Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

General Research Article

Immobilized Palladium Nanoparticles on Phosphanamine-grafted Cellulose for Arylation of Uracil

Author(s): Qian Yang*, Na Ma , Yangqing He , Xiaojiao Yu and Binghua Yao

Volume 9, Issue 1, 2022

Published on: 16 August, 2021

Page: [87 - 96] Pages: 10

DOI: 10.2174/2213337208666210816110719

Price: $65

Abstract

Background: The synthesis of 5-arylation uracil nucleosides is an imperative challenge, especially for the method of Suzuki reaction using N-unprotected uracil as materials, which holds the potential to enhance the yield.

Objective: The objective of this study was to find a more efficient catalyst to increase the yield of aryluracils and aryluridines.

Methods: We first constructed the Phosphanamine-Grafted Cellulose (PAGC) from cellulose material. Then the nanocatalyst PAGC/Pd(0) was prepared through heating and reducing the mixture of PAGC and Pa(OAc)2.

Results: When using this nanocatalyst to catalyze the Suzuki reaction of 5-iodouracil or 5-iodouridine and aryl heterocyclic boronic acids, the arylation yields have been significantly improved.

Conclusion: This means that the resultant nanocatalyst exhibits a remarkable catalytic efficacy for Suzuki arylation of 5-iodouracil and 5-iodouridine.

Keywords: Palladium nanocatalyst, phosphanamine, cellulose, suzuki arylation, iodouracil, iodouridine.

« Previous
Graphical Abstract

[1]
Sawai, H.; Nagashima, J.; Kuwahara, M.; Kitagata, R.; Tamura, T.; Matsui, I. Differences in substrate specificity of C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides by DNA polymerases from thermophilic bacteria, archaea, and phages. Chem. Biodivers., 2007, 4(9), 1979-1995.
[http://dx.doi.org/10.1002/cbdv.200790165] [PMID: 17886855]
[2]
Sharma, P.; Rane, N.; Gurram, V.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2004, 14(16), 4185-4190.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.014] [PMID: 15261267]
[3]
Agarwal, N.; Raghuwanshi, S.K.; Upadhyay, D.N.; Shukla, P.K.; Ram, V.J. Suitably functionalised pyrimidines as potential antimycotic agents. Bioorg. Med. Chem. Lett., 2000, 10(8), 703-706.
[http://dx.doi.org/10.1016/S0960-894X(00)00091-3] [PMID: 10782668]
[4]
Amir, M.; Javed, S.A.; Kumar, H. Pyrimidine as antiinflammatory agent: A review. Indian J. Pharm. Sci., 2007, 68, 337-343.
[http://dx.doi.org/10.4103/0250-474X.34540]
[5]
Meščić, A.; Harej, A.; Klobučar, M.; Glavač, D.; Cetina, M.; Pavelić, S.K.; Raić-Malić, S. Discovery of new acid ceramidase- targeted acyclic 5-alkynyl and 5-heteroaryl uracil nucleosides. ACS Med. Chem. Lett., 2015, 6(11), 1150-1155.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00298] [PMID: 26617970]
[6]
McGuigan, C.; Barucki, H.; Carangio, A.; Blewett, S.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.; Erichsen, J.T. Highly potent and selective inhibition of varicella-zoster virus by bicyclic furopyrimidine nucleosides bearing an aryl side chain. J. Med. Chem., 2000, 43(26), 4993-4997.
[http://dx.doi.org/10.1021/jm000210m] [PMID: 11150169]
[7]
Onishi, T.; Mukai, C.; Nakagawa, R.; Sekiyama, T.; Aoki, M.; Suzuki, K.; Nakazawa, H.; Ono, N.; Ohmura, Y.; Iwayama, S.; Okunishi, M.; Tsuji, T. Synthesis and antiviral activity of novel anti-VZV 5-substituted uracil nucleosides with a cyclopropane sugar moiety. J. Med. Chem., 2000, 43(2), 278-282.
[http://dx.doi.org/10.1021/jm9904194] [PMID: 10649983]
[8]
Chen, C.; Wu, D.; Guo, Z.Q.; Xie, Q.; Reinhart, G.E.; Madan, A.; Wen, J.; Chen, T.; Huang, C.Q.; Chen, M.; Chen, Y.S.; Tucci, F.C.; Rowbottom, M.; Pontillo, J.; Zhu, Y.F.; Wade, W.; Saunders, H.; Struthers, R.S. Discovery of sodium R-(+)-4-{2-[5-(2-Fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (Elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor. J. Med. Chem., 2008, 51, 7478-7485.
[http://dx.doi.org/10.1021/jm8006454] [PMID: 19006286]
[9]
Cahová, H.; Panattoni, A.; Kielkowski, P.; Fanfrlík, J.; Hocek, M. 5-Substituted pyrimidine and 7-substituted 7-deazapurine dNTPs as substrates for DNA polymerases in competitive primer extension in the presence of natural dNTPs. ACS Chem. Biol., 2016, 11(11), 3165-3171.
[http://dx.doi.org/10.1021/acschembio.6b00714] [PMID: 27668519]
[10]
a) Amann, N.; Wagenknecht, H-A. Preparation of pyrenyl-modified nucleosides via Suzuki-Miyaura cross-coupling reactions. Synlett, 2002, 5, 687-691.
[http://dx.doi.org/10.1055/s-2002-25349]
b) Western, E.C.; Daft, J.R.; Johnson, E.M., II; Gannett, P.M.; Shaughnessy, K.H. Efficient one-step Suzuki arylation of unprotected halonucleosides, using water-soluble palladium catalysts. J. Org. Chem., 2003, 68(17), 6767-6774.
[http://dx.doi.org/10.1021/jo034289p] [PMID: 12919046]
c) Fresneau, N.; Hiebel, M-A.; Agrofoglio, L.A.; Berteina-Raboin, S. Efficient synthesis of unprotected C-5-aryl/heteroaryl-2′-deoxyuridine via a Suzuki-Miyaura reaction in aqueous media. Molecules, 2012, 17(12), 14409-14417.
[http://dx.doi.org/10.3390/molecules171214409] [PMID: 23519242]
[11]
a) Peyron, C.; Benhida, R.; Bories, C.; Loiseau, P.M. Synthesis and in vitro antileishmanial activity of 5-substituted-2′-deoxyuridine derivatives. Bioorg. Chem., 2005, 33(6), 439-447.
[http://dx.doi.org/10.1016/j.bioorg.2005.07.001] [PMID: 16168460]
b) Gazivoda, T.; Raić-Malić, S.; Marjanović, M.; Kralj, M.; Pavelić, K.; Balzarini, J.; De Clercq, E.; Mintas, M. The novel C-5 aryl, alkenyl, and alkynyl substituted uracil derivatives of L-ascorbic acid: Synthesis, cytostatic, and antiviral activity evaluations. Bioorg. Med. Chem., 2007, 15(2), 749-758.
[http://dx.doi.org/10.1016/j.bmc.2006.10.046] [PMID: 17092728]
c) Bardagí, J.I.; Rossi, R.A. A novel approach to the synthesis of 6-substituted uracils in three-step, one-pot reactions. J. Org. Chem., 2008, 73(12), 4491-4495.
[http://dx.doi.org/10.1021/jo800358v] [PMID: 18489150]
[12]
Agrofoglio, L.A.; Gillaizeau, I.; Saito, Y. Palladium-assisted routes to nucleosides. Chem. Rev., 2003, 103(5), 1875-1916.
[http://dx.doi.org/10.1021/cr010374q] [PMID: 12744695]
[13]
Kim, K.H.; Lee, H.S.; Kim, J.N. Palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil with aryl bromides: An electrophilic metalation-deprotonation with electrophilic arylpalladium intermediate. Tetrahedron Lett., 2011, 52, 6228-6233.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.066]
[14]
Cheng, C.; Shih, Y-C.; Chen, H-T.; Chien, T-C. Regioselective arylation of uracil and 4-pyridone derivatives via copper(I) bromide mediated C-H bond activation. Tetrahedron, 2013, 69, 1387-1396.
[http://dx.doi.org/10.1016/j.tet.2012.11.001]
[15]
Liang, Y.; Gloudeman, J.; Wnuk, S.F. Palladium-catalyzed direct arylation of 5-halouracils and 5-halouracil nucleosides with arenes and heteroarenes promoted by TBAF. J. Org. Chem., 2014, 79(9), 4094-4103.
[http://dx.doi.org/10.1021/jo500602p] [PMID: 24724921]
[16]
Lussier, T.; Hervé, G.; Enderlina, G.; Len, C. Original access to 5-aryluracils from 5-iodo-2′-deoxyuridine via a microwave assisted Suzuki-Miyaura cross-coupling/deglycosylation sequence in pure water. RSC Adv., 2014, 4, 46218-46223.
[http://dx.doi.org/10.1039/C4RA04814H]
[17]
Yang, Q.; Wei, T.; He, Y.; Liang, Y.; Zhang, Z.T. Direct arylation of 5-iodouracil and 5-iodouridine with heteroarenes and benzene via photochemical reaction. Helv. Chim. Acta, 2015, 98, 953-960.
[http://dx.doi.org/10.1002/hlca.201400351]
[18]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[19]
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. Engl., 2009, 48(1), 60-103.
[http://dx.doi.org/10.1002/anie.200802248] [PMID: 19053095]
[20]
Costaa, N.J.S.; Kiyoharab, P.K.; Monteiroc, A.L.; Coppel, Y.; Philippot, K.; Rossi, L.M. A single-step procedure for the preparation of palladium nanoparticles and a phosphine-functionalized support as catalyst for Suzuki cross-coupling reactions. J. Catal., 2010, 276, 382-389.
[http://dx.doi.org/10.1016/j.jcat.2010.09.028]
[21]
a) Maleki, A.; Gharibi, S.; Valadi, K.; Taheri-Ledari, R.J. Pumice- modified cellulose fiber: An environmentally benign solid state hybrid catalytic system for the synthesis of 2,4,5-triarylimidazole derivatives. Phys. Chem. Solids, 2020, 142, 109443.
[http://dx.doi.org/10.1016/j.jpcs.2020.109443]
b) Li, D.D.; Zhang, J.W.; Cai, C. Pd nanoparticles supported on cellulose as a catalyst for vanillin conversion in aqueous media. J. Org. Chem., 2018, 83(14), 7534-7538.
[http://dx.doi.org/10.1021/acs.joc.8b00246] [PMID: 29771511]
[22]
a) Miyaura, N.; Suzuki, A. palladium-catalyzed cross-coupling of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[http://dx.doi.org/10.1021/cr00039a007]
b) Panahi, F.; Zarnaghash, N.; Nezhad, A.K. Phosphanamine-functionalized magnetic nanoparticles (PAFMNP): An efficient magnetic recyclable ligand in Pd-catalyzed heck reaction of chloroarenes. New J. Chem., 2016, 40(2), 1250-1255.
[http://dx.doi.org/10.1039/C5NJ02409A]
[23]
Martin, R.; Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res., 2008, 41(11), 1461-1473.
[http://dx.doi.org/10.1021/ar800036s] [PMID: 18620434]
[24]
Fareghi-Alamdari, R.; Haqiqi, M.G.; Zekri, N. Immobilized Pd(0) nanoparticles on phosphine-functionalized graphene as highly active catalyst for Heck, Suzuki and N-arylation reactions. New J. Chem., 2016, 40, 1287-1296.
[http://dx.doi.org/10.1039/C5NJ02227D]
[25]
a) Du, Q.; Li, Y. Air-stable, recyclable, and time-efficient diphenylphosphinite cellulose-supported palladium nanoparticles as a catalyst for Suzuki-Miyaura reactions. Beilstein J. Org. Chem., 2011, 7, 378-385.
[http://dx.doi.org/10.3762/bjoc.7.48] [PMID: 21512591]
b) Salamatmanesh, A.; Heydari, A.; Nahzomi, H.T. Stabilizing Pd on magnetic phosphine-functionalized cellulose: DFT study and catalytic performance under deep eutectic solvent assisted conditions. Carbohydr. Polym., 2020, 235, 115947.
[http://dx.doi.org/10.1016/j.carbpol.2020.115947] [PMID: 32122484]
[26]
Rahn, K.; Diamantoglou, M.; Klemm, D.; Berghmans, H.; Heinze, T. Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethylacetamide/LiCl solvent system. Angew. Makromol. Chem., 1996, 238(1), 143-163.
[http://dx.doi.org/10.1002/apmc.1996.052380113]
[27]
Maraval, V.; Laurent, R.; Caminade, A.M.; Majoral, J.P. Phosphorus-containing dendrimers and their transition metal complexes as efficient recoverable multicenter homogeneous catalysts in organic synthesis. Organometallics, 2000, 19(20), 4025-4029.
[http://dx.doi.org/10.1021/om0005607]
[28]
Yılmaz Baran, N.; Baran, T.; Menteş, A. Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Carbohydr. Polym., 2018, 181, 596-604.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.107] [PMID: 29254012]
[29]
Khazaei, A.; Rahmati, S.; Saednia, S. An efficient ligand- and copper-free Sonogashira reaction catalyzed by palladium nanoparticles supported on pectin. Catal. Commun., 2013, 37(5), 9-13.
[http://dx.doi.org/10.1016/j.catcom.2013.03.013]
[30]
Wang, X.; Hu, P.; Xue, F.; Wei, Y. Cellulose-supported N-heterocyclic carbene-palladium catalyst: Synthesis and its applications in the Suzuki cross-coupling reaction. Carbohydr. Polym., 2014, 114, 476-483.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.030] [PMID: 25263916]
[31]
Smith, E.F.; Garcia, I.J.; Briggs, D.; Licence, P. Ionic liquids in vacuo; solution-phase X-ray photoelectron spectroscopy. Chem. Commun. (Camb.), 2005, 45(45), 5633-5635.
[http://dx.doi.org/10.1039/b512311a] [PMID: 16292372]
[32]
Gammon, W.J.; Kraft, O.; Reilly, A.C.; Holloway, B.C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon, 2003, 41, 1917-1923.
[http://dx.doi.org/10.1016/S0008-6223(03)00170-2]
[33]
Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2011, 133(49), 19816-19822.
[http://dx.doi.org/10.1021/ja206846p] [PMID: 22026454]
[34]
Paul, S.; Islam, M.M.; Islam, S.M. Suzuki-Miyaura reaction by heterogeneously supported Pd in water: Recent studies. RSC Adv., 2015, 5(53), 42193-42221.
[http://dx.doi.org/10.1039/C4RA17308B]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy