Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Combinatorial Synthesis of Novel 1-sulfonyloxy/acyloxyeugenol Derivatives as Fungicidal Agents

Author(s): Genqiang Chen, Lina Zhu, Jiaxuan He, Song Zhang, Yuanhao Li, Xiaolong Guo, Di Sun, Yuee Tian, Shengming Liu, Xiaobo Huang and Zhiping Che*

Volume 25, Issue 9, 2022

Published on: 13 August, 2021

Page: [1545 - 1551] Pages: 7

DOI: 10.2174/1386207324666210813114829

Price: $65

Abstract

Background: Developing the high-efficiency and low-risk small-molecule greenfungicide is the key to effective control of the plant pathogenic oomycetes. Essential oils play a very important role in novel fungicide discovery for their unique sources and potential target sites. Eugenol, a kind of plant essential oil, was mainly isolated from the unopened and dried flower buds of Syzygium aromaticum of the Myrtaceae family. Due to its unique structural skeleton, eugenol and its derivatives have exhibited a wide range of biological activities. However, a study on the synthesis of novel 1-sulfonyloxy/acyloxyeugenol derivatives as fungicidal agents against Phytophthora capsici has not yet been reported.

Methods: Twenty-six novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) were prepared and their structures were well characterized by 1H NMR, HRMS, and m.p. Their fungicidal activity was evaluated against P. capsici by using the mycelial growth rate method.

Results: To find novel natural-product-based fungicidal agents to control the plant pathogenic oomycetes, we herein designed and synthesized two series of novel 1-sulfonyloxy/acyloxyeugenol derivatives (3a-p and 5a-j) as fungicidal agents against P. capsici Leonian, in vitro. Results of fungicidal activity revealed that, among all compounds, especially compounds 3a, 3f, and 3n displayed the most potent anti-oomycete activity against P. capsici with EC50 values of 79.05, 75.05, and 70.80, respectively.

Conclusion: The results revealed that the anti-oomycete activity of eugenol with the sulfonyloxy group was higher than that with the acyloxy group. It is suggested that the fungicidal activity of eugenol can be improved by introducing the sulfonyloxy group. This will pave the way for further design, structural modification, and development of eugenol derivatives as fungicidal agents.

Keywords: Natural bioresource, eugenol, 1-sulfonyloxy/acyloxy, Phytophthora capsici, fungicidal activity, botanical fungicides.

Graphical Abstract

[1]
Lamour, K.H.; Stam, R.; Jupe, J.; Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol., 2012, 13(4), 329-337.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00754.x] [PMID: 22013895]
[2]
Gevens, A.J.; Donahoo, R.S.; Lamour, K.H.; Hausbeck, M.K. Characterization of Phytophthora capsici causing foliar and pod blight of snap bean in Michigan. Plant Dis., 2008, 92(2), 201-209.
[http://dx.doi.org/10.1094/PDIS-92-2-0201] [PMID: 30769389]
[3]
Meitz, J.C.; Linde, C.C.; Thompson, A.; Langenhoven, S.; McLeod, A. Phytophthora capsici on vegetable hosts in South Africa: Distribution, host range and genetic diversity. Australas. Plant Pathol., 2010, 39, 431-439.
[http://dx.doi.org/10.1071/AP09075]
[4]
Lamour, K.H.; Hausbeck, M.K. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology, 2001, 91(6), 553-557.
[http://dx.doi.org/10.1094/PHYTO.2001.91.6.553] [PMID: 18943943]
[5]
Gobena, D.; Roig, J.; Galmarini, C.; Hulvey, J.; Lamour, K. Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia, 2012, 104(1), 102-107.
[http://dx.doi.org/10.3852/11-147] [PMID: 21933926]
[6]
Hurtado-Gonzáles, O.; Aragon-Caballero, L.; Apaza-Tapia, W.; Donahoo, R.; Lamour, K. Survival and spread of Phytophthora capsici in Coastal Peru. Phytopathology, 2008, 98(6), 688-694.
[http://dx.doi.org/10.1094/PHYTO-98-6-0688] [PMID: 18944293]
[7]
Liu, S.M.; Che, Z.P.; Chen, G.Q. Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Prot., 2016, 84, 56-61.
[http://dx.doi.org/10.1016/j.cropro.2016.02.012]
[8]
Tian, Y.E.; Che, Z.P.; Sun, D.; He, J.X.; Lin, X.M.; Liu, S.M. In vitro effects of five different classes of fungicides on growth and development of Botrytis cinerea isolated from tree peony in China. HortScience, 2019, 54, 1984-1988.
[http://dx.doi.org/10.21273/HORTSCI14431-19]
[9]
Tian, Y.E.; Che, Z.P.; Sun, D.; Yang, Y.Y.; Lin, X.M.; Liu, S.M.; Liu, X.Y.; Gao, J. Resistance identification of tree peony varieties of different flowering time to gray mold pathogen Botrytis cinerea. HortScience, 2019, 54, 328-330.
[http://dx.doi.org/10.21273/HORTSCI13626-18]
[10]
Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci., 2007, 63(6), 524-554.
[http://dx.doi.org/10.1002/ps.1378] [PMID: 17487882]
[11]
Bolzani Vanderlan da. S.; Davies-Coleman, M.; Newman David, J.; Singh Sheo, B.; Gordon, M. Cragg A man for all natural products. J. Nat. Prod., 2012, 75, 309-310.
[http://dx.doi.org/10.1021/np201003c]
[12]
Che, Z.P.; Yu, X.; Zhi, X.Y.; Fan, L.L.; Yao, X.J.; Xu, H. Synthesis of novel 4α-(acyloxy)-2ʹ(2ʹ6ʹ)-(di)halogenopodophyllotoxin derivatives as insecticidal agents. J. Agric. Food Chem., 2013, 61, 8148-8155.
[http://dx.doi.org/10.1021/jf4025079] [PMID: 23915199]
[13]
Regnault-Roger, C.; Hamraoui, A.; Holeman, M.; Theron, E.; Pinel, R. Insecticidal effect of essential oils from mediterranean plants upon Acanthoscelides Obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J. Chem. Ecol., 1993, 19(6), 1233-1244.
[http://dx.doi.org/10.1007/BF00987383] [PMID: 24249140]
[14]
Chen, J.; Li, Q.X.; Song, B. Chemical nematicides: Recent research progress and outlook. J. Agric. Food Chem., 2020, 68(44), 12175-12188.
[http://dx.doi.org/10.1021/acs.jafc.0c02871] [PMID: 33079521]
[15]
Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol., 2010, 130(1), 107-115.
[http://dx.doi.org/10.1016/j.jep.2010.04.025] [PMID: 20435121]
[16]
Packiavathy, I.A.S.V.; Agilandeswari, P.; Musthafa, K.S.; Pandian, S.K.; Ravi, A.V. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against gram negative bacterial pathogens. Food Res. Int., 2012, 45, 85-92.
[http://dx.doi.org/10.1016/j.foodres.2011.10.022]
[17]
Azevedo-Barbosa, H.; do Vale, B.P.; Guidolin Rossi, G.; Dos Santos Siqueira, F.; Bordignon Guterres, K.; de Campos, M.M.A.; Dos Santos, T.; Anthony Hawkes, J.; Ferreira Dias, D.; Neiva Lavorato, S.; de Souza, T.B.; Teixeira Carvalho, D. Design, synthesis, antimicrobial evaluation and in silico studies of eugenol-sulfonamide hybrids. Chem. Biodivers., 2021, 18(5)e2100066
[http://dx.doi.org/10.1002/cbdv.202100066] [PMID: 33829648]
[18]
Genç Bilgiçli, H.; Kestane, A.; Taslimi, P.; Karabay, O.; Bytyqi-Damoni, A.; Zengin, M. Gulçin, İ. Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorg. Chem., 2019, 88102931
[http://dx.doi.org/10.1016/j.bioorg.2019.102931] [PMID: 31015178]
[19]
Gülçin, İ. Antioxidant activity of eugenol: a structure-activity relationship study. J. Med. Food, 2011, 14(9), 975-985.
[http://dx.doi.org/10.1089/jmf.2010.0197] [PMID: 21554120]
[20]
Govindarajan, M.; Rajeswary, M.; Hoti, S.L.; Bhattacharyya, A.; Benelli, G. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol. Res., 2016, 115(2), 807-815.
[http://dx.doi.org/10.1007/s00436-015-4809-0] [PMID: 26518773]
[21]
Fernandes, M.J.G.; Pereira, R.B.; Pereira, D.M.; Fortes, A.G.; Castanheira, E.M.S.; Gonçalves, M.S.T. New eugenol derivatives with enhanced insecticidal activity. Int. J. Mol. Sci., 2020, 21(23), 9257.
[http://dx.doi.org/10.3390/ijms21239257] [PMID: 33291666]
[22]
Zhao, Y.; Wang, Q.; Wu, X.; Jiang, M.; Jin, H.; Tao, K.; Hou, T. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest Manag. Sci., 2021, 77(7), 3469-3483.
[http://dx.doi.org/10.1002/ps.6400] [PMID: 33826225]
[23]
Tian, Y.E.; Sun, D.; Yang, J.M.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis of sulfonate derivatives of maltol and their biological activity against Phytophthora capsici and Bursaphelenchus xylophilus in vitro. J. Asian Nat. Prod. Res., 2020, 22(6), 578-587.
[http://dx.doi.org/10.1080/10286020.2019.1608958] [PMID: 31046458]
[24]
Tian, Y.E.; Sun, D.; Han, X.X.; Yang, J.M.; Zhang, S.; Feng, N.N.; Zhu, L.N.; Xu, Z.Y.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis, anti-oomycete activity, and SAR studies of paeonol derivatives. J. Asian Nat. Prod. Res., 2021, 23(2), 138-149.
[http://dx.doi.org/10.1080/10286020.2020.1718116] [PMID: 32009450]
[25]
Chen, G.Q.; Sun, D.; Yang, J.M.; Zhang, S.; Tian, Y.E.; Che, Z.P.; Liu, S.M.; Jiang, J.; Lin, X.M. Synthesis of sulfonate derivatives of carvacrol and thymol as anti-oomycetes agents. J. Asian Nat. Prod. Res., 2021, 23(7), 692-702.
[http://dx.doi.org/10.1080/10286020.2020.1758675] [PMID: 32406756]
[26]
Tharamak, S.; Yooboon, T.; Pengsook, A.; Ratwatthananon, A.; Kumrungsee, N.; Bullangpoti, V.; Pluempanupat, W. Synthesis of thymyl esters and their insecticidal activity against Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci., 2020, 76(3), 928-935.
[http://dx.doi.org/10.1002/ps.5598] [PMID: 31452327]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy