Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

The Comprehensive Neural Mechanism of Oxytocin in Analgesia

Author(s): Liu-Nan Yang, Kai Chen, Xiao-Ping Yin*, Dan Liu* and Ling-Qiang Zhu*

Volume 20, Issue 1, 2022

Page: [147 - 157] Pages: 11

DOI: 10.2174/1570159X19666210826142107

Price: $65

Abstract

Oxytocin (OXT) is a nine amino acid neuropeptide hormone that has become one of the most intensively studied molecules in the past few decades. The vast majority of OXT is synthesized in the periventricular nucleus and supraoptic nucleus of the hypothalamus, and a few are synthesized in some peripheral organs (such as the uterus, ovaries, adrenal glands, thymus, pancreas, etc.) OXT modulates a series of physiological processes, including lactation, parturition, as well as some social behaviors. In addition, more and more attention has recently been focused on the analgesic effects of oxytocin. It has been reported that OXT can relieve tension and pain without other adverse effects. However, the critical role and detailed mechanism of OXT in analgesia remain unclear. This review aims to summarize the mechanism of OXT in analgesia and some ideas about the mechanism.

Keywords: Oxytocin, receptor, analgesia, nervous system, spinal cord, peripheral nervous system.

Graphical Abstract

[1]
Dale, H.H. On some physiological actions of ergot. J. Physiol., 1906, 34(3), 163-206.
[http://dx.doi.org/10.1113/jphysiol.1906.sp001148] [PMID: 16992821]
[2]
Ott, I.; Scott, J.C. The action of glandular extracts upon the contractions of the uterus. J. Exp. Med., 1909, 11(2), 326-330.
[http://dx.doi.org/10.1084/jem.11.2.326] [PMID: 19867251]
[3]
David, J.C.; Vareed, C. A Preliminary Note on the Action of Vasopressin and Oxytocin. Ind. Med. Gaz., 1929, 64(2), 73-76.
[PMID: 29009547]
[4]
García-Boll, E.; Martínez-Lorenzana, G.; Condés-Lara, M.; González-Hernández, A. Oxytocin inhibits the rat medullary dorsal horn Sp5c/C1 nociceptive transmission through OT but not V1A receptors. Neuropharmacology, 2018, 129, 109-117.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.031] [PMID: 29169960]
[5]
Poisbeau, P.; Grinevich, V.; Charlet, A. Oxytocin signaling in pain: cellular, circuit, system, and behavioral levels. Curr. Top. Behav. Neurosci., 2018, 35, 193-211.
[http://dx.doi.org/10.1007/7854_2017_14] [PMID: 28942595]
[6]
Gruber, C.W. Physiology of invertebrate oxytocin and vasopressin neuropeptides. Exp. Physiol., 2014, 99(1), 55-61.
[http://dx.doi.org/10.1113/expphysiol.2013.072561] [PMID: 23955310]
[7]
Burbach, J.P.; Luckman, S.M.; Murphy, D.; Gainer, H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol. Rev., 2001, 81(3), 1197-1267.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1197] [PMID: 11427695]
[8]
Ross, H.E.; Cole, C.D.; Smith, Y.; Neumann, I.D.; Landgraf, R.; Murphy, A.Z.; Young, L.J. Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience, 2009, 162(4), 892-903.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.055] [PMID: 19482070]
[9]
Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; Grinevich, V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 2012, 73(3), 553-566.
[http://dx.doi.org/10.1016/j.neuron.2011.11.030] [PMID: 22325206]
[10]
Juif, P.E.; Poisbeau, P. Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain, 2013, 154(8), 1449-1456.
[http://dx.doi.org/10.1016/j.pain.2013.05.003] [PMID: 23707282]
[11]
Swanson, L.W.; Sawchenko, P.E. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci., 1983, 6, 269-324.
[http://dx.doi.org/10.1146/annurev.ne.06.030183.001413] [PMID: 6132586]
[12]
Garrott, K.; Dyavanapalli, J.; Cauley, E.; Dwyer, M.K.; Kuzmiak-Glancy, S.; Wang, X.; Mendelowitz, D.; Kay, M.W. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure. Cardiovasc. Res., 2017, 113(11), 1318-1328.
[http://dx.doi.org/10.1093/cvr/cvx084] [PMID: 28472396]
[13]
Eliava, M.; Melchior, M.; Knobloch-Bollmann, H.S.; Wahis, J.; da Silva Gouveia, M.; Tang, Y.; Ciobanu, A.C.; Triana Del Rio, R.; Roth, L.C.; Althammer, F.; Chavant, V.; Goumon, Y.; Gruber, T.; Petit-Demoulière, N.; Busnelli, M.; Chini, B.; Tan, L.L.; Mitre, M.; Froemke, R.C.; Chao, M.V.; Giese, G.; Sprengel, R.; Kuner, R.; Poisbeau, P.; Seeburg, P.H.; Stoop, R.; Charlet, A.; Grinevich, V. A New population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron, 2016, 89(6), 1291-1304.
[http://dx.doi.org/10.1016/j.neuron.2016.01.041] [PMID: 26948889]
[14]
Althammer, F.; Grinevich, V. Diversity of oxytocin neurons: Beyond magno- and parvocellular cell types? J. Neuroendocrinol., 2017. [online a head of print].
[PMID: 29024187]
[15]
Feng, C.; Lori, A.; Waldman, I.D.; Binder, E.B.; Haroon, E.; Rilling, J.K. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans. Genes Brain Behav., 2015, 14(7), 516-525.
[http://dx.doi.org/10.1111/gbb.12234] [PMID: 26178189]
[16]
Yamasue, H. Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior. Brain Dev., 2013, 35(2), 111-118.
[http://dx.doi.org/10.1016/j.braindev.2012.08.010] [PMID: 22986294]
[17]
Chen, F.S.; Kumsta, R.; Dvorak, F.; Domes, G.; Yim, O.S.; Ebstein, R.P.; Heinrichs, M. Genetic modulation of oxytocin sensitivity: A pharmacogenetic approach. Transl. Psychiatry, 2015, 5(10)e664
[http://dx.doi.org/10.1038/tp.2015.163] [PMID: 26506050]
[18]
Bethlehem, R.A.I.; Lombardo, M.V.; Lai, M.C.; Auyeung, B.; Crockford, S.K.; Deakin, J.; Soubramanian, S.; Sule, A.; Kundu, P.; Voon, V.; Baron-Cohen, S. Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women. Transl. Psychiatry, 2017, 7(4)e1099
[http://dx.doi.org/10.1038/tp.2017.72] [PMID: 28418398]
[19]
Nasanbuyan, N.; Yoshida, M.; Takayanagi, Y.; Inutsuka, A.; Nishimori, K.; Yamanaka, A.; Onaka, T. Oxytocin-oxytocin receptor systems facilitate social defeat posture in male mice. Endocrinology, 2018, 159(2), 763-775.
[http://dx.doi.org/10.1210/en.2017-00606] [PMID: 29186377]
[20]
Zhou, X.B.; Lutz, S.; Steffens, F.; Korth, M.; Wieland, T. Oxytocin receptors differentially signal via Gq and Gi proteins in pregnant and nonpregnant rat uterine myocytes: Implications for myometrial contractility. Mol. Endocrinol., 2007, 21(3), 740-752.
[http://dx.doi.org/10.1210/me.2006-0220] [PMID: 17170070]
[21]
Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev., 2001, 81(2), 629-683.
[http://dx.doi.org/10.1152/physrev.2001.81.2.629] [PMID: 11274341]
[22]
Lin, Y.T.; Hsu, K.S. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog. Neurobiol., 2018, 171, 1-14.
[http://dx.doi.org/10.1016/j.pneurobio.2018.10.003] [PMID: 30359747]
[23]
de Wied, D.; Diamant, M.; Fodor, M. Central nervous system effects of the neurohypophyseal hormones and related peptides. Front. Neuroendocrinol., 1993, 14(4), 251-302.
[http://dx.doi.org/10.1006/frne.1993.1009] [PMID: 8258377]
[24]
Veinante, P.; Freund-Mercier, M.J. Histo autoradiographic detection of oxytocin- and vasopressin-binding sites in the amygdala of the rat. Adv. Exp. Med. Biol., 1995, 395, 347-348.
[PMID: 8713987]
[25]
Macdonald, K.; Macdonald, T.M. The peptide that binds: A systematic review of oxytocin and its prosocial effects in humans. Harv. Rev. Psychiatry, 2010, 18(1), 1-21.
[http://dx.doi.org/10.3109/10673220903523615] [PMID: 20047458]
[26]
Sauer, R.S.; Rittner, H.L.; Roewer, N.; Sohajda, T.; Shityakov, S.; Brack, A.; Broscheit, J.A. A Novel Approach for the Control of Inflammatory Pain: Prostaglandin E2 Complexation by Randomly Methylated β-Cyclodextrins. Anesth. Analg., 2017, 124(2), 675-685.
[http://dx.doi.org/10.1213/ANE.0000000000001674] [PMID: 27930390]
[27]
Gao, L.; Yu, L.C. Involvement of opioid receptors in the oxytocin-induced antinociception in the central nervous system of rats. Regul. Pept., 2004, 120(1-3), 53-58.
[http://dx.doi.org/10.1016/j.regpep.2004.02.011] [PMID: 15177920]
[28]
Ohmichi, M.; Koike, K.; Nohara, A.; Kanda, Y.; Sakamoto, Y.; Zhang, Z.X.; Hirota, K.; Miyake, A. Oxytocin stimulates mitogen-activated protein kinase activity in cultured human puerperal uterine myometrial cells. Endocrinology, 1995, 136(5), 2082-2087.
[http://dx.doi.org/10.1210/endo.136.5.7536662] [PMID: 7536662]
[29]
Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; Sager, M.; Stevens, J.; Rae-Grant, A. Practice guideline update summary: Mild cognitive impairment: Report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology, 2018, 90(3), 126-135.
[http://dx.doi.org/10.1212/WNL.0000000000004826] [PMID: 29282327]
[30]
Ku, C.Y.; Qian, A.; Wen, Y.; Anwer, K.; Sanborn, B.M. Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to G alpha q/11. Endocrinology, 1995, 136(4), 1509-1515.
[http://dx.doi.org/10.1210/endo.136.4.7895660] [PMID: 7895660]
[31]
Rojas-Piloni, G.; Mejía-Rodríguez, R.; Martínez-Lorenzana, G.; Condés-Lara, M. Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons. Neurosci. Lett., 2010, 476(1), 32-35.
[http://dx.doi.org/10.1016/j.neulet.2010.03.076] [PMID: 20371376]
[32]
Cechetto, D.F.; Saper, C.B. Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J. Comp. Neurol., 1988, 272(4), 579-604.
[http://dx.doi.org/10.1002/cne.902720410] [PMID: 2901438]
[33]
Miranda-Cardenas, Y.; Rojas-Piloni, G.; Martínez-Lorenzana, G.; Rodríguez-Jiménez, J.; López-Hidalgo, M.; Freund-Mercier, M.J.; Condés-Lara, M. Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain, 2006, 122(1-2), 182-189.
[http://dx.doi.org/10.1016/j.pain.2006.01.029] [PMID: 16527400]
[34]
Wrobel, L.; Schorscher-Petcu, A.; Dupré, A.; Yoshida, M.; Nishimori, K.; Tribollet, E. Distribution and identity of neurons expressing the oxytocin receptor in the mouse spinal cord. Neurosci. Lett., 2011, 495(1), 49-54.
[http://dx.doi.org/10.1016/j.neulet.2011.03.033] [PMID: 21419193]
[35]
Moreno-López, Y.; Martínez-Lorenzana, G.; Condés-Lara, M.; Rojas-Piloni, G. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides, 2013, 47(2), 117-123.
[http://dx.doi.org/10.1016/j.npep.2012.09.008] [PMID: 23102456]
[36]
Goodin, B.R.; Ness, T.J.; Robbins, M.T. Oxytocin - a multifunctional analgesic for chronic deep tissue pain. Curr. Pharm. Des., 2015, 21(7), 906-913.
[http://dx.doi.org/10.2174/1381612820666141027111843] [PMID: 25345612]
[37]
Martínez-Lorenzana, G.; Espinosa-López, L.; Carranza, M.; Aramburo, C.; Paz-Tres, C.; Rojas-Piloni, G.; Condés-Lara, M. PVN electrical stimulation prolongs withdrawal latencies and releases oxytocin in cerebrospinal fluid, plasma, and spinal cord tissue in intact and neuropathic rats. Pain, 2008, 140(2), 265-273.
[http://dx.doi.org/10.1016/j.pain.2008.08.015] [PMID: 18823708]
[38]
Van Wimersma Greidanus, T.B.; Kroodsma, J.M.; Pot, M.L.; Stevens, M.; Maigret, C. Neurohypophyseal hormones and excessive grooming behaviour. Eur. J. Pharmacol., 1990, 187(1), 1-8.
[http://dx.doi.org/10.1016/0014-2999(90)90334-3] [PMID: 2272347]
[39]
Tracy, L.M.; Labuschagne, I.; Georgiou-Karistianis, N.; Gibson, S.J.; Giummarra, M.J. Sex-specific effects of intranasal oxytocin on thermal pain perception: A randomised, double-blind, placebo-controlled cross-over study. Psychoneuroendocrinology, 2017, 83, 101-110.
[http://dx.doi.org/10.1016/j.psyneuen.2017.05.028] [PMID: 28601750]
[40]
Wang, J.W.; Lundeberg, T.; Yu, L.C. Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of mu-opioid receptor. Regul. Pept., 2003, 115(3), 153-159.
[http://dx.doi.org/10.1016/S0167-0115(03)00152-6] [PMID: 14556956]
[41]
Ostrowski, N.L. Oxytocin receptor mRNA expression in rat brain: Implications for behavioral integration and reproductive success. Psychoneuroendocrinology, 1998, 23(8), 989-1004.
[http://dx.doi.org/10.1016/S0306-4530(98)00070-5] [PMID: 9924748]
[42]
Ando, M.; Hayashi, Y.; Hitomi, S.; Shibuta, I.; Furukawa, A.; Oto, T.; Inada, T.; Matsui, T.; Fukaya, C.; Noma, N.; Okubo, M.; Yonehara, Y.; Kaneko, T.; Iwata, K.; Shinoda, M. Oxytocin-dependent regulation of TRPs expression in trigeminal ganglion neurons attenuates orofacial neuropathic pain following infraorbital nerve injury in rats. Int. J. Mol. Sci., 2020, 21(23)E9173
[http://dx.doi.org/10.3390/ijms21239173] [PMID: 33271955]
[43]
Yu, S.Q.; Lundeberg, T.; Yu, L.C. Involvement of oxytocin in spinal antinociception in rats with inflammation. Brain Res., 2003, 983(1-2), 13-22.
[http://dx.doi.org/10.1016/S0006-8993(03)03019-1] [PMID: 12914962]
[44]
Rojas-Piloni, G.; López-Hidalgo, M.; Martínez-Lorenzana, G.; Rodríguez-Jiménez, J.; Condés-Lara, M. GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation. Brain Res., 2007, 1137(1), 69-77.
[http://dx.doi.org/10.1016/j.brainres.2006.12.045] [PMID: 17229405]
[45]
Breton, J.D.; Veinante, P.; Uhl-Bronner, S.; Vergnano, A.M.; Freund-Mercier, M.J.; Schlichter, R.; Poisbeau, P. Oxytocin-induced antinociception in the spinal cord is mediated by a subpopulation of glutamatergic neurons in lamina I-II which amplify GABAergic inhibition. Mol. Pain, 2008, 4, 19.
[http://dx.doi.org/10.1186/1744-8069-4-19] [PMID: 18510735]
[46]
Tan, Z. J.; Wei, J. B.; Li, Z. W.; Shao, M.; Hu, Q. S.; Peng, B. W. Modulation of GABA-activated currents by oxytocin in rat dorsal root ganglion neurons. Sheng li xue bao : Acta physiologica Sinica, 2000, 52(5), 381-384.
[47]
Campbell, P.; Ophir, A.G.; Phelps, S.M. Central vasopressin and oxytocin receptor distributions in two species of singing mice. J. Comp. Neurol., 2009, 516(4), 321-333.
[http://dx.doi.org/10.1002/cne.22116] [PMID: 19637308]
[48]
Vargas-Martínez, F.; Uvnäs-Moberg, K.; Petersson, M.; Olausson, H.A.; Jiménez-Estrada, I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog. Neurobiol., 2014, 123, 37-78.
[http://dx.doi.org/10.1016/j.pneurobio.2014.10.001] [PMID: 25449701]
[49]
Orenius, T.I.; Raij, T.T.; Nuortimo, A.; Näätänen, P.; Lipsanen, J.; Karlsson, H. The interaction of emotion and pain in the insula and secondary somatosensory cortex. Neuroscience, 2017, 349, 185-194.
[http://dx.doi.org/10.1016/j.neuroscience.2017.02.047] [PMID: 28259800]
[50]
Bos, P.A.; Montoya, E.R.; Hermans, E.J.; Keysers, C.; van Honk, J. Oxytocin reduces neural activity in the pain circuitry when seeing pain in others. Neuroimage, 2015, 113, 217-224.
[http://dx.doi.org/10.1016/j.neuroimage.2015.03.049] [PMID: 25818690]
[51]
Wager, T.D.; Atlas, L.Y. The neuroscience of placebo effects: Connecting context, learning and health. Nat. Rev. Neurosci., 2015, 16(7), 403-418.
[http://dx.doi.org/10.1038/nrn3976] [PMID: 26087681]
[52]
Yang, J.; Li, P.; Liang, J.Y.; Pan, Y.J.; Yan, X.Q.; Yan, F.L.; Hao, F.; Zhang, X.Y.; Zhang, J.; Qiu, P.Y.; Wang, D.X. Oxytocin in the periaqueductal grey regulates nociception in the rat. Regul. Pept., 2011, 169(1-3), 39-42.
[http://dx.doi.org/10.1016/j.regpep.2011.04.007] [PMID: 21545817]
[53]
Yang, J.; Liang, J.Y.; Li, P.; Pan, Y.J.; Qiu, P.Y.; Zhang, J.; Hao, F.; Wang, D.X. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides, 2011, 32(6), 1255-1261.
[http://dx.doi.org/10.1016/j.peptides.2011.03.007] [PMID: 21439337]
[54]
Figueira, R.J.; Peabody, M.F.; Lonstein, J.S. Oxytocin receptor activity in the ventrocaudal periaqueductal gray modulates anxiety-related behavior in postpartum rats. Behav. Neurosci., 2008, 122(3), 618-628.
[http://dx.doi.org/10.1037/0735-7044.122.3.618] [PMID: 18513132]
[55]
Yang, J.; Liang, J.Y.; Zhang, X.Y.; Qiu, P.Y.; Pan, Y.J.; Li, P.; Zhang, J.; Hao, F.; Wang, D.X.; Yan, F.L. Oxytocin, but not arginine vasopressin is involving in the antinociceptive role of hypothalamic supraoptic nucleus. Peptides, 2011, 32(5), 1042-1046.
[http://dx.doi.org/10.1016/j.peptides.2011.02.001] [PMID: 21310203]
[56]
Lee, S.K.; Ryu, P.D.; Lee, S.Y. Differential distributions of neuropeptides in hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla in the rat. Neurosci. Lett., 2013, 556, 160-165.
[http://dx.doi.org/10.1016/j.neulet.2013.09.070] [PMID: 24120435]
[57]
Taati, M.; Tamaddonfard, E. Ventrolateral orbital cortex oxytocin attenuates neuropathic pain through periaqueductal gray opioid receptor. Pharmacol. Rep., 2018, 70(3), 577-583.
[58]
Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 2005, 308(5719), 245-248.
[http://dx.doi.org/10.1126/science.1105636] [PMID: 15821089]
[59]
Caldwell, H.K.; Albers, H.E. Oxytocin, vasopressin, and the motivational forces that drive social behaviors. Curr. Top. Behav. Neurosci., 2016, 27, 51-103.
[http://dx.doi.org/10.1007/7854_2015_390] [PMID: 26472550]
[60]
Dölen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 2013, 501(7466), 179-184.
[http://dx.doi.org/10.1038/nature12518] [PMID: 24025838]
[61]
Song, Z.; Borland, J.M.; Larkin, T.E.; O’Malley, M.; Albers, H.E. Activation of oxytocin receptors, but not arginine-vasopressin V1a receptors, in the ventral tegmental area of male Syrian hamsters is essential for the reward-like properties of social interactions. Psychoneuroendocrinology, 2016, 74, 164-172.
[http://dx.doi.org/10.1016/j.psyneuen.2016.09.001] [PMID: 27632574]
[62]
Hung, L.W.; Neuner, S.; Polepalli, J.S.; Beier, K.T.; Wright, M.; Walsh, J.J.; Lewis, E.M.; Luo, L.; Deisseroth, K.; Dölen, G.; Malenka, R.C. Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357(6358), 1406-1411.
[http://dx.doi.org/10.1126/science.aan4994] [PMID: 28963257]
[63]
Janeček, M.; Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res., 2019, 375(1), 143-172.
[http://dx.doi.org/10.1007/s00441-018-2889-8] [PMID: 30054732]
[64]
Han, Y.; Yu, L.C. Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats. Neurosci. Lett., 2009, 454(1), 101-104.
[http://dx.doi.org/10.1016/j.neulet.2009.02.062] [PMID: 19429063]
[65]
Cragg, B.; Ji, G.; Neugebauer, V. Differential contributions of vasopressin V1A and oxytocin receptors in the amygdala to pain-related behaviors in rats. Mol. Pain, 2016, 12, 12.
[http://dx.doi.org/10.1177/1744806916676491] [PMID: 27837170]
[66]
Gu, X.L.; Yu, L.C. Involvement of opioid receptors in oxytocin-induced antinociception in the nucleus accumbens of rats. Am. Pain Soc., 2007, 8(1), 85-90.
[67]
González-Hernández, A.; Manzano-García, A.; Martínez-Lorenzana, G.; Tello-García, I.A.; Carranza, M.; Arámburo, C.; Condés-Lara, M. Peripheral oxytocin receptors inhibit the nociceptive input signal to spinal dorsal horn wide-dynamic-range neurons. Pain, 2017, 158(11), 2117-2128.
[http://dx.doi.org/10.1097/j.pain.0000000000001024] [PMID: 28731982]
[68]
Grinevich, V.; Charlet, A. Oxytocin: Pain relief in skin. Pain, 2017, 158(11), 2061-2063.
[http://dx.doi.org/10.1097/j.pain.0000000000001006] [PMID: 28777772]
[69]
Shi, J.; Fu, L.B.; Yu, L.C. Involvement of protein kinase C in the galanin-induced antinociception in the brain of rats. Neurosci. Lett., 2011, 497(1), 60-63.
[http://dx.doi.org/10.1016/j.neulet.2011.04.029] [PMID: 21530611]
[70]
Chow, L.H.; Chen, Y.H.; Wu, W.C.; Chang, E.P.; Huang, E.Y. Sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats with intraplantar carrageenan-induced inflammation. PLoS One, 2016, 11(9)e0162218
[http://dx.doi.org/10.1371/journal.pone.0162218] [PMID: 27606886]
[71]
Wei, S.Q.; Luo, Z.C.; Qi, H.P.; Xu, H.; Fraser, W.D. High-dose vs low-dose oxytocin for labor augmentation: A systematic review. Am. J. Obstet. Gynecol., 2010, 203(4), 296-304.
[http://dx.doi.org/10.1016/j.ajog.2010.03.007] [PMID: 20451894]
[72]
Sentilhes, L.; Merlot, B.; Madar, H.; Sztark, F.; Brun, S.; Deneux-Tharaux, C. Postpartum haemorrhage: Prevention and treatment. Expert Rev. Hematol., 2016, 9(11), 1043-1061.
[http://dx.doi.org/10.1080/17474086.2016.1245135] [PMID: 27701915]
[73]
Ruis, H.; Rolland, R.; Doesburg, W.; Broeders, G.; Corbey, R. Oxytocin enhances onset of lactation among mothers delivering prematurely. Br. Med. J. (Clin. Res. Ed.), 1981, 283(6287), 340-342.
[http://dx.doi.org/10.1136/bmj.283.6287.340] [PMID: 6788318]
[74]
Fewtrell, M.S.; Loh, K.L.; Blake, A.; Ridout, D.A.; Hawdon, J. Randomised, double blind trial of oxytocin nasal spray in mothers expressing breast milk for preterm infants. Arch. Dis. Child. Fetal Neonatal Ed., 2006, 91(3), F169-F174.
[http://dx.doi.org/10.1136/adc.2005.081265] [PMID: 16223754]
[75]
González-Hernández, A.; Rojas-Piloni, G.; Condés-Lara, M. Oxytocin and analgesia: Future trends. Trends Pharmacol. Sci., 2014, 35(11), 549-551.
[http://dx.doi.org/10.1016/j.tips.2014.09.004] [PMID: 25270768]
[76]
Neugebauer, V. Amygdala pain mechanisms. Handb. Exp. Pharmacol., 2015, 227, 261-284.
[http://dx.doi.org/10.1007/978-3-662-46450-2_13] [PMID: 25846623]
[77]
Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci., 2012, 35(11), 649-659.
[http://dx.doi.org/10.1016/j.tins.2012.08.004] [PMID: 22974560]
[78]
Li, L.; Wang, X.; Yu, L.C. Involvement of opioid receptors in the CGRP-induced antinociception in the nucleus accumbens of rats. Brain Res., 2010, 1353, 53-59.
[http://dx.doi.org/10.1016/j.brainres.2010.07.042] [PMID: 20659434]
[79]
Li, S.F.; Zhang, Y.Y.; Li, Y.Y.; Wen, S.; Xiao, Z. Antihyperalgesic effect of 5-HT7 receptor activation on the midbrain periaqueductal gray in a rat model of neuropathic pain. Pharmacol. Biochem. Behav., 2014, 127, 49-55.
[http://dx.doi.org/10.1016/j.pbb.2014.10.007] [PMID: 25450118]
[80]
Zhao, M.; Wang, J.Y.; Jia, H.; Tang, J.S. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat. Neuroscience, 2007, 144(4), 1486-1494.
[http://dx.doi.org/10.1016/j.neuroscience.2006.11.009] [PMID: 17184926]
[81]
Molokanova, E.A.; Tamarova, Z.A. Effect of oxytocin on rat dorsal root ganglia in vitro. Neurophysiology, 1989, 21(3), 420-422.
[82]
Tamarova, Z.A. Effect of vasopressin and oxytocin on the dorsal root potentials of the isolated perfused spinal cord in rat pups. Neurophysiology, 1988, 20(6), 757-763.
[83]
Yang, Q.; Wu, Z.Z.; Li, X.; Li, Z.W.; Wei, J.B.; Hu, Q.S. Modulation by oxytocin of ATP-activated currents in rat dorsal root ganglion neurons. Neuropharmacology, 2002, 43(5), 910-916.
[http://dx.doi.org/10.1016/S0028-3908(02)00127-2] [PMID: 12384176]
[84]
Ayar, A.; Ozcan, M.; Alcin, E.; Serhatlioglu, I.; Ozcan, S.; Kutlu, S.; Kelestimur, H. Oxytocin activates calcium signaling in rat sensory neurons through a protein kinase C-dependent mechanism. J. Physiol. Biochem., 2014, 70(1), 43-48.
[http://dx.doi.org/10.1007/s13105-013-0278-z] [PMID: 23912682]
[85]
Jo, Y.H.; Stoeckel, M.E.; Freund-Mercier, M.J.; Schlichter, R. Oxytocin modulates glutamatergic synaptic transmission between cultured neonatal spinal cord dorsal horn neurons. J. Neurosci., 1998, 18(7), 2377-2386.
[http://dx.doi.org/10.1523/JNEUROSCI.18-07-02377.1998] [PMID: 9502799]
[86]
Hobo, S.; Hayashida, K.; Eisenach, J.C. Oxytocin inhibits the membrane depolarization-induced increase in intracellular calcium in capsaicin sensitive sensory neurons: A peripheral mechanism of analgesic action. Anesth. Analg., 2012, 114(2), 442-449.
[http://dx.doi.org/10.1213/ANE.0b013e31823b1bc8] [PMID: 22104073]
[87]
Gong, L.; Gao, F.; Li, J.; Li, J.; Yu, X.; Ma, X.; Zheng, W.; Cui, S.; Liu, K.; Zhang, M.; Kunze, W.; Liu, C.Y. Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca(2+)/nNOS/NO/KATP pathway. Neuroscience, 2015, 289, 417-428.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.058] [PMID: 25617653]
[88]
Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol., 2013, 29, 355-384.
[http://dx.doi.org/10.1146/annurev-cellbio-101011-155833] [PMID: 24099085]
[89]
Nersesyan, Y.; Demirkhanyan, L.; Cabezas-Bratesco, D.; Oakes, V.; Kusuda, R.; Dawson, T.; Sun, X.; Cao, C.; Cohen, A.M.; Chelluboina, B.; Veeravalli, K.K.; Zimmermann, K.; Domene, C.; Brauchi, S.; Zakharian, E. Oxytocin modulates nociception as an agonist of pain-sensing trpv1. Cell Rep., 2017, 21(6), 1681-1691.
[http://dx.doi.org/10.1016/j.celrep.2017.10.063] [PMID: 29117570]
[90]
Poisbeau, P.; Patte-Mensah, C.; Keller, A.F.; Barrot, M.; Breton, J.D.; Luis-Delgado, O.E.; Freund-Mercier, M.J.; Mensah-Nyagan, A.G.; Schlichter, R. Inflammatory pain upregulates spinal inhibition via endogenous neurosteroid production. J. Neurosci., 2005, 25(50), 11768-11776.
[http://dx.doi.org/10.1523/JNEUROSCI.3841-05.2005] [PMID: 16354935]
[91]
Blume, A.; Bosch, O.J.; Miklos, S.; Torner, L.; Wales, L.; Waldherr, M.; Neumann, I.D. Oxytocin reduces anxiety via ERK1/2 activation: Local effect within the rat hypothalamic paraventricular nucleus. Eur. J. Neurosci., 2008, 27(8), 1947-1956.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06184.x] [PMID: 18412615]
[92]
Juif, P.E.; Breton, J.D.; Rajalu, M.; Charlet, A.; Goumon, Y.; Poisbeau, P. Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition. J. Neurosci., 2013, 33(42), 16617-16626.
[http://dx.doi.org/10.1523/JNEUROSCI.3084-12.2013] [PMID: 24133265]
[93]
Condés-Lara, M.; Rojas-Piloni, G.; Martínez-Lorenzana, G.; López-Hidalgo, M.; Rodríguez-Jiménez, J. Hypothalamospinal oxytocinergic antinociception is mediated by GABAergic and opiate neurons that reduce A-delta and C fiber primary afferent excitation of spinal cord cells. Brain Res., 2009, 1247, 38-49.
[http://dx.doi.org/10.1016/j.brainres.2008.10.030] [PMID: 18996098]
[94]
Breton, J.D.; Poisbeau, P.; Darbon, P. Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord. Mol. Pain, 2009, 5, 63.
[http://dx.doi.org/10.1186/1744-8069-5-63] [PMID: 19909537]
[95]
Robinson, D.A.; Wei, F.; Wang, G.D.; Li, P.; Kim, S.J.; Vogt, S.K.; Muglia, L.J.; Zhuo, M. Oxytocin mediates stress-induced analgesia in adult mice. J. Physiol., 2002, 540(Pt 2), 593-606.
[http://dx.doi.org/10.1113/jphysiol.2001.013492] [PMID: 11956346]
[96]
Condés-Lara, M.; González, N.M.; Martínez-Lorenzana, G.; Delgado, O.L.; Freund-Mercier, M.J. Actions of oxytocin and interactions with glutamate on spontaneous and evoked dorsal spinal cord neuronal activities. Brain Res., 2003, 976(1), 75-81.
[http://dx.doi.org/10.1016/S0006-8993(03)02690-8] [PMID: 12763624]
[97]
Jiang, C.Y.; Fujita, T.; Kumamoto, E. Synaptic modulation and inward current produced by oxytocin in substantia gelatinosa neurons of adult rat spinal cord slices. J. Neurophysiol., 2014, 111(5), 991-1007.
[http://dx.doi.org/10.1152/jn.00609.2013] [PMID: 24335211]
[98]
Jiang, C.Y.; Fujita, T.; Kumamoto, E. Developmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons. Biochem. Biophys. Rep., 2016, 7, 206-213.
[http://dx.doi.org/10.1016/j.bbrep.2016.06.011] [PMID: 28955908]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy