Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Development of 2D, 3D-QSAR and Pharmacophore Modeling of Chalcones for the Inhibition of Monoamine Oxidase B

Author(s): Bijo Mathew*, Chonny Herrera-Acevedo, Sanal Dev, T.M. Rangarajan, Mohamed Saheer Kuruniyan, Punnoth Poonkuzhi Naseef, Luciana Scotti and Marcus Tullius Scotti*

Volume 25, Issue 10, 2022

Published on: 16 August, 2021

Page: [1731 - 1744] Pages: 14

DOI: 10.2174/1386207324666210816125738

Price: $65

Abstract

Background: Selective and reversible types of MAO-B inhibitors have emerged as promising candidates for the management of neurodegenerative diseases. Several functionalized chalcone derivatives were shown to have potential reversible MAO-B inhibitory activity, which have recently been reported from our laboratory.

Methods: With the experimental results of about 70 chalcone derivatives, we further developed a pharmacophore modelling, and 2D and 3D- QSAR analyses of these reported chalcones for MAOB inhibition.

Results: The 2D-QSAR model presented four variables (MATS7v, GATS 1i and 3i, and C-006) from 143 Dragon 7 molecular descriptors, with a r2 value of 0.76 and a Q2 cv for cross-validation equal to 0.72. An external validation also was performed using 11 chalcones, obtaining a Q2 ext value of 0.74. The second 3D-QSAR model using MLR (multiple linear regression) was built starting from 128 Volsurf+ molecular descriptors, being identified as 4 variables (Molecular descriptors): D3, CW1 and LgS11, and L2LGS. Adetermination coefficient (r2) value of 0.76 and a Q2 cv for cross-validation equal to 0.72 were obtained for this model. An external validation also was performed using 11 chalcones and a Q2 ext value of 0.74 was found.

Conclusion: This report exhibited a good correlation and satisfactory agreement between experiment and theory.

Keywords: Chalcones, MAO-B, 2D-QSAR, 3D-QSAR, pharmacophore modeling, Q2 ext.

[1]
Kumar, B.; Gupta, V.P.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target: Challenges and opportunities. Curr. Drug Targets, 2017, 18(1), 87-97.
[http://dx.doi.org/10.2174/1389450117666151209123402] [PMID: 26648064]
[2]
Finberg, J.P.M.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol., 2016, 7, 340.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
[3]
Riederer, P.; Müller, T. Monoamine oxidase-B inhibitors in the treatment of Parkinson’s disease: Clinical-pharmacological aspects. J. Neural Transm. (Vienna), 2018, 125(11), 1751-1757.
[http://dx.doi.org/10.1007/s00702-018-1876-2] [PMID: 29569037]
[4]
Mathew, B. Parambi. D.G.T.; Mathew. G.E.; Uddin. M.S.; Inasu. S.T.; Kim.H.; Marathakam. A.; Unnikrishnan. M.K.; S.C. Emerging therapeutic potentials of dual- acting mao and ache inhibitors in Alzheimer’s and Parkinsons Diseases. Arch. Pharm. (Weinheim), 2019, 352, e1900177.
[http://dx.doi.org/10.1002/ardp.201900177] [PMID: 31478569]
[5]
Ramsay, R.R. Molecular aspects of monoamine oxidase B. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 69, 81-89.
[http://dx.doi.org/10.1016/j.pnpbp.2016.02.005] [PMID: 26891670]
[6]
Carradori, S.; Silvestri, R. New frontiers in selective human MAO-B inhibitors. J. Med. Chem., 2015, 58(17), 6717-6732.
[http://dx.doi.org/10.1021/jm501690r] [PMID: 25915162]
[7]
Vilar, S.; Ferino, G.; Quezada, E.; Santana, L.; Friedman, C. Predicting monoamine oxidase inhibitory activity through ligand-based models. Curr. Top. Med. Chem., 2012, 12(20), 2258-2274.
[http://dx.doi.org/10.2174/156802612805219987] [PMID: 23231398]
[8]
Speck-Planche, A.; Kleandrova, V.V. QSAR and molecular docking techniques for the discovery of potent monoamine oxidase B inhibitors: computer-aided generation of new rasagiline bioisosteres. Curr. Top. Med. Chem., 2012, 12(16), 1734-1747.
[http://dx.doi.org/10.2174/1568026611209061734] [PMID: 23030609]
[9]
Mathew, B.; Adeniyi, A.A.; Dev, S.; Joy, M.; Ucar, G.; Mathew, G.E.; Singh-Pillay, A.; Soliman, M.E. Pharmacophore-based 3D-QSAR analysis of thienyl chalcones as a new class of human mao-b inhibitors: Investigation of combined quantum chemical and molecular dynamics approach. J. Phys. Chem. B, 2017, 121(6), 1186-1203.
[http://dx.doi.org/10.1021/acs.jpcb.6b09451] [PMID: 28084742]
[10]
Secci, D.; Bolasco, A.; Chimenti, P.S.C. The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr. Med. Chem., 2011, 18.
[11]
Mathew, B.; Suresh, J.; Anbazhagan, S.; Mathew, G.E. Pyrazoline: a promising scaffold for the inhibition of monoamine oxidase. Cent. Nerv. Syst. Agents Med. Chem., 2013, 13(3), 195-206.
[http://dx.doi.org/10.2174/1871524914666140129122632] [PMID: 24533911]
[12]
Mathew, B.; Haridas, A.; Suresh, J.; Mathew, G.E.; Ucar, G.V.J. Monoamine oxidase inhibitory actions of chalcones. A mini review. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16AD, 120-136.
[http://dx.doi.org/10.2174/1871524915666151002124443] [PMID: 26429556]
[13]
Gaspar, A.; Silva, T.; Yáñez, M.; Viña, D.; Orallo, F.; Ortuso, F.; Uriarte, E.; Alcaro, S.; Borges, F. Chromone, a privileged scaffold for the development of monoamine oxidase inhibition. J. Med. Chem., 2011, 54, 5165-5173.
[http://dx.doi.org/10.1021/jm2004267] [PMID: 21696156]
[14]
Mathew, B.; Mathew, G.E.; Petzer, J.P.; Petzer, A. Structural exploration of synthetic chromones as selective MAO-B inhibitors: A mini review. Comb. Chem. High Throughput Screen., 2017, 20(6), 522-532.
[http://dx.doi.org/10.2174/1386207320666170227155517] [PMID: 28245770]
[15]
Kavully, F.S.; Oh, J.M.; Dev, S.; Kaipakasseri, S.; Palakkathondi, A.; Vengamthodi, A.; Abdul Azeez, R.F.; Tondo, A.R.; Nicolotti, O.; Kim, H. Bijo Mathew, Design of enamides as new selective monoamine oxidase-B inhibitors. J. Pharm. Pharmacol., 2020, 72(7), 916-926.
[http://dx.doi.org/10.1111/jphp.13264] [PMID: 32246471]
[16]
Matos, M.J.; Viña, D.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Focusing on new monoamine oxidase inhibitors: differently substituted coumarins as an interesting scaffold. Curr. Top. Med. Chem., 2012, 12(20), 2210-2239.
[http://dx.doi.org/10.2174/156802612805220002] [PMID: 23231397]
[17]
Guglielmi, P.; Mathew, B.; Secci, D.; Carradori, S. Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur. J. Med. Chem., 2020, 205, 112650.
[http://dx.doi.org/10.1016/j.ejmech.2020.112650] [PMID: 32920430]
[18]
Maliyakkal, N.; Eom, B.H.; Heo, J.H.; Abdullah Almoyad, M.A.; Thomas Parambi, D.G.; Gambacorta, N.; Nicolotti, O.; Beeran, A.A.; Kim, H.; Mathew, B. A new potent and selective monoamine oxidase-b inhibitor with extended conjugation in a chalcone framework: 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. ChemMedChem, 2020, 15(17), 1629-1633.
[http://dx.doi.org/10.1002/cmdc.202000305] [PMID: 32583952]
[19]
Tripathi, R.K.P.; Ayyannan, S.R. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med. Res. Rev., 2019, 39(5), 1603-1706.
[http://dx.doi.org/10.1002/med.21561] [PMID: 30604512]
[20]
Mellado, M.; González, C.; Mella, J.; Aguilar, L.F.; Viña, D.; Uriarte, E.; Cuellar, M.; Matos, M.J. Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem., 2021, 108, 104689.
[http://dx.doi.org/10.1016/j.bioorg.2021.104689] [PMID: 33571810]
[21]
Lakshminarayanan, B.; Baek, S.C.; Lee, J.P.; Kannappan, N.; Mangiatordi, G.F.; Nicolotti, O.; Subburaju, T.; Kim, H.; Mathew, B. Ethoxylated head of chalcones as a new class of multi‐targeted MAO inhibitors. ChemistrySelect, 2019, 4, 6614-6619.
[http://dx.doi.org/10.1002/slct.201901093]
[22]
Sasidharan, R.; Baek, S.C.; Sreedharannair Leelabaiamma, M.; Kim, H.; Mathew, B. Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors. Biomed. Pharmacother., 2018, 106, 8-13.
[http://dx.doi.org/10.1016/j.biopha.2018.06.064] [PMID: 29940538]
[23]
Reeta.; Baek. S.C.; Lee. J.P.; Rangarajan. T.M.; Ayushee.; Singh. R.P.; Singh. M.; Mangiatordi. G.F.; Nicolotti. O.; Kim. H.; Mathew. B. Ethyl acetohydroxamate incorporated chalcones: Unveiling a novel class of chalcones for multitarget monoamine oxidase-B inhibitors against Alzheimer’s disease. CNS & Neurol. Disord. Drug Targets, 2019, 18, 643-654.
[http://dx.doi.org/10.2174/1871527318666190906101326]
[24]
Parambi, D.G.T.; Oh, J.M.; Baek, S.C.; Lee, J.P.; Tondo, A.R.; Nicolotti, O.; Kim, H.; Mathew, B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg. Chem., 2019, 93, 103335.
[http://dx.doi.org/10.1016/j.bioorg.2019.103335] [PMID: 31606547]
[25]
Mauri, A.; Consonni, V.; Pavan, M. R.T. Dragon software: an easy approach to molecular descriptor calculations. Match (Mulh.), 2006, 56, 237-248.
[26]
Todeschini, R.; Consonni, V. Handbook of molecular descriptors; New York, 2008.
[27]
Cruciani, G.; Pastor, M.; Guba, W. V. A new tool fo the pharmacokinetic optimization of lead compounds. Eur. J. Pharm. Sci., 2000, 11, 29-39.
[http://dx.doi.org/10.1016/S0928-0987(00)00162-7]
[28]
Cruciani, G.; Crivori, P.; Carrupt, P.A.P. B.T. Molecular fields in quantitative structure-permeation relationships: The VolSurf approach. J. Mol. Struct. Theochem, 2000, 503, 17-30.
[http://dx.doi.org/10.1016/S0166-1280(99)00360-7]
[29]
Berthold, M.R. Cebron. N.; Dill. F.; Gabriel. T.R.; Kötter. T.; Meinl. T.; Ohl. P.; Wiswedel. B. KNIME-the Konstanz Information Miner: Version 2.0 and Beyond. ACM SIGKDD Explor Newslett, 2009, 11, 26-31.
[http://dx.doi.org/10.1145/1656274.1656280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy