Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Effect of Polyphyllin I on Hepatitis B Virus-related Liver Cancer through Network Pharmacology and in vitro Experiments

Author(s): Shuxian Yu, Wenhui Gao, Puhua Zeng*, Chenglong Chen, Zhuo Liu, Zhen Zhang and Jiyong Liu

Volume 25, Issue 5, 2022

Published on: 16 August, 2021

Page: [934 - 944] Pages: 11

DOI: 10.2174/1386207324666210816141436

Abstract

Aim and Objective: To investigate the effect of Polyphyllin I (PPI) on HBV-related liver cancer through network pharmacology and in vitro experiments, and to explore its mechanism of action.

Materials and Methods: Use bioinformatics software to predict the active ingredient target of PPI and the disease target of liver cancer, and perform active ingredient-disease target analysis. The results of network pharmacology through molecular docking and in vitro experiments can be further verified. The HepG2 receptor cells (HepG2. 2. 15) were transfected with HBV plasmid for observation, with the human liver cancer HepG2 being used as the control.

Results: Bioinformatics analysis found that PPI had a total of 161 protein targets, and the predicted target and liver cancer targets were combined to obtain 13 intersection targets. The results of molecular docking demonstrated that PPI had a good affinity with STAT3, PTP1B, IL2, and BCL2L1. The results of the in vitro experiments indicated that the PPI inhibited cell proliferation and metastasis in a concentration-dependent manner (P<0.01). Compared with the vehicle group, the PPI group of 1.5, 3, and 6 μmol/L can promote the apoptosis of liver cancer to different degrees (P<0.01).

Conclusion: The present study revealed the mechanism of PPI against liver cancer through network pharmacology and in vitro experiments. Its mechanism of action is related to the inhibition of PPI on the proliferation of HBV-related liver cancer through promoting the apoptosis of liver cancer cells. Additionally, in vitro experiments have also verified that PPI can promote the apoptosis of HepG2 and HepG2.2.15 cells.

Keywords: Hepatitis B virus-related liver cancer, Polyphyllin I, network pharmacology, molecular docking, apoptosis, primary liver cancer.

« Previous
Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol., 2016, 25(2), 74-85.
[http://dx.doi.org/10.1016/j.suronc.2016.03.002] [PMID: 27312032]
[3]
Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; Li, X.; Chien, N.; Wei, M.; Ogawa, E.; Zhao, C.; Wu, X.; Stave, C.D.; Henry, L.; Barnett, S.; Takahashi, H.; Furusyo, N.; Eguchi, Y.; Hsu, Y.C.; Lee, T.Y.; Ren, W.; Qin, C.; Jun, D.W.; Toyoda, H.; Wong, V.W.; Cheung, R.; Zhu, Q.; Nguyen, M.H. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 2019, 4(5), 389-398.
[http://dx.doi.org/10.1016/S2468-1253(19)30039-1] [PMID: 30902670]
[4]
EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol., 2017, 67(2), 370-398.
[http://dx.doi.org/10.1016/j.jhep.2017.03.021] [PMID: 28427875]
[5]
Stigliano, R.; Marelli, L.; Yu, D.; Davies, N.; Patch, D.; Burroughs, A.K. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat. Rev., 2007, 33(5), 437-447.
[http://dx.doi.org/10.1016/j.ctrv.2007.04.001] [PMID: 17512669]
[6]
Lake, F. Cancer medicine gets personal. Biotechniques, 2018, 65(2), 61-64.
[http://dx.doi.org/10.2144/btn-2018-0100] [PMID: 30091384]
[7]
Han, S.Y.; Li, P.P. Progress of research in antitumor mechanisms with Chinese medicine. Chin. J. Integr. Med., 2009, 15(4), 316-320.
[http://dx.doi.org/10.1007/s11655-009-0316-4] [PMID: 19688324]
[8]
Wang, Y.; Zhang, Q.; Chen, Y.; Liang, C.L.; Liu, H.; Qiu, F.; Dai, Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed. Pharmacother., 2020, 121109570
[http://dx.doi.org/10.1016/j.biopha.2019.109570] [PMID: 31710893]
[9]
Li, Z.H.; Wan, J.Y.; Wang, G.Q.; Zhao, F.G.; Wen, J.H. Identification of compounds from Paris polyphylla (ChongLou) active against Dactylogyrus intermedius. Parasitology, 2013, 140(8), 952-958.
[http://dx.doi.org/10.1017/S0031182013000139] [PMID: 23552446]
[10]
Li, Q.; He, Z.; Liu, J.; Wu, J.; Tan, G.; Jiang, J.; Su, Z.; Cao, M. Paris polyphylla 26 triggers G2/M phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway. J. Int. Med. Res., 2019, 47(4), 1685-1695.
[http://dx.doi.org/10.1177/0300060519826823] [PMID: 30819018]
[11]
Lee, M.S.; Yuet-Wa, J.C.; Kong, S.K.; Yu, B.; Eng-Choon, V.O.; Nai-Ching, H.W.; Chung-Wai, T.M.; Fung, K.P. Effects of polyphyllin D, a steroidal saponin in Paris polyphylla, in growth inhibition of human breast cancer cells and in xenograft. Cancer Biol. Ther., 2005, 4(11), 1248-1254.
[http://dx.doi.org/10.4161/cbt.4.11.2136] [PMID: 16258257]
[12]
Yan, L.L.; Zhang, Y.J.; Gao, W.Y.; Man, S.L.; Wang, Y. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp. Oncol., 2009, 31(1), 27-32.
[PMID: 19300413]
[13]
Lin, L.T.; Uen, W.C.; Choong, C.Y.; Shi, Y.C.; Lee, B.H.; Tai, C.J.; Tai, C.J. Paris polyphylla inhibits colorectal cancer cells via inducing autophagy and enhancing the efficacy of chemotherapeutic drug doxorubicin. Molecules, 2019, 24(11), 2102.
[http://dx.doi.org/10.3390/molecules24112102] [PMID: 31163662]
[14]
Wang, C.W.; Tai, C.J.; Choong, C.Y.; Lin, Y.C.; Lee, B.H.; Shi, Y.C.; Tai, C.J. Aqueous Extract of Paris polyphylla (AEPP) Inhibits Ovarian Cancer via Suppression of Peroxisome Proliferator-Activated Receptor-Gamma Coactivator (PGC)-1alpha. Molecules, 2016, 21(6), 727.
[http://dx.doi.org/10.3390/molecules21060727] [PMID: 27271583]
[15]
Negi, J.S.; Bisht, V.K.; Bhandari, A.K.; Bhatt, V.P.; Singh, P.; Singh, N. Paris polyphylla: chemical and biological prospectives. Anticancer. Agents Med. Chem., 2014, 14(6), 833-839.
[http://dx.doi.org/10.2174/1871520614666140611101040] [PMID: 24917072]
[16]
Zeng, Y.; Zhang, Z.; Wang, W.; You, L.; Dong, X.; Yin, X.; Qu, C.; Ni, J. Underlying mechanisms of apoptosis in HepG2 cells induced by polyphyllin I through Fas death and mitochondrial pathways. Toxicol. Mech. Methods, 2020, 30(6), 397-406.
[http://dx.doi.org/10.1080/15376516.2020.1747125] [PMID: 32208876]
[17]
Shi, Y.M.; Yang, L.; Geng, Y.D.; Zhang, C.; Kong, L.Y. Polyphyllin I induced-apoptosis is enhanced by inhibition of autophagy in human hepatocellular carcinoma cells. Phytomedicine, 2015, 22(13), 1139-1149.
[http://dx.doi.org/10.1016/j.phymed.2015.08.014] [PMID: 26598912]
[18]
Luo, Q.; Yang, D.; Qi, Q.; Huang, C.; Chen, B.; Liu, W.; Shi, L.; Xia, Y.; Tang, L.; Fang, J.; Ou, Y.; Geng, Y.; Chen, Z. Role of the death receptor and endoplasmic reticulum stress signaling pathways in polyphyllin I-regulated apoptosis of human hepatocellular carcinoma HepG2 cells. BioMed Res. Int., 2018, 20185241941
[http://dx.doi.org/10.1155/2018/5241941] [PMID: 30671458]
[19]
Liu, J.; Man, S.; Liu, Z.; Ma, L.; Gao, W. A synergistic antitumor effect of polyphyllin I and formosanin C on hepatocarcinoma cells. Bioorg. Med. Chem. Lett., 2016, 26(20), 4970-4975.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.005] [PMID: 27623551]
[20]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[21]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[22]
Schrödinger, L.L.C. The {PyMOL} Molecular Graphics System, Version 1.80 LLC: New York, NY. 2015.
[23]
Yu, S.; Gao, W.; Zeng, P.; Chen, C.; Zhang, Z.; Liu, Z.; Liu, J. Exploring the effect of Gupi Xiaoji Prescription on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments. Biomed. Pharmacother., 2021, 139111612
[http://dx.doi.org/10.1016/j.biopha.2021.111612] [PMID: 33915505]
[24]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[25]
Arzumanyan, A.; Reis, H.M.; Feitelson, M.A. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat. Rev. Cancer, 2013, 13(2), 123-135.
[http://dx.doi.org/10.1038/nrc3449] [PMID: 23344543]
[26]
Zhao, Y.; Tang, X.; Huang, Y.; Tang, Q.; Ma, C.; Zheng, F.; Wu, W.; Hann, S.S. Interaction Of c-Jun And HOTAIR- increased expression of p21 converge in polyphyllin I-inhibited growth of human lung cancer cells. OncoTargets Ther., 2019, 12, 10115-10127.
[http://dx.doi.org/10.2147/OTT.S226830] [PMID: 31819506]
[27]
Yang, Q.; Chen, W.; Xu, Y.; Lv, X.; Zhang, M.; Jiang, H. Polyphyllin I modulates MALAT1/STAT3 signaling to induce apoptosis in gefitinib-resistant non-small cell lung cancer. Toxicol. Appl. Pharmacol., 2018, 356, 1-7.
[http://dx.doi.org/10.1016/j.taap.2018.07.031] [PMID: 30076870]
[28]
Zhang, Y.; Huang, P.; Liu, X.; Xiang, Y.; Zhang, T.; Wu, Y.; Xu, J.; Sun, Z.; Zhen, W.; Zhang, L.; Si, Y.; Liu, Y. Polyphyllin I inhibits growth and invasion of cisplatin-resistant gastric cancer cells by partially inhibiting CIP2A/PP2A/Akt signaling axis. J. Pharmacol. Sci., 2018, 137(3), 305-312.
[http://dx.doi.org/10.1016/j.jphs.2018.07.008] [PMID: 30119963]
[29]
Dong, R.; Guo, J.; Zhang, Z.; Zhou, Y.; Hua, Y. Polyphyllin I inhibits gastric cancer cell proliferation by downregulating the expression of fibroblast activation protein alpha (FAP) and hepatocyte growth factor (HGF) in cancer-associated fibroblasts. Biochem. Biophys. Res. Commun., 2018, 497(4), 1129-1134.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.193] [PMID: 29499193]
[30]
Gu, L.; Feng, J.; Zheng, Z.; Xu, H.; Yu, W. Polyphyllin I inhibits the growth of ovarian cancer cells in nude mice. Oncol. Lett., 2016, 12(6), 4969-4974.
[http://dx.doi.org/10.3892/ol.2016.5348] [PMID: 28105203]
[31]
Gu, L.; Feng, J.; Xu, H.; Luo, M.; Su, D. Polyphyllin I inhibits proliferation and metastasis of ovarian cancer cell line HO-8910PM in vitro. J. Tradit. Chin. Med., 2013, 33(3), 325-333.
[http://dx.doi.org/10.1016/S0254-6272(13)60174-0] [PMID: 24024328]
[32]
Li, G.B.; Fu, R.Q.; Shen, H.M.; Zhou, J.; Hu, X.Y.; Liu, Y.X.; Li, Y.N.; Zhang, H.W.; Liu, X.; Zhang, Y.H.; Huang, C.; Zhang, R.; Gao, N. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget, 2017, 8(6), 10359-10374.
[http://dx.doi.org/10.18632/oncotarget.14413] [PMID: 28060722]
[33]
Zhang, D.; Liu, S.; Liu, Z.; Ma, C.; Jiang, Y.; Sun, C.; Li, K.; Cao, G.; Lin, Z.; Wang, P.; Zhang, J.; Xu, D.; Kong, F.; Zhao, S. Polyphyllin I induces cell cycle arrest in prostate cancer cells via the upregulation of IL6 and P21 expression. Medicine (Baltimore), 2019, 98(44)e17743
[http://dx.doi.org/10.1097/MD.0000000000017743] [PMID: 31689825]
[34]
Liu, X.; Sun, Z.; Deng, J.; Liu, J.; Ma, K.; Si, Y.; Zhang, T.; Feng, T.; Liu, Y.; Tan, Y. Polyphyllin I inhibits invasion and epithelial-mesenchymal transition via CIP2A/PP2A/ERK signaling in prostate cancer. Int. J. Oncol., 2018, 53(3), 1279-1288.
[http://dx.doi.org/10.3892/ijo.2018.4464] [PMID: 29956727]
[35]
Li, J.; Ma, W.; Cheng, X.; Zhang, X.; Xie, Y.; Ji, Z.; Wu, S. Activation of FOXO3 pathway is involved in polyphyllin I-induced apoptosis and cell cycle arrest in human bladder cancer cells. Arch. Biochem. Biophys., 2020, 687108363
[http://dx.doi.org/10.1016/j.abb.2020.108363] [PMID: 32335049]
[36]
Liu, J.; Zhang, Y.; Chen, L.; Yu, F.; Li, X. Dan Tao; Zhao, J.; Zhou, S. Polyphyllin I induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway. Acta Biochim. Biophys. Sin. (Shanghai), 2017, 49(6), 479-486.
[http://dx.doi.org/10.1093/abbs/gmx033] [PMID: 28449039]
[37]
Guanizo, A.C.; Fernando, C.D.; Garama, D.J.; Gough, D.J. STAT3: a multifaceted oncoprotein. Growth Factors, 2018, 36(1-2), 1-14.
[http://dx.doi.org/10.1080/08977194.2018.1473393] [PMID: 29873274]
[38]
Maryam, A.; Mehmood, T.; Zhang, H.; Li, Y.; Khan, M.; Ma, T. Alantolactone induces apoptosis, promotes STAT3 glutathionylation and enhances chemosensitivity of A549 lung adenocarcinoma cells to doxorubicin via oxidative stress. Sci. Rep., 2017, 7(1), 6242.
[http://dx.doi.org/10.1038/s41598-017-06535-y] [PMID: 28740138]
[39]
Wang, Z.; Wang, C.; Zuo, D.; Zhang, T.; Yin, F.; Zhou, Z.; Wang, H.; Xu, J.; Mao, M.; Wang, G.; Hua, Y.; Sun, W.; Cai, Z. Attenuation of STAT3 phosphorylation promotes apoptosis and chemosensitivity in human osteosarcoma induced by raddeanin A. Int. J. Biol. Sci., 2019, 15(3), 668-679.
[http://dx.doi.org/10.7150/ijbs.30168] [PMID: 30745853]
[40]
Liu, Z.; Wang, H.; Guan, L.; Chen, S.; Lai, M. A novel small molecular STAT3 inhibitor, 5Br-6b, induces apoptosis and inhibits migration in colorectal cancer cells. Anticancer Drugs, 2018, 29(5), 402-410.
[http://dx.doi.org/10.1097/CAD.0000000000000605] [PMID: 29438179]
[41]
Dhupkar, P.; Gordon, N. Interleukin-2: Old and new approaches to enhance immune-therapeutic efficacy. Adv. Exp. Med. Biol., 2017, 995, 33-51.
[http://dx.doi.org/10.1007/978-3-319-53156-4_2] [PMID: 28321811]
[42]
Lotze, M.T.; Matory, Y.L.; Ettinghausen, S.E.; Rayner, A.A.; Sharrow, S.O.; Seipp, C.A.; Custer, M.C.; Rosenberg, S.A. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol., 1985, 135(4), 2865-2875.
[PMID: 2993418]
[43]
Qian, J.; Fang, D.; Lu, H.; Cao, Y.; Zhang, J.; Ding, R.; Li, L.; Huo, J. Tanshinone IIA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1-Hippo pathway. Biomed. Pharmacother., 2018, 108, 1658-1669.
[http://dx.doi.org/10.1016/j.biopha.2018.09.170] [PMID: 30372868]
[44]
Xu, J.; Zhang, Z.; Chen, Q.; Yang, L.; Yin, J. miR-146b regulates cell proliferation and apoptosis in gastric cancer by targeting PTP1B. Dig. Dis. Sci., 2020, 65(2), 457-463.
[http://dx.doi.org/10.1007/s10620-019-05771-8] [PMID: 31441000]
[45]
Yu, M.; Liu, Z.; Liu, Y.; Zhou, X.; Sun, F.; Liu, Y.; Li, L.; Hua, S.; Zhao, Y.; Gao, H.; Zhu, Z.; Na, M.; Zhang, Q.; Yang, R.; Zhang, J.; Yao, Y.; Chen, X. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J., 2019, 286(6), 1136-1153.
[http://dx.doi.org/10.1111/febs.14724] [PMID: 30548198]
[46]
Fiandalo, M.V.; Kyprianou, N. Caspase control: protagonists of cancer cell apoptosis. Exp. Oncol., 2012, 34(3), 165-175.
[PMID: 23070001]
[47]
Zhang, H.; Zong, Y.; Qiu, G.; Jia, R.; Xu, X.; Wang, F.; Wu, D. Silencing Lin28 promotes apoptosis in colorectal cancer cells by upregulating let 7c targeting of antiapoptotic BCL2L1. Mol. Med. Rep., 2018, 17(4), 5143-5149.
[http://dx.doi.org/10.3892/mmr.2018.8483] [PMID: 29393430]

© 2024 Bentham Science Publishers | Privacy Policy