Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Anti-Cancer and Anti-Inflammatory Potential of Furanocoumarins from Ammi majus L.

Author(s): Acharya Balkrishna, Vedpriya Arya and Ishwar Prakash Sharma*

Volume 22, Issue 6, 2022

Published on: 24 August, 2021

Page: [1030 - 1036] Pages: 7

DOI: 10.2174/1871520621666210824113128

Price: $65

Abstract

Secondary metabolites have potential benefits to human being. They are used in the food, agricultural and pharmaceutical industries. The secondary metabolite of furanocoumarins from different plant sources is essential in various skin-related ailments. Biologically, these chemicals are isolated from different plants in the Apiaceae, Fabaceae, Rutaceae and Moraceae families. Ammi majus L. is one of the most common plants in the family of Apiaceae with a large quantity of derivatives. The furanocoumarin derivatives defend the plant by fighting external enemies by Systemic Acquired Resistance (SAR). Via suppressing or retarding microbial growth in infected parts, these derivatives, along with SAR, help to alleviate inflammation in the human body. Latest evidence of these compounds has been established in the treatment of cancer, but the mechanism that needs to be elaborated is not yet understood. Recent studies have shown that furanocoumarin derivatives bind to DNA base pairs and block DNA replication. This may be a potential pathway that helps to regulate the growth of cancerous cells. This article reflects on the pharmaceutical data of furanocoumarins and their different mechanisms in these cases.

Keywords: Ammi majus, cancer, furanocoumarins, inflammation, ROS, secondary metabolites.

Graphical Abstract

[1]
Gonçalo, M. Phototoxic and Photoallergic Reactions. In: Contact Dermatitis; Springer: Berlin, Heidelberg, 2011.
[http://dx.doi.org/10.1007/978-3-642-03827-3_18]
[2]
Pham, Q.T.; Le, P.Q.; Dang, H.V.; Ha, H.Q.; Nguyen, H.T.; Truong, T.; Le, T.M. Iodine-mediated formal [3+ 2] annulation for synthesis of furocoumarin from oxime esters. RSC Advances, 2020, 10(72), 44332-44338.
[http://dx.doi.org/10.1039/D0RA07566C]
[3]
Mabry, T.J.; Ulubelen, A. Chemistry and utilization of phenylpropanoids including flavonoids, coumarins, and lignans. J. Agric. Food Chem., 1980, 28(2), 188-195.
[http://dx.doi.org/10.1021/jf60228a024] [PMID: 6248582]
[4]
Hamerski, D.; Beier, R.C.; Kneusel, R.E.; Matern, U.; Himmelspach, K. Accumulation of coumarins in elicitor-treated cell suspension cultures of Ammi majus. Phytochemistry, 1990, 4, 1137-1142.
[http://dx.doi.org/10.1016/0031-9422(90)85418-F]
[5]
Staniszewska, I.; Królicka, A.; Maliński, E.; Łojkowska, E.; Szafranek, J. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb. Technol., 2003, 33(5), 565-568.
[http://dx.doi.org/10.1016/S0141-0229(03)00180-7]
[6]
Galindo-Cardiel, I.J.; Núñez, A.T.; Fernández, M.C. First-described recently discovered non-toxic vegetal-derived furocoumarin preclinical efficacy against SARS-CoV-2: a promising antiviral herbal drug. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.12.04.410340]
[7]
Al-Snafi, A.E. Chemical constituents and pharmacological activities of Ammi majus and Ammi visnaga. A review. Inter. J. Pharm. Ind. Res., 2013, 3(3), 257-265.
[8]
Ekiert, H.; Gomółka, E. Coumarin compounds in Ammi majus L. callus cultures. Pharmazie, 2000, 55(9), 684-687.
[PMID: 11031774]
[9]
Ekiert, H. Medicinal plant biotechnology: the Apiaceae family as the example of rapid development. Pharmazie, 2000, 55(8), 561-567.
[PMID: 10989831]
[10]
Bartnik, M.; Sławińska-Brych, A.; Żurek, A.; Kandefer-Szerszeń, M.; Zdzisińska, B. 8-methoxypsoralen reduces AKT phosphorylation, induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells. Ethnopharmacol, 2017, 207, 19-29.
[http://dx.doi.org/10.1016/j.jep.2017.06.010] [PMID: 28627461]
[11]
CCRUM (Central Council for Research in Unani Medicine) Standardisation of single drugs of Unani medicine–Part I; Ministry of Health and Family Welfare: New Delhi, 1987.
[12]
Selim, Y.A.; Ouf, N.H. Anti-inflammatory new coumarin from the Ammi majus L. Org. Med. Chem. Lett., 2012, 2(1), 1-4.
[http://dx.doi.org/10.1186/2191-2858-2-1] [PMID: 22373472]
[13]
Monem El Mofty, A. A preliminary clinical report on the treatment of leucodermia with Ammi majus Linn. J. Egypt. Med. Assoc., 1948, 31(8), 651-665.
[PMID: 18890453]
[14]
El-Mofty, A.M. Further study on treatment of leucodermia with Ammi mafus linn. J. Egypt. Med. Assoc., 1952, 35(1), 1-2.
[PMID: 14946779]
[15]
Hakim, R.E. Rediscovery of a treatment for vitiligo. Clio Med., 1969, 4, 277-289.
[16]
Parrish, J.A.; Fitzpatrick, T.B.; Tanenbaum, L.; Pathak, M.A. Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N. Engl. J. Med., 1974, 291(23), 1207-1211.
[http://dx.doi.org/10.1056/NEJM197412052912301] [PMID: 4422691]
[17]
el-Mofty, A.M.; el-Sawalhy, H.; el-Mofty, M. Clinical study of a new preparation of 8-methoxypsoralen in photochemotherapy. Int. J. Dermatol., 1994, 33(8), 588-592.
[http://dx.doi.org/10.1111/j.1365-4362.1994.tb02904.x] [PMID: 7960360]
[18]
El-Mofty, A.M.; El-Sawalhy, H.; El-Mofty, M. Photochemotherapy in the treatment of post tinea versicolor hypopigmentation. Med. J. Cairo Univ., 1995, 61(4), 632-637.
[19]
Swift, S. 8-Methoxypsoralen—a short review and comment. Calif. Med., 1960, 92(2), 139-142.
[PMID: 18732266]
[20]
Alouani, I.; Fihmi, N.; Zizi, N.; Dikhaye, S. Phytophotodermatitis following the use of Ammi majus Linn (Bishop’s weed) for vitiligo. Our Dermatol. Online, 2018, 9(1), 93-94.
[http://dx.doi.org/10.7241/ourd.20181.29]
[21]
Vedaldi, D.; Dall’Acqua, F.; Gennaro, A.; Rodighiero, G. Photosensitized effects of furocoumarins: the possible role of singlet oxygen. Z. Naturforsch. C, 1983, 38(9-10), 866-869.
[http://dx.doi.org/10.1515/znc-1983-9-1033] [PMID: 6649795]
[22]
Hearst, J.E.; Isaacs, S.T.; Kanne, D.; Rapoport, H.; Straub, K. The reaction of the psoralens with deoxyribonucleic acid. Q. Rev. Biophys., 1984, 17(1), 1-44.
[http://dx.doi.org/10.1017/S0033583500005242] [PMID: 6385057]
[23]
Palmer, R.A.; White, I.R. Phototoxic and photoallergic reactions.Contact dermatitis; Springer: Berlin, Heidelberg, 2006, pp. 309-317.
[http://dx.doi.org/10.1007/3-540-31301-X_17]
[24]
Parast, B.M.; Chetri, S.K.; Sharma, K.; Agrawal, V. In vitro isolation, elicitation of psoralen in callus cultures of Psoralea corylifolia and cloning of psoralen synthase gene. Plant Physiol. Biochem., 2011, 49(10), 1138-1146.
[http://dx.doi.org/10.1016/j.plaphy.2011.03.017] [PMID: 21524916]
[25]
Ahmed, S.; Khan, H.; Aschner, M.; Mirzae, H.; Küpeli Akkol, E.; Capasso, R. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects. Int. J. Mol. Sci., 2020, 21(16), 5622.
[http://dx.doi.org/10.3390/ijms21165622] [PMID: 32781533]
[26]
Sumorek-Wiadro, J.; Zając, A.; Maciejczyk, A.; Jakubowicz-Gil, J. Furanocoumarins in anticancer therapy - For and against. Fitoterapia, 2020, 142. 104492.
[http://dx.doi.org/10.1016/j.fitote.2020.104492] [PMID: 32032635]
[27]
Joy, P.; Thomas, J.; Mathew, S.; Skaria, P. Medicinal Plants, Kerala Agricultural University. Aromat; Med. Plants Res. Stat, 1998, pp. 4-6.
[28]
Curini, M.; Cravotto, G.; Epifano, F.; Giannone, G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr. Med. Chem., 2006, 13(2), 199-222.
[http://dx.doi.org/10.2174/092986706775197890] [PMID: 16472213]
[29]
Kaboodi, P.S.; Moghadamnia, A.A.; Bakhshi, D.; Sefidgar, A.A. A study of phytochemical properties of various extracts of Ammi majus fruit using GC-MS technique. Ecol. Environ. Conserv., 2016, 23(1), 150-155.
[30]
Hani, M.; Elgamal, A.; Nagwa, M. Coumarins and coumarin glycosides from the fruit of Ammi majus. Phytochemistry, 1993, 34(3), 819-823.
[http://dx.doi.org/10.1016/0031-9422(93)85365-X]
[31]
Gliszczynska-Swiglo, A.; Sikorska, E.; Khmelinskii, I.; Sikorski, M. Tocopherol content in edible plant oils. Pol. J. Food Nutr. Sci., 2007, 57, 157-161.
[32]
Al-Snafi, A.E. Chemical constitans and pharmacological activities of Ammi majus and Ammi visniga a review. Int. J. Pharm. Indust. Res., 2013, 3, 257-265.
[33]
Abdul-Jalil, T.Z.; Soour, K.; Nasser, A. Phytochemical study of some flavonoids present in the fruits of two Ammi species wildly grown in Iraq. J. Pharm. Sci., 2010, 19(1), 48-57.
[34]
Hussain, I.; Khans Khan, M.I.U.; Rehma, I.; Ahmad, M. Investigation of fatty acid composition of Ammi majus seed oil by gas chromatography mass spectrometry. J. Chin. Chem. Soc. (Taipei), 2012, 59(5), 655-658.
[http://dx.doi.org/10.1002/jccs.201100477]
[35]
Sidi, E.; Bourgeois-Gavardin, J. The treatment of vitiligo with Ammi majus Linn; a preliminary note. J. Invest. Dermatol., 1952, 18(5), 391-395.
[http://dx.doi.org/10.1038/jid.1952.46] [PMID: 14927989]
[36]
Becker, S.W. Jr Psoralen phototherapeutic agents. JAMA, 1967, 202(5), 422-424.
[http://dx.doi.org/10.1001/jama.1967.03130180088019] [PMID: 6072502]
[37]
El-Mofty, A.M.; El-Mofty, M. Psoralen photochemotherapy in contrast to chemotherapy of psoriasis. Med. J. Cairo Univ., 1980, 48, 71-83.
[38]
Fahmy, I.R.; Abu-Shady, H. The isolation and properties of ammoidin, ammidin and majudin, and their effect in the treatment of leukodermia. Q. J. Pharm. Pharmacol., 1948, 21(4), 499-503.
[PMID: 18111509]
[39]
Kavli, G.; Volden, G. Phytophotodermatitis. Photodermatology, 1984, 1(2), 65-75.
[PMID: 6397734]
[40]
Collins, P.; Wainwright, N.J.; Amorim, I.; Lakshmipathi, T.; Ferguson, J. 8-MOP PUVA for psoriasis: A comparison of a minimal phototoxic dose-based regimen with a skin-type approach. Br. J. Dermatol., 1996, 135(2), 248-254.
[http://dx.doi.org/10.1111/j.1365-2133.1996.tb01155.x] [PMID: 8881668]
[41]
de Berker, D.A.; Sakuntabhai, A.; Diffey, B.L.; Matthews, J.N.; Farr, P.M. Comparison of psoralen-UVB and psoralen-UVA photochemotherapy in the treatment of psoriasis. J. Am. Acad. Dermatol., 1997, 36(4), 577-581.
[http://dx.doi.org/10.1016/S0190-9622(97)70246-9] [PMID: 9092744]
[42]
Parsad, D.; Saini, R.; Verma, N. Combination of PUVAsol and topical calcipotriol in vitiligo. Dermatology, 1998, 197(2), 167-170.
[http://dx.doi.org/10.1159/000017991] [PMID: 9732168]
[43]
Mattoo, S.K.; Handa, S.; Kaur, I.; Gupta, N.; Malhotra, R. Psychiatric morbidity in vitiligo: prevalence and correlates in India. J. Eur. Acad. Dermatol. Venereol., 2002, 16(6), 573-578.
[http://dx.doi.org/10.1046/j.1468-3083.2002.00590.x] [PMID: 12482039]
[44]
Kumar, B.; Jain, R.; Sandhu, K.; Kaur, I.; Handa, S. Epidemiology of childhood psoriasis: a study of 419 patients from northern India. Int. J. Dermatol., 2004, 43(9), 654-658.
[http://dx.doi.org/10.1111/j.1365-4632.2004.02182.x] [PMID: 15357744]
[45]
Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol., 2012, 11(11), 1006-1012.
[http://dx.doi.org/10.1016/S1474-4422(12)70191-6] [PMID: 23079557]
[46]
Hemne, P.S.; Kunghatkar, R.G.; Dhoble, S.J.; Moharil, S.V.; Singh, V. Phosphor for phototherapy: Review on psoriasis. Luminescence, 2017, 32(3), 260-270.
[http://dx.doi.org/10.1002/bio.3266] [PMID: 28220603]
[47]
Thummanapally, N.; Lawdyavath, K.; Guruva, C. Prevalence of childhood skin disorders attending at outpatient pediatric hospital. Prevalence, 2020, 13-5.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i5.35578]
[48]
Duke, J.A. Bishops weed (Ammi majus L., Apiaceae). Econ. Bot., 1988, 42(3), 442-445.
[49]
Melough, M.M.; Vance, T.M.; Lee, S.G.; Provatas, A.A.; Perkins, C.; Qureshi, A.; Cho, E.; Chun, O.K. Furocoumarin kinetics in plasma and urine of healthy adults following consumption of grapefruit (Citrus paradisima cf.) and grapefruit juice. J. Agric. Food Chem., 2017, 65(14), 3006-3012.
[http://dx.doi.org/10.1021/acs.jafc.7b00317] [PMID: 28322044]
[50]
Melough, M.M.; Chun, O.K. Dietary furocoumarins and skin cancer: A review of current biological evidence. Food Chem. Toxicol., 2018, 122, 163-171.
[http://dx.doi.org/10.1016/j.fct.2018.10.027] [PMID: 30316841]
[51]
Abdulla, W.A.; Kadry, H.; Mahran, S.G.; el-Raziky, E.H.; el-Nakib, S. Preliminary studies on the anti-schistosomal effect of Ammi majus L. Egypt. J. Bilharz., 1978, 4(1), 19-26.
[PMID: 565698]
[52]
Mustafa, M.A.; Al-Khazraji, A. Effect of some plant extracts on the Culex pipiens molestus Forskal larvae. Iraqi J. Vet. Sci., 2008, 22(1), 9-12.
[http://dx.doi.org/10.33899/ijvs.2008.5663]
[53]
Kubas, J. Investigations on known or potential antitumoral plants by means of microbiological tests. Part III. Biological activity of some cultivated plant species in Neurospora crassa test. Acta Biol. Cracov. Ser.; Bot., 1972, 15, 87-100.
[54]
Lee, S.G.; Kim, K.; Vance, T.M.; Perkins, C.; Provatas, A.; Wu, S.; Qureshi, A.; Cho, E.; Chun, O.K. Development of a comprehensive analytical method for furanocoumarins in grapefruit and their metabolites in plasma and urine using UPLC-MS/MS: a preliminary study. Int. J. Food Sci. Nutr., 2016, 67(8), 881-887.
[http://dx.doi.org/10.1080/09637486.2016.1207157] [PMID: 27396405]
[55]
Xie, Y.; Chen, Y.; Lin, M.; Wen, J.; Fan, G.; Wu, Y. High-performance liquid chromatographic method for the determination and pharmacokinetic study of oxypeucedanin hydrate and byak-angelicin after oral administration of Angelica dahurica extracts in mongrel dog plasma. J. Pharm. Biomed. Anal., 2007, 44(1), 166-172.
[http://dx.doi.org/10.1016/j.jpba.2007.02.002] [PMID: 17344014]
[56]
Zhang, J.; Yang, G.; Hu, Z.; He, L.; Li, H. LC–ESI–MS determination of imperator in rat plasma after oral administration and total furocoumarins of radix Angelica dahuricae and its application to a pharmacokinetic study. Chromatographia, 2009, 69, 859-864.
[http://dx.doi.org/10.1365/s10337-009-1024-0]
[57]
Gu, Y.; Si, D.; Gao, J.; Zeng, Y.; Liu, C. Simultaneous quantification of psoralen and isopsoralen in rat plasma by ultra-performance liquid chromatography/tandem mass spectrometry and its application to a pharmacokinetic study after oral administration of Haigou Pill. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(27), 3137-3143.
[http://dx.doi.org/10.1016/j.jchromb.2009.07.035] [PMID: 19671498]
[58]
Li, Y.; Duan, J.; Guo, T.; Xie, W.; Yan, S.; Li, B.; Zhou, Y.; Chen, Y. In vivo pharmacokinetics comparisons of icariin, emodin and psoralen from gan-kang granules and extracts of Herba epimedii, Nepal dock root, Ficus hirta yahl. J. Ethnopharmacol., 2009, 124(3), 522-529.
[http://dx.doi.org/10.1016/j.jep.2009.05.008] [PMID: 19454311]
[59]
Zhao, A.H.; Zhang, Y.B.; Yang, X.W. Simultaneous determination and pharmacokinetics of sixteen Angelicae dahurica coumarins in vivo by LC-ESI-MS/MS following oral delivery in rats. Phytomedicine, 2016, 23(10), 1029-1036.
[http://dx.doi.org/10.1016/j.phymed.2016.06.015] [PMID: 27444348]
[60]
Luo, Q.; Wang, C.P.; Li, J.; Ma, W.F.; Bai, Y.; Ma, L.; Gao, X.M.; Zhang, B.L.; Chang, Y.X. The pharmacokinetics and oral bioavailability studies of columbianetin in rats after oral and intravenous administration. J. Ethnopharmacol., 2013, 150(1), 175-180.
[http://dx.doi.org/10.1016/j.jep.2013.08.030] [PMID: 23994338]
[61]
Lili, W.; Yehong, S.; Qi, Y.; Yan, H.; Jinhui, Z.; Yan, L.; Cheng, G. In vitro permeability analysis, pharmacokinetic and brain distribution study in mice of imperatorin, isoimperatorin and cnidilin in Radix angelicae dahuricae. Fitoterapia, 2013, 85, 144-153.
[http://dx.doi.org/10.1016/j.fitote.2013.01.007] [PMID: 23353658]
[62]
Zhao, G.; Peng, C.; Du, W.; Wang, S. Pharmacokinetic study of eight coumarins of Radix angelicae dahuricae in rats by gas chromatography-mass spectrometry. Fitoterapia, 2013, 89, 250-256.
[http://dx.doi.org/10.1016/j.fitote.2013.06.007] [PMID: 23774663]
[63]
Kryger, I. Furocoumarins in plant foods; Nordisk Ministerrad, 1996.
[http://dx.doi.org/10.4319/lo.2013.58.2.0489]
[64]
Wulf, H.C.; Hart, J. Distribution of tritium-labelled 8-methoxypsoralen in the rat, studied by whole body autoradiography. Acta Derm. Venereol., 1979, 59(2), 97-103.
[PMID: 84506]
[65]
Forbes, P.D.; Davies, R.E.; Urbach, F. Long-term toxicity of oral 8-methoxypsoralen plus ultraviolet radiation in mice. J. Toxicol. Cutaneous Ocul. Toxicol., 1991, 9, 237-250.
[http://dx.doi.org/10.3109/15569529009036330]
[66]
Mays, D.C.; Rogers, S.L.; Guiler, R.C.; Sharp, D.E.; Hecht, S.G.; Staubus, A.E.; Gerber, N. Disposition of 8-methoxypsoralen in the rat: methodology for measurement, dose-dependent pharmacokinetics, tissue distribution and identification of metabolites. J. Pharmacol. Exp. Ther., 1986, 236(2), 364-373.
[PMID: 3944766]
[67]
Muni, I.A.; Schneider, F.H.; Olsson, T.A., III; King, M. Absorption, distribution, and excretion of 8-methoxypsoralen in HRA/Skh mice. Natl. Cancer Inst. Monogr., 1984, 66, 85-90.
[PMID: 6531044]
[68]
Scott, B.R.; Pathak, M.A.; Mohn, G.R. Molecular and genetic basis of furocoumarin reactions. Mutat. Res., 1976, 39(1), 29-74.
[http://dx.doi.org/10.1016/0165-1110(76)90012-9] [PMID: 13299]
[69]
Eisenbrand, G. Toxicological assessment of furocoumarins in foodstuffs. Mol. Nutr. Food Res., 2007, 51(3), 367-373.
[http://dx.doi.org/10.1002/mnfr.200600270] [PMID: 17340579]
[70]
Dugrand-Judek, A.; Olry, A.; Hehn, A.; Costantino, G.; Ollitrault, P.; Froelicher, Y.; Bourgaud, F. The distribution of coumarins and furanocoumarins in citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One, 2015, 10(11)e0142757
[http://dx.doi.org/10.1371/journal.pone.0142757] [PMID: 26558757]
[71]
Fracarolli, L.; Rodrigues, G.B.; Pereira, A.C.; Massola Júnior, N.S.; Silva-Junior, G.J.; Bachmann, L.; Wainwright, M.; Bastos, J.K.; Braga, G.U.L. Inactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation. J. Photochem. Photobiol. B, 2016, 162, 402-411.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.07.009] [PMID: 27434699]
[72]
Bethea, D.; Fullmer, B.; Syed, S.; Seltzer, G.; Tiano, J.; Rischko, C.; Gillespie, L.; Brown, D.; Gasparro, F.P. Psoralen photobiology and photochemotherapy: 50 years of science and medicine. J. Dermatol. Sci., 1999, 19(2), 78-88.
[http://dx.doi.org/10.1016/S0923-1811(98)00064-4] [PMID: 10098699]
[73]
Muniyandi, K.; George, B.; Parimelazhagan, T.; Abrahamse, H. Role of photoactive phytocompounds in photodynamic therapy of cancer. Molecules, 2020, 25(18), 4102.
[http://dx.doi.org/10.3390/molecules25184102] [PMID: 32911753]
[74]
Girennavar, B.; Poulose, S.M.; Jayaprakasha, G.K.; Bhat, N.G.; Patil, B.S. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes. Bioorg. Med. Chem., 2006, 14(8), 2606-2612.
[http://dx.doi.org/10.1016/j.bmc.2005.11.039] [PMID: 16338240]
[75]
Paine, M.F.; Criss, A.B.; Watkins, P.B. Two major grapefruit juice components differ in intestinal CYP3A4 inhibition kinetic and binding properties. Drug Metab. Dispos., 2004, 32(10), 1146-1153.
[http://dx.doi.org/10.1124/dmd.104.000547] [PMID: 15269184]
[76]
Girennavar, B. Grapefruit-drug Interaction: Isolation, Synthesis, and Biological Activities of Furocoumarins and Their Variation Due to Pre- and Post–Harvest Factors. PhD Thesis, Texas AM University, August. 2007.
[77]
Wu, S.; Cho, E.; Feskanich, D.; Li, W.Q.; Sun, Q.; Han, J.; Qureshi, A.A. Citrus consumption and risk of basal cell carcinoma and squamous cell carcinoma of the skin. Carcinogenesis, 2015, 36(10), 1162-1168.
[http://dx.doi.org/10.1093/carcin/bgv109] [PMID: 26224304]
[78]
Wu, S.; Han, J.; Feskanich, D.; Cho, E.; Stampfer, M.J.; Willett, W.C.; Qureshi, A.A. Citrus consumption and risk of cutaneous malignant melanoma. J. Clin. Oncol., 2015, 33(23), 2500-2508.
[http://dx.doi.org/10.1200/JCO.2014.57.4111] [PMID: 26124488]
[79]
Mi, C.; Ma, J.; Wang, K.S.; Zuo, H.X.; Wang, Z.; Li, M.Y.; Piao, L.X.; Xu, G.H.; Li, X.; Quan, Z.S.; Jin, X. Imperatorin suppresses proliferation and angiogenesis of human colon cancer cell by targeting HIF-1α via the mTOR/p70S6K/4E-BP1 and MAPK pathways. J. Ethnopharmacol., 2017, 203, 27-38.
[http://dx.doi.org/10.1016/j.jep.2017.03.033] [PMID: 28341244]
[80]
Panno, M.L.; Giordano, F. Effects of psoralens as anti-tumoral agents in breast cancer cells. World J. Clin. Oncol., 2014, 5(3), 348-358.
[http://dx.doi.org/10.5306/wjco.v5.i3.348] [PMID: 25114850]
[81]
Wrześniok, D.; Beberok, A.; Rok, J.; Delijewski, M.; Hechmann, A.; Oprzondek, M.; Rzepka, Z.; Bacler-Żbikowska, B.; Buszman, E. UVA radiation augments cytotoxic activity of psoralens in melanoma cells. Int. J. Radiat. Biol., 2017, 93(7), 734-739.
[http://dx.doi.org/10.1080/09553002.2017.1297903] [PMID: 28287037]
[82]
Purohit, M.; Pande, D.; Datta, A.; Srivastava, P.S. Enhanced xanthotoxin content in regenerating cultures of Ammi majus and micropropagation. Planta Med., 1995, 61(5), 481-482.
[http://dx.doi.org/10.1055/s-2006-958144] [PMID: 17238101]
[83]
Katz, V.A.; Thulke, O.U.; Conrath, U. A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol., 1998, 117(4), 1333-1339.
[http://dx.doi.org/10.1104/pp.117.4.1333] [PMID: 9701589]
[84]
Fawe, A.; Abou-Zaid, M.; Menzies, J.G.; Bélanger, R.R. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology, 1998, 88(5), 396-401.
[http://dx.doi.org/10.1094/PHYTO.1998.88.5.396] [PMID: 18944917]
[85]
Miksch, M.; Boland, W. Airborne methyl jasmonate stimulates the biosynthesis of furanocoumarins in the leaves of celery plants (Apium graveolens). Experientia, 1996, 52, 739-743.
[http://dx.doi.org/10.1007/BF01925585]
[86]
Chaudhary, S.K.; Ceska, O.; Warrington, P.J.; Ashwood-Smith, M.J. Increased furocoumarin content of celery during storage. J. Agric. Food Chem., 1985, 33(6), 1153-1157.
[http://dx.doi.org/10.1021/jf00066a032]
[87]
Raja, S.B.; Murali, M.R.; Roopa, K.; Devaraj, S.N. Imperatorin a furocoumarin inhibits periplasmic Cu-Zn SOD of Shigella dysenteriae their by modulates its resistance towards phagocytosis during host pathogen interaction. Biomed. Pharmacother., 2011, 65(8), 560-568.
[http://dx.doi.org/10.1016/j.biopha.2010.10.010] [PMID: 21194882]
[88]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[89]
Yamamoto, S.; Shimizu, S.; Kiyonaka, S.; Takahashi, N.; Wajima, T.; Hara, Y.; Negoro, T.; Hiroi, T.; Kiuchi, Y.; Okada, T.; Kaneko, S.; Lange, I.; Fleig, A.; Penner, R.; Nishi, M.; Takeshima, H.; Mori, Y. TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med., 2008, 14(7), 738-747.
[http://dx.doi.org/10.1038/nm1758] [PMID: 18542050]
[90]
Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[91]
Yang, J.; Yang, J.; Liang, S.H.; Xu, Y.; Moore, A.; Ran, C. Imaging hydrogen peroxide in Alzheimer’s disease via cascade signal amplification. Sci. Rep., 2016, 6, 35613.
[http://dx.doi.org/10.1038/srep35613] [PMID: 27762326]
[92]
Li, Y.P.; Wu, B.; Liang, J.; Li, F. Isopsoralen ameliorates H2O2- induced damage in osteoblasts via activating the Wnt/β-catenin pathway. Exp. Ther. Med. Sci. Rep., 2016, 18(3), 1899-1906.
[http://dx.doi.org/10.3892/etm.2019.7741] [PMID: 31410152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy