Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Pulmonary Delivery of Docetaxel and Celecoxib by PLGA Porous Microparticles for Their Synergistic Effects Against Lung Cancer

Author(s): Elham Ziaei, Jaber Emami*, Mahboubeh Rezazadeh and Moloud Kazemi

Volume 22, Issue 5, 2022

Published on: 11 August, 2021

Page: [951 - 967] Pages: 17

DOI: 10.2174/1871520621666210811111152

Price: $65

conference banner
Abstract

Background: Using a combination of chemotherapeutic agents with novel drug delivery platforms to enhance the anticancer efficacy of the drug and minimizing the side effects, is imperative to lung cancer treatments.

Objective: The aim of the present study was to develop, characterize, and optimize porous poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles for simultaneous delivery of docetaxel (DTX) and celecoxib (CXB) through the pulmonary route for lung cancer.

Methods: Drug-loaded porous microparticles were prepared by an emulsion solvent evaporation method. The impact of various processing and formulation variables including PLGA amount, dichloromethane volume, homogenization speed, polyvinyl alcohol volume, and concentration, was assessed based on entrapment efficiency, mean release time, particle size, mass median aerodynamic diameter, fine particle fraction, and geometric standard deviation using a twolevel factorial design. An optimized formulation was prepared and evaluated in terms of size and morphology using a scanning electron microscope.

Results: FTIR, DSC, and XRD analyses confirmed drug entrapment and revealed no drug-polymer chemical interaction. Cytotoxicity of DTX along with CXB against A549 cells was significantly enhanced compared to DTX and CXB alone and the combination of DTX and CXB showed the greatest synergistic effect at a 1/500 ratio.

Conclusion: In conclusion, the results of the present study suggest that encapsulation of DTX and CXB in porous PLGA microspheres with desirable features is feasible and their pulmonary co-administration would be a promising strategy for the effective and less toxic treatment of various lung cancers.

Keywords: Celecoxib, docetaxel, lung cancer, PLGA, porous microparticle, pulmonary delivery.

Graphical Abstract

[1]
Huang, C-Y.; Ju, D-T.; Chang, C-F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[2]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[3]
He, Z.; Huang, J.; Xu, Y.; Zhang, X.; Teng, Y.; Huang, C.; Wu, Y.; Zhang, X.; Zhang, H.; Sun, W. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget, 2015, 6(39), 42150-42168.
[http://dx.doi.org/10.18632/oncotarget.6243] [PMID: 26517524]
[4]
Shaik, M.S.; Chatterjee, A.; Jackson, T.; Singh, M. Enhancement of antitumor activity of docetaxel by celecoxib in lung tumors. Int. J. Cancer, 2006, 118(2), 396-404.
[http://dx.doi.org/10.1002/ijc.21325] [PMID: 16052515]
[5]
Patel, A.R.; Chougule, M.B. i, T.; Patlolla, R.; Wang, G.; Singh, M. Efficacy of aerosolized celecoxib encapsulated nanostructured lipid carrier in non-small cell lung cancer in combination with docetaxel. Pharm. Res., 2013, 30(5), 1435-1446.
[http://dx.doi.org/10.1007/s11095-013-0984-9] [PMID: 23361589]
[6]
Georgoulias, V. Docetaxel (taxotere) in the treatment of non-small cell lung cancer. Curr. Med. Chem., 2002, 9(8), 869-877.
[http://dx.doi.org/10.2174/0929867024606812] [PMID: 11966449]
[7]
Manegold, C. Docetaxel (Taxotere) as first-line therapy of advanced non-small cell lung cancer (NSCLC). Onkologie, 2003, 26(Suppl. 7), 26-32.
[PMID: 14716139]
[8]
Kazemi, M.; Emami, J.; Hasanzadeh, F.; Minaiyan, M.; Mirian, M.; Lavasanifar, A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: synthesis, characterization and pharmacokinetic study. Int. J. Polym. Mater., 2021, 70(14), 1012-1026.
[http://dx.doi.org/10.1080/00914037.2020.1776282]
[9]
Whitehead, C.M.; Earle, K.A.; Fetter, J.; Xu, S.; Hartman, T.; Chan, D.C.; Zhao, T.L.; Piazza, G.; Klein-Szanto, A.J.; Pamukcu, R.; Alila, H.; Bunn, P.A., Jr; Thompson, W.J. Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Mol. Cancer Ther., 2003, 2(5), 479-488.
[PMID: 12748310]
[10]
Zhao, M.; Su, M.; Lin, X.; Luo, Y.; He, H.; Cai, C.; Tang, X. Evaluation of docetaxel-loaded intravenous lipid emulsion: pharmacokinetics, tissue distribution, antitumor activity, safety and toxicity. Pharm. Res., 2010, 27(8), 1687-1702.
[http://dx.doi.org/10.1007/s11095-010-0180-0] [PMID: 20552255]
[11]
Liu, M.; Li, C-M.; Chen, Z-F.; Ji, R.; Guo, Q-H.; Li, Q.; Zhang, H-L.; Zhou, Y-N. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int. J. Mol. Med., 2014, 33(6), 1451-1458.
[http://dx.doi.org/10.3892/ijmm.2014.1713] [PMID: 24676394]
[12]
Müller-Decker, K.; Fürstenberger, G. The cyclooxygenase-2-mediated prostaglandin signaling is causally related to epithelial carcinogenesis. Mol. Carcinog., 2007, 46(8), 705-710.
[http://dx.doi.org/10.1002/mc.20326] [PMID: 17546626]
[13]
Li, N.; Li, H.; Su, F.; Li, J.; Ma, X.; Gong, P. Relationship between epidermal growth factor receptor (EGFR) mutation and serum cyclooxygenase-2 Level, and the synergistic effect of celecoxib and gefitinib on EGFR expression in non-small cell lung cancer cells. Int. J. Clin. Exp. Pathol., 2015, 8(8), 9010-9020.
[PMID: 26464643]
[14]
Jendrossek, V. Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett., 2013, 332(2), 313-324.
[http://dx.doi.org/10.1016/j.canlet.2011.01.012] [PMID: 21345578]
[15]
Mao, J.T.; Roth, M.D.; Fishbein, M.C.; Aberle, D.R.; Zhang, Z-F.; Rao, J.Y.; Tashkin, D.P.; Goodglick, L.; Holmes, E.C.; Cameron, R.B.; Dubinett, S.M.; Elashoff, R.; Szabo, E.; Elashoff, D. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res. (Phila.), 2011, 4(7), 984-993.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0078] [PMID: 21733822]
[16]
Gong, L.; Thorn, C.F.; Bertagnolli, M.M.; Grosser, T.; Altman, R.B.; Klein, T.E. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics, 2012, 22(4), 310-318.
[http://dx.doi.org/10.1097/FPC.0b013e32834f94cb] [PMID: 22336956]
[17]
Zweifel, B.S.; Davis, T.W.; Ornberg, R.L.; Masferrer, J.L. Direct evidence for a role of cyclooxygenase 2-derived prostaglandin E2 in human head and neck xenograft tumors. Cancer Res., 2002, 62(22), 6706-6711.
[PMID: 12438270]
[18]
Kang, H-K.; Lee, E.; Pyo, H.; Lim, S-J. Cyclooxygenase-independent down-regulation of multidrug resistance-associated protein-1 expression by celecoxib in human lung cancer cells. Mol. Cancer Ther., 2005, 4(9), 1358-1363.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0139] [PMID: 16170027]
[19]
Song, X.; Zhao, Y.; Wu, W.; Bi, Y.; Cai, Z.; Chen, Q.; Li, Y.; Hou, S. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int. J. Pharm., 2008, 350(1-2), 320-329.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.034] [PMID: 17913411]
[20]
Liu, C-H.; Bao, H-G.; Ge, Y-L.; Wang, S-K.; Shen, Y.; Xu, L. Celecoxib inhibits insulin-like growth factor 1 induced growth and invasion in non-small cell lung cancer. Oncol. Lett., 2013, 5(6), 1943-1947.
[http://dx.doi.org/10.3892/ol.2013.1277] [PMID: 23833672]
[21]
Masferrer, J.L.; Leahy, K.M.; Koki, A.T.; Zweifel, B.S.; Settle, S.L.; Woerner, B.M.; Edwards, D.A.; Flickinger, A.G.; Moore, R.J.; Seibert, K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res., 2000, 60(5), 1306-1311.
[PMID: 10728691]
[22]
Fulzele, S.V.; Chatterjee, A.; Shaik, M.S.; Jackson, T.; Singh, M. Inhalation delivery and anti-tumor activity of celecoxib in human orthotopic non-small cell lung cancer xenograft model. Pharm. Res., 2006, 23(9), 2094-2106.
[http://dx.doi.org/10.1007/s11095-006-9074-6] [PMID: 16902813]
[23]
Haynes, A.; Shaik, M.S.; Chatterjee, A.; Singh, M. Formulation and evaluation of aerosolized celecoxib for the treatment of lung cancer. Pharm. Res., 2005, 22(3), 427-439.
[http://dx.doi.org/10.1007/s11095-004-1881-z] [PMID: 15835749]
[24]
Tseng, C-L.; Su, W-Y.; Yen, K-C.; Yang, K-C.; Lin, F-H. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials, 2009, 30(20), 3476-3485.
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.010] [PMID: 19345990]
[25]
Meng, X.; Frey, K.; Matuszak, M.; Paul, S.; Ten Haken, R.; Yu, J.; Kong, F-M.S. Changes in functional lung regions during the course of radiation therapy and their potential impact on lung dosimetry for non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2014, 89(1), 145-151.
[http://dx.doi.org/10.1016/j.ijrobp.2014.01.044] [PMID: 24725697]
[26]
Taratula, O.; Kuzmov, A.; Shah, M.; Garbuzenko, O.B.; Minko, T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release, 2013, 171(3), 349-357.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.018] [PMID: 23648833]
[27]
Al-Qadi, S.; Grenha, A.; Remuñán-López, C. Microspheres loaded with polysaccharide nanoparticles for pulmonary delivery: Preparation, structure and surface analysis. Carbohydr. Polym., 2011, 86(1), 25-34.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.022]
[28]
Beck-Broichsitter, M.; Merkel, O.M.; Kissel, T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J. Control. Release, 2012, 161(2), 214-224.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.004] [PMID: 22192571]
[29]
Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur. J. Pharm. Biopharm., 2016, 103, 1-12.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.025] [PMID: 27020529]
[30]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[31]
Ibrahim, M.; Verma, R.; Garcia-Contreras, L. Inhalation drug delivery devices: technology update. Med. Devices (Auckl.), 2015, 8, 131-139.
[PMID: 25709510]
[32]
Walker, J.E., Jr; Odden, A.R.; Jeyaseelan, S.; Zhang, P.; Bagby, G.J.; Nelson, S.; Happel, K.I. Ethanol exposure impairs LPS-induced pulmonary LIX expression: alveolar epithelial cell dysfunction as a consequence of acute intoxication. Alcohol. Clin. Exp. Res., 2009, 33(2), 357-365.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00844.x] [PMID: 19053978]
[33]
Lee, W-H.; Loo, C-Y.; Traini, D.; Young, P.M. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci, 2015, 10(6), 481-489.
[http://dx.doi.org/10.1016/j.ajps.2015.08.009]
[34]
Yang, Y.; Bajaj, N.; Xu, P.; Ohn, K.; Tsifansky, M.D.; Yeo, Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials, 2009, 30(10), 1947-1953.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.044] [PMID: 19135245]
[35]
Islam, N.; Gladki, E. Dry powder inhalers (DPIs)--a review of device reliability and innovation. Int. J. Pharm., 2008, 360(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.044] [PMID: 18583072]
[36]
Meenach, S.A.; Anderson, K.W.; Zach Hilt, J.; McGarry, R.C.; Mansour, H.M. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer. Eur. J. Pharm. Sci., 2013, 49(4), 699-711.
[http://dx.doi.org/10.1016/j.ejps.2013.05.012] [PMID: 23707466]
[37]
Liu, Q.; Guan, J.; Qin, L.; Zhang, X.; Mao, S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today, 2020, 25(1), 150-159.
[http://dx.doi.org/10.1016/j.drudis.2019.09.023] [PMID: 31600580]
[38]
Loira-Pastoriza, C.; Todoroff, J.; Vanbever, R. Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev., 2014, 75, 81-91.
[http://dx.doi.org/10.1016/j.addr.2014.05.017] [PMID: 24915637]
[39]
Edwards, D.A.; Hanes, J.; Caponetti, G.; Hrkach, J.; Ben-Jebria, A.; Eskew, M.L.; Mintzes, J.; Deaver, D.; Lotan, N.; Langer, R. Large porous particles for pulmonary drug delivery. Science, 1997, 276(5320), 1868-1871.
[http://dx.doi.org/10.1126/science.276.5320.1868] [PMID: 9188534]
[40]
Healy, A.M.; Amaro, M.I.; Paluch, K.J.; Tajber, L. Dry powders for oral inhalation free of lactose carrier particles. Adv. Drug Deliv. Rev., 2014, 75, 32-52.
[http://dx.doi.org/10.1016/j.addr.2014.04.005] [PMID: 24735676]
[41]
Patlolla, R.R.; Chougule, M.; Patel, A.R.; Jackson, T.; Tata, P.N.V.; Singh, M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J. Control. Release, 2010, 144(2), 233-241.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.006] [PMID: 20153385]
[42]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[43]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[44]
Edwards, D.A.; Ben-Jebria, A.; Langer, R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol (1985), 1998, 85(2), 379-385.
[http://dx.doi.org/10.1152/jappl.1998.85.2.379] [PMID: 9688708]
[45]
Garcia-Contreras, L.; Fiegel, J.; Telko, M.J.; Elbert, K.; Hawi, A.; Thomas, M.; VerBerkmoes, J.; Germishuizen, W.A.; Fourie, P.B.; Hickey, A.J.; Edwards, D. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob. Agents Chemother., 2007, 51(8), 2830-2836.
[http://dx.doi.org/10.1128/AAC.01164-06] [PMID: 17517845]
[46]
N’Guessan, A.; Fattal, E.; Chapron, D.; Gueutin, C.; Koffi, A.; Tsapis, N. Dexamethasone palmitate large porous particles: A controlled release formulation for lung delivery of corticosteroids. Eur. J. Pharm. Sci., 2018, 113, 185-192.
[http://dx.doi.org/10.1016/j.ejps.2017.09.013] [PMID: 28890202]
[47]
Ungaro, F.; d’Emmanuele di Villa Bianca, R.; Giovino, C.; Miro, A.; Sorrentino, R.; Quaglia, F.; La Rotonda, M.I. Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J. Control. Release, 2009, 135(1), 25-34.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.011] [PMID: 19154761]
[48]
Zhu, L.; Li, M.; Liu, X.; Du, L.; Jin, Y. Inhalable oridonin-loaded poly(lactic-co-glycolic)acid large porous microparticles for in situ treatment of primary non-small cell lung cancer. Acta Pharm. Sin. B, 2017, 7(1), 80-90.
[http://dx.doi.org/10.1016/j.apsb.2016.09.006] [PMID: 28119812]
[49]
Kim, T.K.; Yoon, J.J.; Lee, D.S.; Park, T.G. Gas foamed open porous biodegradable polymeric microspheres. Biomaterials, 2006, 27(2), 152-159.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.081] [PMID: 16023197]
[50]
Kazemi, M.; Emami, J.; Hasanzadeh, F.; Minaiyan, M.; Mirian, M.; Lavasanifar, A. Development of a RP-HPLC method for analysis of docetaxel in tumor-bearing mice plasma and tissues following injection of docetaxel-loaded pH responsive targeting polymeric micelles. Res. Pharm. Sci., 2020, 15(1), 1-13.
[http://dx.doi.org/10.4103/1735-5362.278710] [PMID: 32180812]
[51]
Ziaei, E.; Emami, J.; Kazemi, M.; Rezazadeh, M. Simultaneous determination of docetaxel and celecoxib in porous microparticles and rat plasma by liquid-liquid extraction and HPLC with UV detection: In vitro and in vivo validation and application. J. Pharm. Pharm. Sci., 2020, 23, 289-303.
[http://dx.doi.org/10.18433/jpps30912] [PMID: 32762829]
[52]
Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res. Pharm. Sci., 2015, 10(1), 17-33.
[PMID: 26430454]
[53]
Chaurasiya, B.; Zhao, Y.Y. Dry powder for pulmonary delivery: A comprehensive review. Pharmaceutics, 2020, 13(1)E31
[http://dx.doi.org/10.3390/pharmaceutics13010031] [PMID: 33379136]
[54]
Laube, B.L.; Janssens, H.M.; de Jongh, F.H.; Devadason, S.G.; Dhand, R.; Diot, P.; Everard, M.L.; Horvath, I.; Navalesi, P.; Voshaar, T.; Chrystyn, H. What the pulmonary specialist should know about the new inhalation therapies. Eur. Respir. J., 2011, 37(6), 1308-1331.
[http://dx.doi.org/10.1183/09031936.00166410] [PMID: 21310878]
[55]
Feng, T.; Tian, H.; Xu, C.; Lin, L.; Xie, Z.; Lam, M.H-W.; Liang, H.; Chen, X. Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. Eur. J. Pharm. Biopharm., 2014, 88(3), 1086-1093.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.012] [PMID: 25305583]
[56]
Chou, T-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 2006, 58(3), 621-681.
[http://dx.doi.org/10.1124/pr.58.3.10] [PMID: 16968952]
[57]
Taghipour, B.; Yakhchali, M.; Haririan, I.; Tamaddon, A.M.; Samani, S.M. The effects of technical and compositional variables on the size and release profile of bovine serum albumin from PLGA based particulate systems. Res. Pharm. Sci., 2014, 9(6), 407-420.
[PMID: 26339256]
[58]
Feczkó, T.; Tóth, J.; Dósa, G.; Gyenis, J. Influence of process conditions on the mean size of PLGA nanoparticles. Chem. Eng. Process., 2011, 50(8), 846-853.
[http://dx.doi.org/10.1016/j.cep.2011.05.006]
[59]
Budhian, A.; Siegel, S.J.; Winey, K.I. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int. J. Pharm., 2007, 336(2), 367-375.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.061] [PMID: 17207944]
[60]
Wu, T-H.; Yen, F-L.; Lin, L-T.; Tsai, T-R.; Lin, C-C.; Cham, T-M. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int. J. Pharm., 2008, 346(1-2), 160-168.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.036] [PMID: 17689897]
[61]
Chaisri, W.; Hennink, W.E.; Okonogi, S. Preparation and characterization of cephalexin loaded PLGA microspheres. Curr. Drug Deliv., 2009, 6(1), 69-75.
[http://dx.doi.org/10.2174/156720109787048186] [PMID: 19418958]
[62]
Mainardes, R.M.; Evangelista, R.C. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int. J. Pharm., 2005, 290(1-2), 137-144.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.027] [PMID: 15664139]
[63]
Mulia, K.; Safiera, A.; Pane, I.; Krisanti, E. Effect of high speed homogenizer speed on particle size of polylactic acid. J. Phys., 2019, 1198062006.
[64]
Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci, 2016, 11(3), 404-416.
[http://dx.doi.org/10.1016/j.ajps.2015.09.004]
[65]
Hickey, A.J.; Edwards, D.A. Density and shape factor terms in stokes’ equation for aerodynamic behavior of aerosols. J. Pharm. Sci., 2018, 107(3), 794-796.
[http://dx.doi.org/10.1016/j.xphs.2017.11.005] [PMID: 29154770]
[66]
Amoyav, B.; Benny, O. Microfluidic based fabrication and characterization of highly porous polymeric microspheres. Polymers (Basel), 2019, 11(3), 419.
[http://dx.doi.org/10.3390/polym11030419] [PMID: 30960403]
[67]
Rawat, A.; Majumder, Q.H.; Ahsan, F. Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation. J. Control. Release, 2008, 128(3), 224-232.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.013] [PMID: 18471921]
[68]
Ohar, J.A.; Bauer, A.; Sharma, S.; Sanjar, S. In vitro effect of different airflow rates on the aerosol properties of nebulized glycopyrrolate in the eFlow® closed system and tiotropium delivered in the HandiHaler. Pulm. Ther., 2020.
[69]
Huang, W.; Zhang, C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol. J., 2018, 13(1)
[http://dx.doi.org/10.1002/biot.201700203] [PMID: 28941234]
[70]
Budhian, A.; Siegel, S.J.; Winey, K.I. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J. Microencapsul., 2005, 22(7), 773-785.
[http://dx.doi.org/10.1080/02652040500273753] [PMID: 16421087]
[71]
Tefas, L.R.; Tomuţă, I.; Achim, M.; Vlase, L. Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design. Clujul Med., 2015, 88(2), 214-223.
[PMID: 26528074]
[72]
Choi, Y-S.; Joo, J-R.; Hong, A.; Park, J-S. Development of drug-loaded plga microparticles with different release patterns for prolonged drug delivery. B Korean Chem Soc., 2011, 32.
[73]
Song, X.; Zhao, Y.; Hou, S.; Xu, F.; Zhao, R.; He, J.; Cai, Z.; Li, Y.; Chen, Q. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur. J. Pharm. Biopharm., 2008, 69(2), 445-453.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.013] [PMID: 18374554]
[74]
Görner, T.; Gref, R.; Michenot, D.; Sommer, F.; Tran, M.N.; Dellacherie, E. Lidocaine-loaded biodegradable nanospheres. I. Optimization Of the drug incorporation into the polymer matrix. J. Control. Release, 1999, 57(3), 259-268.
[http://dx.doi.org/10.1016/S0168-3659(98)00121-7] [PMID: 9895413]
[75]
Yang, Q.; Owusu-Ababio, G. Biodegradable progesterone microsphere delivery system for osteoporosis therapy. Drug Dev. Ind. Pharm., 2000, 26(1), 61-70.
[http://dx.doi.org/10.1081/DDC-100100328] [PMID: 10677811]
[76]
Ray, S.; Mishra, A.; Mandal, T.K.; Sa, B.; Chakraborty, J. Optimization of the process parameters for the fabrication of a polymer coated layered double hydroxide-methotrexate nanohybrid for the possible treatment of osteosarcoma. RSC Advances, 2015, 5(124), 102574-102592.
[http://dx.doi.org/10.1039/C5RA15859A]
[77]
Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol. Sin., 2017, 38(6), 782-797.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[78]
Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-Based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front. Pharmacol., 2016, 7, 185.
[http://dx.doi.org/10.3389/fphar.2016.00185] [PMID: 27445821]
[79]
Kim, D-H.; Martin, D.C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials, 2006, 27(15), 3031-3037.
[http://dx.doi.org/10.1016/j.biomaterials.2005.12.021] [PMID: 16443270]
[80]
Mukherjee, B.; Santra, K.; Pattnaik, G.; Ghosh, S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int. J. Nanomedicine, 2008, 3(4), 487-496.
[http://dx.doi.org/10.2147/IJN.S3938] [PMID: 19337417]
[81]
Emami, J.; Pourmashhadi, A.; Sadeghi, H.; Varshosaz, J.; Hamishehkar, H. Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm. Dev. Technol., 2015, 20(7), 791-800.
[http://dx.doi.org/10.3109/10837450.2014.920360] [PMID: 24841045]
[82]
Budhian, A.; Siegel, S.J.; Winey, K.I. Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles. Int. J. Pharm., 2008, 346(1-2), 151-159.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.011] [PMID: 17681683]
[83]
Koushik, K.; Dhanda, D.S.; Cheruvu, N.P.; Kompella, U.B. Pulmonary delivery of deslorelin: large-porous PLGA particles and HPbetaCD complexes. Pharm. Res., 2004, 21(7), 1119-1126.
[http://dx.doi.org/10.1023/B:PHAM.0000032997.96823.88] [PMID: 15290850]
[84]
Sokol, M.B.; Nikolskaya, E.D.; Yabbarov, N.G.; Zenin, V.A.; Faustova, M.R.; Belov, A.V.; Zhunina, O.A.; Mollaev, M.D.; Zabolotsky, A.I.; Tereshchenko, O.G.; Severin, E.S. Development of novel PLGA nanoparticles with co-encapsulation of docetaxel and abiraterone acetate for a highly efficient delivery into tumor cells. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(4), 1150-1158.
[http://dx.doi.org/10.1002/jbm.b.34208] [PMID: 30281905]
[85]
Jafarbeglou, M.; Abdouss, M. Fabricating hybrid microsphere substrate based PLGA-CNT with in situ drug release: Characterization and in vitro evaluation. ChemistrySelect, 2019, 4(7), 2095-2100.
[http://dx.doi.org/10.1002/slct.201803326]
[86]
Ngo, A.N.; Thomas, D.; Murowchick, J.; Ayon, N.J.; Jaiswal, A.; Youan, B.C. Engineering fast dissolving sodium acetate mediated crystalline solid dispersion of docetaxel. Int. J. Pharm., 2018, 545(1-2), 329-341.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.045] [PMID: 29689368]
[87]
McCarron, P.A.; Donnelly, R.F.; Marouf, W. Celecoxib-loaded poly(D,L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. J. Microencapsul., 2006, 23(5), 480-498.
[http://dx.doi.org/10.1080/02652040600682390] [PMID: 16980271]
[88]
Chen, Y.; Chen, C.; Zheng, J.; Chen, Z.; Shi, Q.; Liu, H. Development of a solid supersaturatable self-emulsifying drug delivery system of docetaxel with improved dissolution and bioavailability. Biol. Pharm. Bull., 2011, 34(2), 278-286.
[http://dx.doi.org/10.1248/bpb.34.278] [PMID: 21415541]
[89]
Xu, Z.; Zhang, Y.; Hu, Q.; Tang, Q.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery. Mater. Sci. Eng. C, 2017, 71, 965-972.
[http://dx.doi.org/10.1016/j.msec.2016.11.005] [PMID: 27987795]
[90]
Mainardes, R.M.; Gremião, M.P.D.; Evangelista, R.C. Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. Rev. Bras. Cienc, 2006, 42(4), 523-530.
[http://dx.doi.org/10.1590/S1516-93322006000400007]
[91]
Cannavà, C.; Tommasini, S.; Stancanelli, R.; Cardile, V.; Cilurzo, F.; Giannone, I.; Puglisi, G.; Ventura, C.A. Celecoxib-loaded PLGA/cyclodextrin microspheres: characterization and evaluation of anti-inflammatory activity on human chondrocyte cultures. Colloids Surf. B Biointerfaces, 2013, 111, 289-296.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.015] [PMID: 23838195]
[92]
Pawar, H.; Wankhade, S.R.; Yadav, D.K.; Suresh, S. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration. Pharm. Dev. Technol., 2016, 21(6), 725-736.
[http://dx.doi.org/10.3109/10837450.2015.1049706] [PMID: 26330159]
[93]
Jo, K.; Cho, J.M.; Lee, H.; Kim, E.K.; Kim, H.C.; Kim, H.; Lee, J. Enhancement of aqueous solubility and dissolution of celecoxib through phosphatidylcholine-based dispersion systems solidified with adsorbent carriers. Pharmaceutics, 2018, 11(1), 1.
[http://dx.doi.org/10.3390/pharmaceutics11010001] [PMID: 30577564]
[94]
Yewale, C.; Baradia, D.; Patil, S.; Bhatt, P.; Amrutiya, J.; Gandhi, R.; Kore, G.; Misra, A. Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. J. Drug Deliv. Sci. Technol., 2018, 45, 334-345.
[http://dx.doi.org/10.1016/j.jddst.2018.03.027]
[95]
Zvonar, A.; Kristl, J.; Kerc, J.; Grabnar, P.A. High celecoxib-loaded nanoparticles prepared by a vibrating nozzle device. J. Microencapsul., 2009, 26(8), 748-759.
[http://dx.doi.org/10.3109/02652040802584402] [PMID: 19888883]
[96]
Jain, S.; Spandana, G.; Agrawal, A.K.; Kushwah, V.; Thanki, K. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol. Pharm., 2015, 12(11), 3871-3884.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00281] [PMID: 26375023]
[97]
Chou, T-C. Preclinical versus clinical drug combination studies. Leuk. Lymphoma, 2008, 49(11), 2059-2080.
[http://dx.doi.org/10.1080/10428190802353591] [PMID: 19021049]
[98]
Ho, M.Y.; Mackey, J.R. Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Manag. Res., 2014, 6, 253-259.
[http://dx.doi.org/10.2147/CMAR.S40601] [PMID: 24904223]
[99]
Liu, Y.; Xie, S.; Zeng, J.; Song, X.; Tan, M.; He, D.; Wang, J.; Wang, P.; Zhu, J.; Wang, C. Adenylyl cyclase associated protein 1 targeted nanoparticles as a novel strategy for the treatment of metastatic non small cell lung cancer. Int. J. Oncol., 2019, 55(2), 462-472.
[http://dx.doi.org/10.3892/ijo.2019.4822] [PMID: 31173184]
[100]
Krucińska, I.; Żywicka, B.; Komisarczyk, A.; Szymonowicz, M.; Kowalska, S.; Zaczyńska, E.; Struszczyk, M.; Czarny, A.; Jadczyk, P.; Umińska-Wasiluk, B.; Rybak, Z.; Kowalczuk, M. Biological properties of low-toxicity PLGA and PLGA/PHB fibrous nanocomposite implants for osseous tissue regeneration. part I: Evaluation of potential biotoxicity. Molecules, 2017, 22(12), 2092.
[http://dx.doi.org/10.3390/molecules22122092] [PMID: 29186078]
[101]
Chronopoulou, L.; Massimi, M.; Giardi, M.F.; Cametti, C.; Devirgiliis, L.C.; Dentini, M.; Palocci, C. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surf. B Biointerfaces, 2013, 103, 310-317.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.063] [PMID: 23261553]
[102]
Haji Mansor, M.; Najberg, M.; Contini, A.; Alvarez-Lorenzo, C.; Garcion, E.; Jérôme, C.; Boury, F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur. J. Pharm. Biopharm., 2018, 125, 38-50.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.020] [PMID: 29325770]
[103]
Butoescu, N.; Seemayer, C.A.; Foti, M.; Jordan, O.; Doelker, E. Dexamethasone-containing PLGA superparamagnetic microparticles as carriers for the local treatment of arthritis. Biomaterials, 2009, 30(9), 1772-1780.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.017] [PMID: 19135244]
[104]
Dailey, L.A.; Schmehl, T.; Gessler, T.; Wittmar, M.; Grimminger, F.; Seeger, W.; Kissel, T. Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Control. Release, 2003, 86(1), 131-144.
[http://dx.doi.org/10.1016/S0168-3659(02)00370-X] [PMID: 12490379]
[105]
Ahlin, P.; Kristl, J.; Kristl, A.; Vrecer, F. Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. Int. J. Pharm., 2002, 239(1-2), 113-120.
[http://dx.doi.org/10.1016/S0378-5173(02)00076-5] [PMID: 12052696]
[106]
Horisawa, E.; Hirota, T.; Kawazoe, S.; Yamada, J.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm. Res., 2002, 19(4), 403-410.
[http://dx.doi.org/10.1023/A:1015123024113] [PMID: 12033371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy