menon, S.; Wang, Z.; Honda, A.; Pardee, G.; Cantwell, J.; Luu, C.; Cornella-Taracido, I.; Harrington, E.; Fekkes, P.; Lei, H.; Fang, Q.; Digan, M.E.; Burdick, D.; Powers, A.F.; Helliwell, S.B.; D’Aquin, S.; Bastien, J.; Wang, H.; Wiederschain, D.; Kuerth, J.; Bergman, P.; Schwalb, D.; Thomas, J.; Ugwonali, S.; Harbinski, F.; Tallarico, J.; Wilson, C.J.; Myer, V.E.; Porter, J.A.; Bussiere, D.E.; Finan, P.M.; Labow, M.A.; Mao, X.; Hamann, L.G.; Manning, B.D.; Valdez, R.A.; Nicholson, T.; Schirle, M.; Knapp, M.S.; Keaney, E.P.; Murphy, L.O. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol., 2014, 16(11), 1069-1079.
[http://dx.doi.org/10.1038/ncb3053] [PMID: 25327288]
[37]
Cresswell, G.D.; Apps, J.R.; Chagtai, T.; Mifsud, B.; Bentley, C.C.; Maschietto, M.; Popov, S.D.; Weeks, M.E.; Olsen, O.E.; Sebire, N.J.; Pritchard-Jones, K.; Luscombe, N.M.; Williams, R.D.; Mifsud, W. Intra-tumor genetic heterogeneity in wilms tumor: Clonal evolution and clinical implications. EBioMedicine, 2016, 9, 120-129.
[http://dx.doi.org/10.1016/j.ebiom.2016.05.029] [PMID: 27333041]
[38]
Leichter, A.L.; Sullivan, M.J.; Eccles, M.R.; Chatterjee, A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol. Cancer, 2017, 16(1), 15.
[http://dx.doi.org/10.1186/s12943-017-0584-0] [PMID: 28103887]
[39]
Gadd, S.; Huff, V.; Walz, A.L.; Ooms, A.H.A.G.; Armstrong, A.E.; Gerhard, D.S.; Smith, M.A.; Auvil, J.M.G.; Meerzaman, D.; Chen, Q.R.; Hsu, C.H.; Yan, C.; Nguyen, C.; Hu, Y.; Hermida, L.C.; Davidsen, T.; Gesuwan, P.; Ma, Y.; Zong, Z.; Mungall, A.J.; Moore, R.A.; Marra, M.A.; Dome, J.S.; Mullighan, C.G.; Ma, J.; Wheeler, D.A.; Hampton, O.A.; Ross, N.; Gastier-Foster, J.M.; Arold, S.T.; Perlman, E.J. A children’s oncology group and target initiative exploring the genetic landscape of Wilms tumor. Nat. Genet., 2017, 49(10), 1487-1494.
[http://dx.doi.org/10.1038/ng.3940] [PMID: 28825729]
[40]
Treger, T.D.; Chowdhury, T.; Pritchard-Jones, K.; Behjati, S. The genetic changes of Wilms tumour. Nat. Rev. Nephrol., 2019, 15(4), 240-251.
[http://dx.doi.org/10.1038/s41581-019-0112-0] [PMID: 30705419]
[41]
Kim, H.S.; Kim, M.S.; Hancock, A.L.; Harper, J.C.; Park, J.Y.; Poy, G.; Perantoni, A.O.; Cam, M.; Malik, K.; Lee, S.B. Identification of novel Wilms’ tumor suppressor gene target genes implicated in kidney development. J. Biol. Chem., 2007, 282(22), 16278-16287.
[http://dx.doi.org/10.1074/jbc.M700215200] [PMID: 17430890]
[42]
Tardáguila, M.; Mira, E.; García-Cabezas, M.A.; Feijoo, A.M.; Quintela-Fandino, M.; Azcoitia, I.; Lira, S.A.; Mañes, S. CX3CL1 promotes breast cancer via transactivation of the EGF pathway. Cancer Res., 2013, 73(14), 4461-4473.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3828] [PMID: 23720051]
[43]
Salem, M.; Kinoshita, Y.; Tajiri, T.; Souzaki, R.; Tatsuta, K.; Higashi, M.; Izaki, T.; Kohashi, K.; Tsuneyoshi, M.; Taguchi, T. Association between the HER2 expression and histological differentiation in Wilms tumor. Pediatr. Surg. Int., 2006, 22(11), 891-896.
[http://dx.doi.org/10.1007/s00383-006-1762-0] [PMID: 16932912]
[44]
Ragab, S.M.; Samaka, R.M.; Shams, T.M. HER2/neu expression: A predictor for differentiation and survival in children with Wilms tumor. Pathol. Oncol. Res., 2010, 16(1), 61-67.
[http://dx.doi.org/10.1007/s12253-009-9188-3] [PMID: 19609744]
[45]
Albadari, N.; Deng, S.; Li, W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin. Drug Discov., 2019, 14(7), 667-682.
[http://dx.doi.org/10.1080/17460441.2019.1613370] [PMID: 31070059]
[46]
Shi, B.; Li, Y.; Wang, X.; Yang, Y.; Li, D.; Liu, X.; Yang, X. Silencing of hypoxia inducible factor-1α by RNA interference inhibits growth of SK-NEP-1 Wilms tumour cells in vitro, and suppresses tumourigenesis and angiogenesis in vivo. Clin. Exp. Pharmacol. Physiol., 2016, 43(6), 626-633.
[http://dx.doi.org/10.1111/1440-1681.12575] [PMID: 27015631]
[47]
Madan, E.; Parker, T.M.; Pelham, C.J.; Palma, A.M.; Peixoto, M.L.; Nagane, M.; Chandaria, A.; Tomás, A.R.; Canas-Marques, R.; Henriques, V.; Galzerano, A.; Cabral-Teixeira, J.; Selvendiran, K.; Kuppusamy, P.; Carvalho, C.; Beltran, A.; Moreno, E.; Pati, U.K.; Gogna, R. HIF-transcribed p53 chaperones HIF-1. Nucleic Acids Res., 2019, 47(19), 10212-10234.
[http://dx.doi.org/10.1093/nar/gkz766] [PMID: 31538203]
[48]
Lee, A.; Frischer, J.; Serur, A.; Huang, J.; Bae, J.O.; Kornfield, Z.N.; Eljuga, L.; Shawber, C.J.; Feirt, N.; Mansukhani, M.; Stempak, D.; Baruchel, S.; Glade Bender, J.; Kandel, J.J.; Yamashiro, D.J. Inhibition of cyclooxygenase-2 disrupts tumor vascular mural cell recruitment and survival signaling. Cancer Res., 2006, 66(8), 4378-4384.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3810] [PMID: 16618763]
[49]
Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res., 2014, 124, 31-82.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00002-1] [PMID: 25287686]
[50]
Diniz, G.; Aktas, S.; Cubuk, C.; Ortac, R.; Vergin, C.; Olgun, N. Tissue expression of MLH1, PMS2, MSH2, and MSH6 proteins and prognostic value of microsatellite instability in Wilms tumor: Experience of 45 cases. Pediatr. Hematol. Oncol., 2013, 30(4), 273-284.
[http://dx.doi.org/10.3109/08880018.2013.780274] [PMID: 23570624]
[51]
Citak, E.C.; Sagcan, F.; Gundugan, B.D.; Bozdogan, S.T.; Yilmaz, E.B.; Avci, E.; Balci, Y.; Karabulut, Y.Y. Metachronous wilms tumor, glioblastoma, and T-cell leukemia in an child with constitutional mismatch repair deficiency syndrome due to novel mutation in MSH6 (c.2590G>T). J. Pediatr. Hematol. Oncol., 2019.
[http://dx.doi.org/10.1097/MPH.0000000000001687] [PMID: 31815888]
[52]
Diets, I.J.; Hoyer, J.; Ekici, A.B.; Popp, B.; Hoogerbrugge, N.; van Reijmersdal, S.V.; Bhaskaran, R.; Hadjihannas, M.; Vasileiou, G.; Thiel, C.T.; Seven, D.; Uebe, S.; Ilencikova, D.; Waanders, E.; Mavinkurve-Groothuis, A.M.C.; Roeleveld, N.; de Krijger, R.R.; Wegert, J.; Graf, N.; Vokuhl, C.; Agaimy, A.; Gessler, M.; Reis, A.; Kuiper, R.P.; Jongmans, M.C.J.; Metzler, M. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int. J. Cancer, 2019, 145(4), 941-951.
[http://dx.doi.org/10.1002/ijc.32167] [PMID: 30694527]
[53]
Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol., 2015, 16(4), e173-e180.
[http://dx.doi.org/10.1016/S1470-2045(14)71116-7] [PMID: 25846097]
[54]
Wang, H.H.; Abern, M.R.; Cost, N.G.; Chu, D.I.; Ross, S.S.; Wiener, J.S.; Routh, J.C. Use of nephron sparing surgery and impact on survival in children with Wilms tumor: A SEER analysis. J. Urol., 2014, 192(4), 1196-1202.
[http://dx.doi.org/10.1016/j.juro.2014.04.003] [PMID: 24735935]
[55]
Doganis, D.; Panagopoulou, P.; Tragiannidis, A.; Vichos, T.; Moschovi, M.; Polychronopoulou, S.; Rigatou, E.; Papakonstantinou, E.; Stiakaki, E.; Dana, H.; Bouka, P.; Antunes, L.; Bastos, J.; Coza, D.; Demetriou, A.; Agius, D.; Eser, S.; Ryzhov, A.; Sekerija, M.; Trojanowski, M.; Zagar, T.; Zborovskaya, A.; Perisic, S. Z.; Strantzia, K.; Dessypris, N.; Psaltopoulou, T.; Petridou, E. T. Survival and mortality rates of Wilms tumour in Southern and Eastern European countries: Socioeconomic differentials compared with the United States of America. Eur. J. Cancer (Oxford, England : 1990), 2018, 101, 38-46.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy