General Review Article

膳食多酚 在预防和治疗 NAFLD中的有益作用:潜在的健康影响的细胞信号通路

卷 29, 期 2, 2022

发表于: 25 August, 2021

页: [299 - 328] 页: 30

弟呕挨: 10.2174/0929867328666210825111350

价格: $65

摘要

背景:非酒精性脂肪性肝病(NAFLD)的特征是,在没有酒精摄入的情况下,甘油三酯的肝脏积聚,可能进展为脂肪性肝炎,纤维化和肝硬化,成为慢性肝病的主要原因。本文讨论了有关膳食多酚在体外,体内和临床试验中预防和治疗NAFLD的最新数据 。 方法: 使用国家医学图书馆 - 美国国立卫生研究院的PubMed数据库进行研究检索。 结果: 多酚在NAFLD中发挥有益作用,阳性结果与体重增加,胰岛素抵抗,肝脏脂肪堆积,氧化应激,促炎状态,线粒体功能障碍和ER应激有关。报道的羟基酪醇数据表明,肝PPAR-α-FGF21-AMPK-PGC-1α信号级联反应的激活与脂肪酸氧化增强, 从头 脂肪发生减少和线粒体功能的恢复有关,这一争论得到了几种多酚对该信号通路特定组分的作用的支持。此外,多酚下调NF-κB,抑制NAFLD中形成的促炎状态,上调肝脏Nrf2,增加细胞抗氧化潜力。多酚的后一个特征是由促氧化剂微量元素的螯合,将自由基还原为稳定形式和抑制自由基产生系统来贡献的。 结论: 多酚是NAFLD防治的相关生物活性化合物,其生物利用度低,生物系统不稳定,可能限制其健康影响。这些缺点强化了进一步研究的必要性,以提高多酚制剂对人类干预的功效。

关键词: 非酒精性脂肪性肝病,肝脂肪变性,多酚,生物活性成分,抗氧化剂,氧化 应激。

[1]
Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(1), 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[2]
Ashraf, N.U.; Sheikh, T.A. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic. Res., 2015, 49(12), 1405-1418.
[http://dx.doi.org/10.3109/10715762.2015.1078461] [PMID: 26223319]
[3]
Marengo, A.; Rosso, C.; Bugianesi, E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu. Rev. Med., 2016, 67, 103-117.
[http://dx.doi.org/10.1146/annurev-med-090514-013832] [PMID: 26473416]
[4]
Michelotti, G.A.; Machado, M.V.; Diehl, A.M. NAFLD, NASH and Liver Cancer. In: Nature Reviews Gastroenterology and Hepatology; Nature Publishing Group, 2013; pp. 656-665.
[http://dx.doi.org/10.1038/nrgastro.2013.183]
[5]
Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int. J. Mol. Sci., 2015, 16(10), 25168-25198.
[http://dx.doi.org/10.3390/ijms161025168] [PMID: 26512643]
[6]
Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. World J. Hepatol., 2017, 9(16), 715-732.
[http://dx.doi.org/10.4254/wjh.v9.i16.715] [PMID: 28652891]
[7]
Valenzuela, R.; Espinosa, A.; Llanos, P.; Hernandez-Rodas, M.C.; Barrera, C.; Vergara, D.; Romero, N.; Pérez, F.; Ruz, M.; Videla, L.A. Anti-steatotic effects of an n-3 LCPUFA and extra virgin olive oil mixture in the liver of mice subjected to high-fat diet. Food Funct., 2016, 7(1), 140-150.
[http://dx.doi.org/10.1039/C5FO01086A] [PMID: 26471014]
[8]
Soto-Alarcón, S.A.; Ortiz, M.; Orellana, P.; Echeverría, F.; Bustamante, A.; Espinosa, A.; Illesca, P.; Gonzalez-Mañán, D.; Valenzuela, R.; Videla, L.A. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach. Biofactors, 2019, 45(6), 930-943.
[http://dx.doi.org/10.1002/biof.1556] [PMID: 31454114]
[9]
Videla, L.A.; Rodrigo, R.; Araya, J.; Poniachik, J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol. Med., 2006, 12(12), 555-558.
[http://dx.doi.org/10.1016/j.molmed.2006.10.001] [PMID: 17049925]
[10]
Hernández-Rodas, M.C.; Valenzuela, R.; Echeverría, F.; Rincón-Cervera, M.Á.; Espinosa, A.; Illesca, P.; Muñoz, P.; Corbari, A.; Romero, N.; Gonzalez-Mañan, D.; Videla, L.A. Supplementation with docosahexaenoic acid and extra virgin olive oil prevents liver steatosis induced by a high-fat diet in mice through PPAR-α and Nrf2 upregulation with concomitant SREBP-1c and NF-κB downregulation. Mol. Nutr. Food Res., 2017, 61(12), 1700479.
[http://dx.doi.org/10.1002/mnfr.201700479] [PMID: 28940752]
[11]
Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M-Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct., 2017, 8(4), 1526-1537.
[http://dx.doi.org/10.1039/C7FO00090A] [PMID: 28386616]
[12]
Halliwell, B. Antioxidant characterization. Methodology and mechanism. Biochem. Pharmacol., 1995, 49(10), 1341-1348.
[http://dx.doi.org/10.1016/0006-2952(95)00088-H] [PMID: 7763275]
[13]
Ferramosca, A.; Di Giacomo, M.; Zara, V. Antioxidant dietary approach in treatment of fatty liver: new insights and updates. World J. Gastroenterol., 2017, 23(23), 4146-4157.
[http://dx.doi.org/10.3748/wjg.v23.i23.4146] [PMID: 28694655]
[14]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[15]
Pepa, G.; Della, ; Vetrani, C.; Lombardi, G.; Bozzetto, L.; Annuzzi, G.; Rivellese, A. A. Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals.
[http://dx.doi.org/10.3390/nu9101065]
[16]
Abenavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients, 2021, 13(2), 494.
[http://dx.doi.org/10.3390/nu13020494] [PMID: 33546130]
[17]
Naoi, M.; Wu, Y.; Shamoto-Nagai, M.; Maruyama, W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int. J. Mol. Sci., 2019, 20(10), 2451.
[http://dx.doi.org/10.3390/ijms20102451] [PMID: 31108962]
[18]
Marques, B.C.A.A.; Trindade, M.; Aquino, J.C.F.; Cunha, A.R.; Gismondi, R.O.; Neves, M.F.; Oigman, W. Beneficial effects of acute trans-resveratrol supplementation in treated hypertensive patients with endothelial dysfunction. Clin. Exp. Hypertens., 2018, 40(3), 218-223.
[http://dx.doi.org/10.1080/10641963.2017.1288741] [PMID: 29431520]
[19]
Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res., 2017, 61(4)
[http://dx.doi.org/10.1002/mnfr.201600930] [PMID: 27943649]
[20]
Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 351.
[http://dx.doi.org/10.3390/ijms20020351] [PMID: 30654461]
[21]
Koushki, M.; Dashatan, N.A.; Meshkani, R. Effect of resveratrol supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Clin. Ther., 2018, 40(7), 1180-1192.e5.
[http://dx.doi.org/10.1016/j.clinthera.2018.05.015] [PMID: 30017172]
[22]
Rahmani, S.; Asgary, S.; Askari, G.; Keshvari, M.; Hatamipour, M.; Feizi, A.; Sahebkar, A. Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother. Res., 2016, 30(9), 1540-1548.
[http://dx.doi.org/10.1002/ptr.5659] [PMID: 27270872]
[23]
Zhang, C.; Yuan, W.; Fang, J.; Wang, W.; He, P.; Lei, J.; Wang, C. Efficacy of resveratrol supplementation against non-alcoholic fatty liver disease: a meta-analysis of placebo-controlled clinical trials. PLoS One, 2016, 11(8), e0161792.
[http://dx.doi.org/10.1371/journal.pone.0161792] [PMID: 27560482]
[24]
Ortiz, M.; Soto-Alarcón, S.A.; Orellana, P.; Espinosa, A.; Campos, C.; López-Arana, S.; Rincón, M.A.; Illesca, P.; Valenzuela, R.; Videla, L.A. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig. Liver Dis., 2020, 52(8), 895-904.
[http://dx.doi.org/10.1016/j.dld.2020.04.019] [PMID: 32620521]
[25]
Valenzuela, R.; Echeverría, F.; Ortiz, M.; Rincón-Cervera, M-Á.; Espinosa, A.; Hernández-Rodas, M-C.; Illesca, P.; Valenzuela, A.; Videla, L.A. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis., 2017, 16(1), 64.
[http://dx.doi.org/10.1186/s12944-017-0450-5] [PMID: 28395666]
[26]
Sumida, Y.; Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol., 2018, 53(3), 362-376.
[http://dx.doi.org/10.1007/s00535-017-1415-1] [PMID: 29247356]
[27]
Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med., 2010, 31(6), 435-445.
[http://dx.doi.org/10.1016/j.mam.2010.09.006] [PMID: 20854840]
[28]
Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proce. Nut. Soc., 2016, 75, pp. 47-60.
[http://dx.doi.org/10.1017/S0029665115004218]
[29]
Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C. Dietary (EPIC) study. Eur. J. Nutr., 2016, 55(4), 1359-1375.
[http://dx.doi.org/10.1007/s00394-015-0950-x] [PMID: 26081647]
[30]
Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: an update on structure-activity relationship. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 513-527.
[http://dx.doi.org/10.1080/10408398.2016.1196334] [PMID: 27438892]
[31]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[32]
Heim, K. E.; Tagliaferro, A. R.; Bobilya, D. J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5]
[33]
Al-Dayyat, H.M.; Rayyan, Y.M.; Tayyem, R.F. Non-alcoholic fatty liver disease and associated dietary and lifestyle risk factors. Diabetes Metab. Syndr., 2018, 12(4), 569-575.
[http://dx.doi.org/10.1016/j.dsx.2018.03.016] [PMID: 29571977]
[34]
Nseir, W.; Hellou, E.; Assy, N. Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(28), 9338-9344.
[http://dx.doi.org/10.3748/wjg.v20.i28.9338] [PMID: 25071328]
[35]
Peña-Oyarzun, D.; Bravo-Sagua, R.; Diaz-Vega, A.; Aleman, L.; Chiong, M.; Garcia, L.; Bambs, C.; Troncoso, R.; Cifuentes, M.; Morselli, E.; Ferreccio, C.; Quest, A.F.G.; Criollo, A.; Lavandero, S. Autophagy and oxidative stress in non-communicable diseases: a matter of the inflammatory state? Free Radic. Biol. Med., 2018, 124, 61-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.084] [PMID: 29859344]
[36]
Buzzetti, E.; Pinzani, M.; Tsochatzis, E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 2016, 65(8), 1038-1048.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[37]
Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology, 2015, 149(2), 367-78.e5.
[http://dx.doi.org/10.1053/j.gastro.2015.04.005] [PMID: 25865049]
[38]
Curioni, C.C.; Lourenço, P.M. Long-term weight loss after diet and exercise: a systematic review. Int. J. Obes., 2005, 29(10), 1168-1174.
[http://dx.doi.org/10.1038/sj.ijo.0803015] [PMID: 15925949]
[39]
Li, Z.; Zhang, H.; Li, Y.; Chen, H.; Wang, C.; Wong, V.K.W.; Jiang, Z.; Zhang, W. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense. Phytomedicine, 2020, 69, 153209.
[http://dx.doi.org/10.1016/j.phymed.2020.153209] [PMID: 32240928]
[40]
Liu, H.; Zhan, Q.; Miao, X.; Xia, X.; Yang, G.; Peng, X.; Yan, C. Punicalagin prevents hepatic steatosis through improving lipid homeostasis and inflammation in liver and adipose tissue and modulating gut microbiota in western diet-fed mice. Mol. Nutr. Food Res., 2021.65(4), e2001031..
[http://dx.doi.org/10.1002/mnfr.202001031] [PMID: 33369197]
[41]
Asghari, S.; Asghari-Jafarabadi, M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J. Am. Coll. Nutr., 2018, 37(3), 223-233.
[http://dx.doi.org/10.1080/07315724.2017.1392264] [PMID: 29313746]
[42]
Li, X.; Shi, Z.; Zhu, Y.; Shen, T.; Wang, H.; Shui, G.; Loor, J.J.; Fang, Z.; Chen, M.; Wang, X.; Peng, Z.; Song, Y.; Wang, Z.; Du, X.; Liu, G. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice. Br. J. Pharmacol., 2020, 177(15), 3591-3607.
[http://dx.doi.org/10.1111/bph.15083] [PMID: 32343398]
[43]
Silvester, A.J.; Aseer, K.R.; Yun, J.W. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem., 2019, 64, 1-12.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.028] [PMID: 30414469]
[44]
Concha, F.; Prado, G.; Quezada, J.; Ramirez, A.; Bravo, N.; Flores, C.; Herrera, J.J.; Lopez, N.; Uribe, D.; Duarte-Silva, L.; Lopez-Legarrea, P.; Garcia-Diaz, D.F. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev. Endocr. Metab. Disord., 2019, 20(2), 161-171.
[http://dx.doi.org/10.1007/s11154-019-09495-y] [PMID: 31020455]
[45]
Duarte, L.; Gasaly, N.; Poblete-Aro, C.; Uribe, D.; Echeverria, F.; Gotteland, M.; Garcia-Diaz, D.F. Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review. Rev. Endocr. Metab. Disord., 2021, 22(2), 367-388.
[http://dx.doi.org/10.1007/s11154-020-09622-0] [PMID: 33387285]
[46]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.B.; Rahu, N. Oxidative stress and inflammation: what polyphenols can do for Us? Oxid. Med. Cell. Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[47]
Araya, J.; Rodrigo, R.; Pettinelli, P.; Araya, A.V.; Poniachik, J.; Videla, L.A. Decreased liver fatty acid δ-6 and δ-5 desaturase activity in obese patients. Obesity (Silver Spring), 2010, 18(7), 1460-1463.
[http://dx.doi.org/10.1038/oby.2009.379] [PMID: 19875987]
[48]
Videla, L.A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A.; Rojas, J.; Maluenda, F.; Burdiles, P.; Diaz, J.C.; Smok, G.; Thielemann, L.; Poniachik, J. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. (Lond.), 2004, 106(3), 261-268.
[http://dx.doi.org/10.1042/CS20030285] [PMID: 14556645]
[49]
Li, S.; Tan, H. Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med.Cell. Longev., 2018, 201, 8394818.
[http://dx.doi.org/10.1155/2018/8394818]
[50]
Galicia-Moreno, M.; Lucano-Landeros, S.; Monroy-Ramirez, H.C.; Silva-Gomez, J.; Gutierrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Roles of Nrf2 in liver diseases: molecular, pharmacological, and epigenetic aspects. Antioxidants, 2020, 9(10), 980.
[http://dx.doi.org/10.3390/antiox9100980] [PMID: 33066023]
[51]
Deng, Y.; Tang, K.; Chen, R.; Nie, H.; Liang, S.; Zhang, J.; Zhang, Y.; Yang, Q. Berberine attenuates hepatic oxidative stress in rats with non-alcoholic fatty liver disease via the Nrf2/ARE signalling pathway. Exp. Ther. Med., 2019, 17(3), 2091-2098.
[http://dx.doi.org/10.3892/etm.2019.7208] [PMID: 30867696]
[52]
Hajighasem, A.; Farzanegi, P.; Mazaheri, Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch. Physiol. Biochem., 2019, 125(2), 142-149.
[http://dx.doi.org/10.1080/13813455.2018.1441872] [PMID: 29463133]
[53]
Wu, C.T.; Deng, J.S.; Huang, W.C.; Shieh, P.C.; Chung, M.I.; Huang, G.J. Salvianolic acid C against acetaminophen-induced acute liver injury by attenuating inflammation, oxidative stress, and apoptosis through inhibition of the Keap1/Nrf2/HO-1 signaling. Oxid. Med. Cell. Longev., 2019, 2019, 9056845.
[http://dx.doi.org/10.1155/2019/9056845] [PMID: 31214283]
[54]
Musolino, V.; Gliozzi, M.; Scarano, F.; Bosco, F.; Scicchitano, M.; Nucera, S.; Carresi, C.; Ruga, S.; Zito, M.C.; Maiuolo, J.; Macrì, R.; Amodio, N.; Juli, G.; Tassone, P.; Mollace, R.; Caffrey, R.; Marioneaux, J.; Walker, R.; Ehrlich, J.; Palma, E.; Muscoli, C.; Bedossa, P.; Salvemini, D.; Mollace, V.; Sanyal, A.J. Bergamot polyphenols improve dyslipidemia and pathophysiological features in a mouse model of non-alcoholic fatty liver disease. Sci. Rep., 2020, 10(1), 2565.
[http://dx.doi.org/10.1038/s41598-020-59485-3] [PMID: 32054943]
[55]
Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 2019, 14(5), e0216711.
[http://dx.doi.org/10.1371/journal.pone.0216711] [PMID: 31112588]
[56]
Izdebska, M.; Piątkowska-Chmiel, I.; Korolczuk, A.; Herbet, M.; Gawrońska-Grzywacz, M.; Gieroba, R.; Sysa, M.; Czajkowska-Bania, K.; Cygal, M.; Korga, A.; Dudka, J. The beneficial effects of resveratrol on steatosis and mitochondrial oxidative stress in HepG2 cells. Can. J. Physiol. Pharmacol., 2017, 95(12), 1442-1453.
[http://dx.doi.org/10.1139/cjpp-2016-0561] [PMID: 28759727]
[57]
Biesalski, H.K. Polyphenols and inflammation: basic interactions. Curr. Opin. Clin. Nutr. Metab. Care, 2007, 10(6), 724-728.
[http://dx.doi.org/10.1097/MCO.0b013e3282f0cef2] [PMID: 18089954]
[58]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[59]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[60]
Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev., 2017, 49(2), 197-211.
[http://dx.doi.org/10.1080/03602532.2017.1293683] [PMID: 28303724]
[61]
Van De Wier, B.; Koek, G.H.; Bast, A.; Haenen, G.R.M.M. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit. Rev. Food Sci. Nutr., 2017, 57(4), 834-855.
[http://dx.doi.org/10.1080/10408398.2014.952399] [PMID: 25897647]
[62]
Noori, M.; Jafari, B.; Hekmatdoost, A. Pomegranate juice prevents development of non-alcoholic fatty liver disease in rats by attenuating oxidative stress and inflammation. J. Sci. Food Agric., 2017, 97(8), 2327-2332.
[http://dx.doi.org/10.1002/jsfa.8042] [PMID: 27717115]
[63]
Lee, Y.; Kwon, E-Y.; Choi, M-S. Dietary isoliquiritigenin at a low dose ameliorates insulin resistance and nafld in diet-induced obesity in C57BL/6J mice. Int. J. Mol. Sci., 2018, 19(10), 3281.
[http://dx.doi.org/10.3390/ijms19103281] [PMID: 30360437]
[64]
Wang, S.; Yang, F.J.; Shang, L.C.; Zhang, Y.H.; Zhou, Y.; Shi, X.L. Puerarin protects against high-fat high-sucrose diet-induced non-alcoholic fatty liver disease by modulating PARP-1/PI3K/AKT signaling pathway and facilitating mitochondrial homeostasis. Phytother. Res., 2019, 33(9), 2347-2359.
[http://dx.doi.org/10.1002/ptr.6417] [PMID: 31273855]
[65]
Tan, Y.; Kim, J.; Cheng, J.; Ong, M.; Lao, W-G.; Jin, X-L.; Lin, Y-G.; Xiao, L.; Zhu, X-Q.; Qu, X-Q. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats. World J. Gastroenterol., 2017, 23(21), 3805-3814.
[http://dx.doi.org/10.3748/wjg.v23.i21.3805] [PMID: 28638220]
[66]
Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: is insulin resistance the link? Mol. Cell. Endocrinol., 2015, 418(Pt 1), 55-65.
[http://dx.doi.org/10.1016/j.mce.2015.02.018] [PMID: 25724480]
[67]
de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett., 2008, 582(1), 97-105.
[http://dx.doi.org/10.1016/j.febslet.2007.11.057] [PMID: 18053812]
[68]
Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 85-96.
[http://dx.doi.org/10.1038/nrm1837] [PMID: 16493415]
[69]
Gong, L.; Guo, S.; Zou, Z. Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice. Life Sci., 2020, 242, 117212.
[http://dx.doi.org/10.1016/j.lfs.2019.117212] [PMID: 31884092]
[70]
Li, J.; Wei, L.; Zhao, C.; Li, J.; Liu, Z.; Zhang, M.; Wang, Y. Resveratrol maintains lipid metabolism homeostasis via one of the mechanisms associated with the key circadian regulator Bmal1. Molecules, 2019, 24(16), 2916.
[http://dx.doi.org/10.3390/molecules24162916] [PMID: 31408938]
[71]
Xia, S-F.; Le, G-W.; Wang, P.; Qiu, Y-Y.; Jiang, Y-Y.; Tang, X. Regressive effect of myricetin on hepatic steatosis in mice fed a high-fat diet. Nutrients, 2016, 8(12), 799.
[http://dx.doi.org/10.3390/nu8120799] [PMID: 27973423]
[72]
Guruvaiah, P.; Guo, H.; Li, D.; Xie, Z. Preventive effect of flavonol derivatives abundant sanglan tea on long-term high-fat-diet-induced obesity complications in C57BL/6 mice. Nutrients, 2018, 10(9), 1276.
[http://dx.doi.org/10.3390/nu10091276] [PMID: 30201876]
[73]
Quitete, F.T.; Almeida Santos, G.M.; de Oliveira Ribeiro, L.; Aguiar da Costa, C.; Freitas, S.P.; Martins da Matta, V.; Daleprane, J.B. Phenolic-rich smoothie consumption ameliorates non-alcoholic fatty liver disease in obesity mice by increasing antioxidant response. Chem. Biol. Interact., 2021, 336, 109369.
[http://dx.doi.org/10.1016/j.cbi.2021.109369] [PMID: 33422521]
[74]
Brumbaugh, D.E.; Friedman, J.E. Developmental origins of nonalcoholic fatty liver disease. Pediatr. Res., 2014, 75(1-2), 140-147.
[http://dx.doi.org/10.1038/pr.2013.193] [PMID: 24192698]
[75]
Lynch, C.; Chan, C.S.; Drake, A.J. Early life programming and the risk of non-alcoholic fatty liver disease. J. Dev. Orig. Health Dis., 2017, 8(3), 263-272.
[http://dx.doi.org/10.1017/S2040174416000805] [PMID: 28112071]
[76]
Canbay, A.; Bechmann, L.; Gerken, G. Lipid metabolism in the liver. Z. Gastroenterol., 2007, 45(1), 35-41.
[http://dx.doi.org/10.1055/s-2006-927368] [PMID: 17236119]
[77]
Reddy, J.K.; Rao, M.S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol., 2006, 290(5), G852-G858.
[http://dx.doi.org/10.1152/ajpgi.00521.2005] [PMID: 16603729]
[78]
Reddy, J.K. Nonalcoholic steatosis and steatohepatitis. III. Peroxisomal β-oxidation, PPAR α, and steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 281(6), G1333-G1339.
[http://dx.doi.org/10.1152/ajpgi.2001.281.6.G1333] [PMID: 11705737]
[79]
Pessayre, D. Role of mitochondria in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol., 2007, 22(s1)(Suppl. 1), S20-S27.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04640.x] [PMID: 17567459]
[80]
Tiniakos, D.G.; Vos, M.B.; Brunt, E.M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol., 2010, 5(1), 145-171.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102132] [PMID: 20078219]
[81]
Brown, G.T.; Kleiner, D.E. Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Metabolism, 2016, 65(8), 1080-1086.
[http://dx.doi.org/10.1016/j.metabol.2015.11.008] [PMID: 26775559]
[82]
Sanyal, A.J. Mechanisms of Disease: pathogenesis of nonalcoholic fatty liver disease. Nat. Clin. Pract. Gastroenterol. Hepatol., 2005, 2(1), 46-53.
[http://dx.doi.org/10.1038/ncpgasthep0084] [PMID: 16265100]
[83]
Wang, L.; Liu, X.; Nie, J.; Zhang, J.; Kimball, S.R.; Zhang, H.; Zhang, W.J.; Jefferson, L.S.; Cheng, Z.; Ji, Q.; Shi, Y. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology, 2015, 61(2), 486-496.
[http://dx.doi.org/10.1002/hep.27420] [PMID: 25203315]
[84]
Aharoni-Simon, M.; Hann-Obercyger, M.; Pen, S.; Madar, Z.; Tirosh, O. Fatty liver is associated with impaired activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial biogenesis in mice. Lab. Invest., 2011, 91(7), 1018-1028.
[http://dx.doi.org/10.1038/labinvest.2011.55] [PMID: 21464822]
[85]
Ajaz, S.; McPhail, M.J.; Gnudi, L.; Trovato, F.M.; Mujib, S.; Napoli, S.; Carey, I.; Agarwal, K. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion, 2021, 57, 119-130.
[http://dx.doi.org/10.1016/j.mito.2020.12.010] [PMID: 33387664]
[86]
Echeverría, F.; Jimenez Patino, P.A.; Castro-Sepulveda, M.; Bustamante, A.; Garcia Concha, P.A.; Poblete-Aro, C.; Valenzuela, R.; García-Díaz, D.F. Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet. Br. J. Nutr., 2021, 126(6), 825-836.
[http://dx.doi.org/10.1017/S000711452000481X] [PMID: 33256858]
[87]
Lundåsen, T.; Hunt, M.C.; Nilsson, L.M.; Sanyal, S.; Angelin, B.; Alexson, S.E.; Rudling, M. PPARalpha is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun., 2007, 360(2), 437-440.
[http://dx.doi.org/10.1016/j.bbrc.2007.06.068] [PMID: 17601491]
[88]
Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12017-12022.
[http://dx.doi.org/10.1073/pnas.0705070104] [PMID: 17609368]
[89]
Sugden, M.C.; Caton, P.W.; Holness, M.J. PPAR control: it’s SIRTainly as easy as PGC. J. Endocrinol., 2010, 204(2), 93-104.
[http://dx.doi.org/10.1677/JOE-09-0359] [PMID: 19770177]
[90]
Sudeep, HV.; Venkatakrishna, K.; Patel, D.; Shyamprasad, K. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement. Altern. Med., 2016, 16, 274.
[http://dx.doi.org/10.1186/s12906-016-1258-y] [PMID: 27495925]
[91]
Lee, D.E.; Lee, S.J.; Kim, S.J.; Lee, H.S.; Kwon, O.S. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients, 2019, 11(11), 2702.
[92]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G.; Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[93]
Sun, Y.; Xia, M.; Yan, H.; Han, Y.; Zhang, F.; Hu, Z.; Cui, A.; Ma, F.; Liu, Z.; Gong, Q.; Chen, X.; Gao, J.; Bian, H.; Tan, Y.; Li, Y.; Gao, X. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br. J. Pharmacol., 2018, 175(2), 374-387.
[http://dx.doi.org/10.1111/bph.14079] [PMID: 29065221]
[94]
Li, X.; Wang, R.; Zhou, N.; Wang, X.; Liu, Q.; Bai, Y.; Bai, Y.; Liu, Z.; Yang, H.; Zou, J.; Wang, H.; Shi, T. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed. Rep., 2013, 1(1), 71-76.
[http://dx.doi.org/10.3892/br.2012.27] [PMID: 24648896]
[95]
Shabalala, SC; Dludla, PV; Mabasa, L; Kappo, AP; Basson, AK; Pheiffer, C; Johnson, R The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed. Pharmacother., 2020, 131, 110735.
[http://dx.doi.org/10.1016/j.biopha.2020.110785]
[96]
Rafiei, H.; Omidian, K.; Bandy, B. Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Mol. Nutr. Food Res., 2017, 61(9), 1600781.
[97]
Wang, L.; Chen, J.; Ning, C.; Lei, D.; Ren, J. Endoplasmic reticulum stress related molecular mechanisms in nonalcoholic fatty liver disease (NAFLD). Curr. Drug Targets, 2018, 19(9), 1087-1094.
[http://dx.doi.org/10.2174/1389450118666180516122517] [PMID: 29766802]
[98]
Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol., 2018, 69(4), 927-947.
[http://dx.doi.org/10.1016/j.jhep.2018.06.008] [PMID: 29940269]
[99]
Kaneko, M.; Imaizumi, K.; Saito, A.; Kanemoto, S.; Asada, R.; Matsuhisa, K.; Ohtake, Y. ER stress and disease: toward prevention and treatment. Biol. Pharm. Bull., 2017, 40(9), 1337-1343.
[http://dx.doi.org/10.1248/bpb.b17-00342] [PMID: 28867719]
[100]
Zhu, X.; Xiong, T.; Liu, P.; Guo, X.; Xiao, L.; Zhou, F.; Tang, Y.; Yao, P. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem. Toxicol., 2018, 114, 52-60.
[http://dx.doi.org/10.1016/j.fct.2018.02.019] [PMID: 29438776]
[101]
Lee, G-H.; Peng, C.; Park, S-A.; Hoang, T-H.; Lee, H-Y.; Kim, J.; Kang, S-I.; Lee, C-H.; Lee, J-S.; Chae, H-J. Citrus peel extract ameliorates high-fat diet-induced NAFLD via activation of AMPK signaling. Nutrients, 2020, 12(3), 673.
[http://dx.doi.org/10.3390/nu12030673] [PMID: 32121602]
[102]
Li, F.; Yang, Y.; Yang, L.; Wang, K.; Zhang, X.; Zong, Y.; Ding, Y.; Wang, C.; Zhang, L.; Ji, G. Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress. Oncotarget, 2017, 8(27), 43799-43809.
[http://dx.doi.org/10.18632/oncotarget.16460] [PMID: 28415630]
[103]
Hong, Y.; Choi, S.I.; Hong, E.; Kim, G.H. Psoralea corylifolia L. extract ameliorates nonalcoholic fatty liver disease in free-fatty-acid-incubated HEPG2 cells and in high-fat diet-fed mice. J. Food Sci., 2020, 85(7), 2216-2226.
[http://dx.doi.org/10.1111/1750-3841.15166] [PMID: 32579753]
[104]
Guo, W-W.; Wang, X.; Chen, X-Q.; Ba, Y-Y.; Zhang, N.; Xu, R-R.; Zhao, W-W.; Wu, X. Flavonones from penthorum chinense ameliorate hepatic steatosis by activating the SIRT1/AMPK pathway in HepG2 Cells. Int. J. Mol. Sci., 2018, 19(9), 2555.
[http://dx.doi.org/10.3390/ijms19092555] [PMID: 30154382]
[105]
Rafiei, H.; Omidian, K.; Bandy, B. Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients, 2019, 11(3), E541.
[http://dx.doi.org/10.3390/nu11030541] [PMID: 30832407]
[106]
Salomone, F.; Barbagallo, I.; Godos, J.; Lembo, V.; Currenti, W.; Cinà, D.; Avola, R.; D’Orazio, N.; Morisco, F.; Galvano, F.; Li Volti, G. Silibinin restores NAD+ levels and induces the SIRT1/AMPK pathway in non-alcoholic fatty liver. Nutrients, 2017, 9(10), 1086.
[http://dx.doi.org/10.3390/nu9101086] [PMID: 28973994]
[107]
Li, S.; Qian, Q.; Ying, N.; Lai, J.; Feng, L.; Zheng, S.; Jiang, F.; Song, Q.; Chai, H.; Dou, X. Activation of the AMPK-SIRT1 pathway contributes to protective effects of Salvianolic acid A against lipotoxicity in hepatocytes and NAFLD in mice. Front. Pharmacol., 2020, 11, 560905.
[http://dx.doi.org/10.3389/fphar.2020.560905] [PMID: 33328983]
[108]
Tanaka, M.; Sato, A.; Kishimoto, Y.; Mabashi-Asazuma, H.; Kondo, K.; Iida, K. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients, 2020, 12(5), 1479.
[http://dx.doi.org/10.3390/nu12051479] [PMID: 32443660]
[109]
Chen, Y-C.; Chen, H-J.; Huang, B-M.; Chen, Y-C.; Chang, C-F. Polyphenol-rich extracts from Toona Sinensis bark and fruit ameliorate free fatty acid-induced lipogenesis through AMPK and LC3 pathways. J. Clin. Med., 2019, 8(10), 1664.
[http://dx.doi.org/10.3390/jcm8101664] [PMID: 31614650]
[110]
Guo, R.; Zhao, B.; Wang, Y.; Wu, D.; Wang, Y.; Yu, Y.; Yan, Y.; Zhang, W.; Liu, Z.; Liu, X. Cichoric acid prevents free-fatty-acid-induced lipid metabolism disorders via regulating Bmal1 in HepG2 cells. J. Agric. Food Chem., 2018, 66(37), 9667-9678.
[http://dx.doi.org/10.1021/acs.jafc.8b02147] [PMID: 30036051]
[111]
Wang, L.L.; Zhang, Z.C.; Hassan, W.; Li, Y.; Liu, J.; Shang, J. Amelioration of free fatty acid-induced fatty liver by quercetin-3-O-β-D-glucuronide through modulation of peroxisome proliferator-activated receptor-alpha/sterol regulatory element-binding protein-1c signaling. Hepatol. Res., 2016, 46(2), 225-238.
[http://dx.doi.org/10.1111/hepr.12557] [PMID: 26190035]
[112]
Vargas, R.; Riquelme, B.; Fernández, J.; Álvarez, D.; Pérez, I.F.; Cornejo, P.; Fernández, V.; Videla, L.A. Docosahexaenoic acid-thyroid hormone combined protocol as a novel approach to metabolic stress disorders: relation to mitochondrial adaptation via liver PGC-1α and sirtuin1 activation. Biofactors, 2019, 45(2), 271-278.
[http://dx.doi.org/10.1002/biof.1483] [PMID: 30578580]
[113]
Liou, C-J.; Wei, C-H.; Chen, Y-L.; Cheng, C-Y.; Wang, C-L.; Huang, W-C. Fisetin protects against hepatic steatosis through regulation of the Sirt1/AMPK and fatty acid β-oxidation signaling pathway in high-fat diet-induced obese mice. Cell. Physiol. Biochem., 2018, 49(5), 1870-1884.
[http://dx.doi.org/10.1159/000493650] [PMID: 30235452]
[114]
Donaldson, J.; Ngema, M.; Nkomozepi, P.; Erlwanger, K. Quercetin administration post-weaning attenuates high-fructose, high-cholesterol diet-induced hepatic steatosis in growing, female, Sprague Dawley rat pups. J. Sci. Food Agric., 2019, 99(15), 6954-6961.
[http://dx.doi.org/10.1002/jsfa.9984] [PMID: 31414497]
[115]
Hirsch, N.; Konstantinov, A.; Anavi, S.; Aronis, A.; Hagay, Z.; Madar, Z.; Tirosh, O. Prolonged feeding with green tea polyphenols exacerbates cholesterol-induced fatty liver disease in mice. Mol. Nutr. Food Res., 2016, 60(12), 2542-2553.
[http://dx.doi.org/10.1002/mnfr.201600221] [PMID: 27432221]
[116]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[117]
Chashmniam, S.; Mirhafez, S.R.; Dehabeh, M.; Hariri, M.; Azimi Nezhad, M.; Nobakht M Gh, B.F. A pilot study of the effect of phospholipid curcumin on serum metabolomic profile in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur. J. Clin. Nutr., 2019, 73(9), 1224-1235.
[http://dx.doi.org/10.1038/s41430-018-0386-5] [PMID: 30647436]
[118]
Farzin, L.; Asghari, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Shirmohammadi, M. No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res., 2020, 90(3-4), 279-289.
[http://dx.doi.org/10.1024/0300-9831/a000528] [PMID: 30789808]
[119]
Zou, T.; Chen, D.; Yang, Q.; Wang, B.; Zhu, M-J.; Nathanielsz, P.W.; Du, M. Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J. Physiol., 2017, 595(5), 1547-1562.
[http://dx.doi.org/10.1113/JP273478] [PMID: 27891610]
[120]
Kantartzis, K.; Fritsche, L.; Bombrich, M.; Machann, J.; Schick, F.; Staiger, H.; Kunz, I.; Schoop, R.; Lehn-Stefan, A.; Heni, M.; Peter, A.; Fritsche, A.; Häring, H.U.; Stefan, N. Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: A randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes. Metab., 2018, 20(7), 1793-1797.
[http://dx.doi.org/10.1111/dom.13268] [PMID: 29484808]
[121]
Heebøll, S.; El-Houri, R.B.; Hellberg, Y.E.K.; Haldrup, D.; Pedersen, S.B.; Jessen, N.; Christensen, L.P.; Grønbaek, H. Effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment. J. Gastroenterol. Hepatol., 2016, 31(3), 668-675.
[http://dx.doi.org/10.1111/jgh.13151] [PMID: 26312773]
[122]
Poulsen, M.K.; Nellemann, B.; Bibby, B.M.; Stødkilde-Jørgensen, H.; Pedersen, S.B.; Grønbaek, H.; Nielsen, S. No effect of resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes. Metab., 2018, 20(10), 2504-2509.
[http://dx.doi.org/10.1111/dom.13409] [PMID: 29885082]
[123]
Faghihzadeh, F.; Adibi, P.; Rafiei, R.; Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res., 2014, 34(10), 837-843.
[http://dx.doi.org/10.1016/j.nutres.2014.09.005] [PMID: 25311610]
[124]
Loffredo, L.; Baratta, F.; Ludovica, P.; Battaglia, S.; Carnevale, R.; Nocella, C.; Novo, M.; Pannitteri, G.; Ceci, F.; Angelico, F.; Violi, F.; Del Ben, M. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutr. Metab. Cardiovasc. Dis., 2017, 28(2), 143-149.
[http://dx.doi.org/10.1016/j.numecd.2017.10.027] [PMID: 29329924]
[125]
Wah Kheong, C.; Nik Mustapha, N.R.; Mahadeva, S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol., 2017, 15(12), 1940-1949.e8.
[http://dx.doi.org/10.1016/j.cgh.2017.04.016] [PMID: 28419855]
[126]
Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; Mi, M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liver Dis., 2015, 47(3), 226-232.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[127]
Guo, H.; Zhong, R.; Liu, Y.; Jiang, X.; Tang, X.; Li, Z.; Xia, M.; Ling, W. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition, 2014, 30(2), 198-203.
[http://dx.doi.org/10.1016/j.nut.2013.07.023] [PMID: 24377455]
[128]
Wicklow, B.; Wittmeier, K.; Tjong, G.W.; McGavock, J.; Robert, M.; Duhamel, T.; Dolinsky, V.W. Proposed trial: safety and efficacy of resveratrol for the treatment of non-alcoholic fatty liver disease (NAFLD) and associated insulin resistance in adolescents who are overweight or obese adolescents-rationale and protocol. Biochem. Cell Biol., 2015, 93(5), 522-530.
[http://dx.doi.org/10.1139/bcb-2014-0136] [PMID: 26305052]
[129]
Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients, 2019, 11(9), 2216.
[http://dx.doi.org/10.3390/nu11092216] [PMID: 31540270]
[130]
Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol., 2016, 1, 1-9.
[http://dx.doi.org/10.1016/j.tifs.2015.10.015]
[131]
McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr., 2009, 49(6), 577-606.
[http://dx.doi.org/10.1080/10408390902841529] [PMID: 19484636]
[132]
Al Zarzour, R.H.; Ahmad, M.; Asmawi, M.Z.; Kaur, G.; Saeed, M.A.A.; Al-Mansoub, M.A.; Saghir, S.A.M.; Usman, N.S.; Al-Dulaimi, D.W.; Yam, M.F. Phyllanthus Niruri standardized extract alleviates the progression of non-alcoholic fatty liver disease and decreases atherosclerotic risk in sprague-dawley rats. Nutrients, 2017, 9(7), E766.
[http://dx.doi.org/10.3390/nu9070766] [PMID: 28718838]
[133]
Pfohl, M.; DaSilva, N. A.; Marques, E.; Agudelo, J.; Liu, C.; Goedken, M.; Slitt, A. L.; Seeram, N. P.; Ma, H. Hepatoprotective and anti-inflammatory effects of a standardized pomegranate. Int. J. food. Sci. Nut., 2020, 499-510.
[http://dx.doi.org/10.1080/09637486.2020.1849041]
[134]
Murdande, S.B.; Pikal, M.J.; Shanker, R.M.; Bogner, R.H. Aqueous solubility of crystalline and amorphous drugs: Challenges in measurement. Pharm. Dev. Technol., 2011, 16(3), 187-200.
[http://dx.doi.org/10.3109/10837451003774377] [PMID: 20429826]
[135]
Elgebaly, A.; Radwan, I.A.I.; AboElnas, M.M.; Ibrahim, H.H.; Eltoomy, M.F.M.; Atta, A.A.; Mesalam, H.A.; Sayed, A.A.; Othman, A.A. Resveratrol supplementation in patients with non-alcoholic fatty liver disease: systematic review and meta-analysis. J. Gastrointestin. Liver Dis., 2017, 26(1), 59-67.
[http://dx.doi.org/10.15403/jgld.2014.1121.261.ely] [PMID: 28338115]
[136]
Ahmadi, Z.; Mohammadinejad, R.; Ashrafizadeh, M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: emerging evidence in last decades. J. Drug Deliv. Sci. Technol., 2019, 51, 591-604.
[http://dx.doi.org/10.1016/j.jddst.2019.03.017]
[137]
Ardid-Ruiz, A.; Ibars, M.; Mena, P.; Del Rio, D.; Muguerza, B.; Arola, L.; Aragonès, G.; Suárez, M. Resveratrol treatment enhances the cellular response to leptin by increasing OBRb content in palmitate-induced steatotic HepG2 cells. Int. J. Mol. Sci., 2019, 20(24), 6282.
[http://dx.doi.org/10.3390/ijms20246282] [PMID: 31842467]
[138]
Pan, M-H.; Yang, G.; Li, S.; Li, M-Y.; Tsai, M-L.; Wu, J-C.; Badmaev, V.; Ho, C-T.; Lai, C-S. Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Mol. Nutr. Food Res., 2017, 61(11), 1601104.
[http://dx.doi.org/10.1002/mnfr.201601104] [PMID: 28643888]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy