Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

Antibody Fragment and Targeted Colorectal Cancer Therapy: A Global Systematic Review

Author(s): Sepideh Ghani, Niloofar Deravi, Marzieh Pirzadeh, Behnam Rafiee, Zahra Rezanejad Gatabi, Mojgan Bandehpour and Fatemeh Yarian*

Volume 23, Issue 8, 2022

Published on: 10 August, 2021

Page: [1061 - 1071] Pages: 11

DOI: 10.2174/1389201022666210810104226

Price: $65

Abstract

Background and Aims: Antibody-based therapeutics have been shown to be promising for the treatment of colorectal cancer patients. However, the size and long-circulating half-lives of antibodies can limit their reproducible manufacture in clinical studies. Consequently, in novel therapeutic approaches, conventional antibodies are minimized and engineered to produce fragments like Fab, scFv, nanobody, bifunctional antibody, bispecific antibody, minibody, and diabody to preserve their high affinity and specificity to target pharmaceutical nanoparticle conjugates. This systematic review for the first time aimed to elucidate the role of various antibody fragments in colorectal cancer treatment.

Methods: A systematic literature search in the web of sciences, PubMed, Scopus, Google Scholar, and ProQuest was conducted. Reference lists of the articles were reviewed to identify the relevant papers. The full-text search included articles published in English during 19902021.

Results: Most of the 53 included studies were conducted in vitro and in most conducted studies singlechain antibodies were among the most used antibody fragments. Most antibodies targeted CEA in the treatment of colorectal cancer. Moreover, a large number of studies observed apoptosis induction and tumor growth inhibition. In addition, few studies implicated the role of the innate immune system as an indirect mechanism of tumor growth by enhancing NK-cell killing.

Conclusion: Antibody-based therapy was demonstrated to be of great promise in the treatment of colorectal cancer rather than common treatments such as radiotherapy, chemotherapy, and surgical operations. This type of specified cancer treatment can also induce the activation of the innate and specific immune systems to eradicate tumor cells.

Keywords: Antibody fragments, colorectal cancer, targeting, nanomedicine, immune system, Fab, scFV.

Graphical Abstract

[1]
Françoso, A.; Simioni, P.U. Immunotherapy for the treatment of colorectal tumors: Focus on approved and in-clinical-trial monoclonal antibodies. Drug Des. Devel. Ther., 2017, 11, 177-184.
[http://dx.doi.org/10.2147/DDDT.S119036] [PMID: 28138221]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[4]
Deng, X.; Qiu, Q.; Yang, B.; Wang, X.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities. Eur. J. Med. Chem., 2015, 89, 540-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.072] [PMID: 25462264]
[5]
Xenaki, K.T.; Oliveira, S.; van Bergen, P.M.P. Front. Immunol., 2017, 8(1287)
[6]
Tomé-Amat, J.; Herrero-Galán, E.; Oñaderra, M.; Martínez-Del-Pozo, Á.; Gavilanes, J.G.; Lacadena, J. Preparation of an engineered safer immunotoxin against colon carcinoma based on the ribotoxin hirsutellin A. FEBS J., 2015, 282(11), 2131-2141.
[http://dx.doi.org/10.1111/febs.13262] [PMID: 25752204]
[7]
González, G.P.; García, I.G.; González, J.G.; Sánchez, L.P.; Mirabal, M.V.; Marín, C.C.; Ruiz, F.L.; Iglesias, E.G.; de Queralta, R.L.; Toirac, R.R.; Avila, M.A.; Díaz, A.L.; Saura, P.A.; Gavilondo, J.V.; González, J.P. Phase I clinical trial of the (131)I-labeled anticarcinoembryonic antigen CIGB-M3 multivalent antibody fragment. Cancer Biother. Radiopharm., 2011, 26(3), 353-363.
[http://dx.doi.org/10.1089/cbr.2010.0899] [PMID: 21711100]
[8]
Borek, A.; Sokolowska-Wedzina, A.; Chodaczek, G.; Otlewski, J. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers. PLoS One, 2018, 13(2), e0192194.
[http://dx.doi.org/10.1371/journal.pone.0192194] [PMID: 29420662]
[9]
Verhaar, M.J.; Chester, K.A.; Keep, P.A.; Robson, L.; Pedley, R.B.; Boden, J.A.; Hawkins, R.E.; Begent, R.H. A single chain Fv derived from a filamentous phage library has distinct tumor targeting advantages over one derived from a hybridoma. Int. J. Cancer, 1995, 61(4), 497-501.
[http://dx.doi.org/10.1002/ijc.2910610412] [PMID: 7759155]
[10]
Ghani, S.; Bahrami, S.; Rafiee, B.; Eyvazi, S.; Yarian, F.; Ahangarzadeh, S.; Khalili, S.; Shahzamani, K.; Jafarisani, M.; Bandehpour, M.; Kazemi, B. Recent developments in antibody derivatives against colorectal cancer; A review. Life Sci., 2021, 265, 118791.
[http://dx.doi.org/10.1016/j.lfs.2020.118791] [PMID: 33220288]
[11]
Cortez-Retamozo, V.; Backmann, N.; Senter, P.D.; Wernery, U.; De Baetselier, P.; Muyldermans, S.; Revets, H. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res., 2004, 64(8), 2853-2857.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3935] [PMID: 15087403]
[12]
Kim, S.J.; Park, Y.; Hong, H.J. Antibody engineering for the development of therapeutic antibodies. molecules & cells; springer science & business media BV 2005, 20(1), 17-29.
[13]
Bandehpour, M. In silico evaluation of the interactions among two selected single chain variable fragments (scFvs) and ESAT-6 antigen of Mycobacterium tuberculosis. J. Theor. Comput. Chem., 2017, 16(08), 1750069.
[http://dx.doi.org/10.1142/S0219633617500699]
[14]
Fazeli, M. Anti-Proliferative Effects of Human Anti-FZD7 Single Chain Antibodies on Colorectal Cancer Cells. Shiraz E Med. J., 2017, 18(3), e59936.
[http://dx.doi.org/10.5812/semj.45219]
[15]
Gautherot, E.; Le Doussal, J.M.; Bouhou, J.; Manetti, C.; Martin, M.; Rouvier, E.; Barbet, J. Delivery of therapeutic doses of radioiodine using bispecific antibody-targeted bivalent haptens. J. Nucl. Med., 1998, 39(11), 1937-1943.
[PMID: 9829586]
[16]
Speck, T.; Heidbuechel, J.P.W.; Veinalde, R.; Jaeger, D.; von Kalle, C.; Ball, C.R.; Ungerechts, G.; Engeland, C.E. Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin. Cancer Res., 2018, 24(9), 2128-2137.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2651] [PMID: 29437789]
[17]
Rashidi, S.K.; Mousavi Gargari, S.L.; Ebrahimizadeh, W. Targeting colorectal cancer cell lines using nanobodies; AgSK1as a Potential Target. Iranian J. Biotechnol., 2017, 15(2), 78-86.
[http://dx.doi.org/10.15171/ijb.1472] [PMID: 29845054]
[18]
Akamatsu, Y.; Murphy, J.C.; Nolan, K.F.; Thomas, P.; Kreitman, R.J.; Leung, S.O.; Junghans, R.P. A single-chain immunotoxin against carcinoembryonic antigen that suppresses growth of colorectal carcinoma cells. Clin. Cancer Res., 1998, 4(11), 2825-2832.
[PMID: 9829749]
[19]
Huang, Y.; Huang, Y.; He, J.; Wang, H.; Luo, Y.; Li, Y.; Liu, J.; Zhong, L.; Zhao, Y. PEGylated immunoliposome-loaded endoglin single-chain antibody enhances anti-tumor capacity of porcine α1,3GT gene. Biomaterials, 2019, 217, 119231.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119231] [PMID: 31254933]
[20]
Lei, G.; Xu, M.; Xu, Z.; Lu, C.; Tan, S. Combination of novel DR5 targeting agonistic scFv antibody TR2-3 with cisplatin shows enhanced synergistic antitumor activity in vitro and in vivo. Biomed. Pharmacother., 2018, 98, 271-279.
[http://dx.doi.org/10.1016/j.biopha.2017.12.033] [PMID: 29272788]
[21]
Marty, C.; Odermatt, B.; Schott, H.; Neri, D.; Ballmer-Hofer, K.; Klemenz, R.; Schwendener, R.A. Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br. J. Cancer, 2002, 87(1), 106-112.
[http://dx.doi.org/10.1038/sj.bjc.6600423] [PMID: 12085265]
[22]
Zhao, L.; Yang, Y.; Zhou, P.; Ma, H.; Zhao, X.; He, X.; Wang, T.; Zhang, J.; Liu, Y.; Zhang, T. Targeting CD133high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody. J. Immunother., 2015, 38(6), 217-228.
[http://dx.doi.org/10.1097/CJI.0000000000000086] [PMID: 26049545]
[23]
Schmohl, J.U.; Gleason, M.K.; Dougherty, P.R.; Miller, J.S.; Vallera, D.A. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target. Oncol., 2016, 11(3), 353-361.
[http://dx.doi.org/10.1007/s11523-015-0391-8] [PMID: 26566946]
[24]
Vallera, D.A.; Zhang, B.; Gleason, M.K.; Oh, S.; Weiner, L.M.; Kaufman, D.S.; McCullar, V.; Miller, J.S.; Verneris, M.R. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother. Radiopharm., 2013, 28(4), 274-282.
[http://dx.doi.org/10.1089/cbr.2012.1329] [PMID: 23611188]
[25]
Wu, Z.; Guo, H.F.; Xu, H.; Cheung, N.V. Development of a tetravalent anti-GPA33/anti-CD3 bispecific antibody for colorectal cancers. Mol. Cancer Ther., 2018, 17(10), 2164-2175.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0026] [PMID: 30082472]
[26]
Tomé-Amat, J.; Olombrada, M.; Ruiz-de-la-Herrán, J.; Pérez-Gómez, E.; Andradas, C.; Sánchez, C.; Martínez, L.; Martínez-Del-Pozo, Á.; Gavilanes, J.G.; Lacadena, J. Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. Springerplus, 2015, 4(1), 168.
[http://dx.doi.org/10.1186/s40064-015-0943-5] [PMID: 25883890]
[27]
Liu, F-R.; Bai, S.; Feng, Q.; Pan, X.Y.; Song, S.L.; Fang, H.; Cui, J.; Yang, J.L. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer, 2018, 18(1), 1087.
[http://dx.doi.org/10.1186/s12885-018-4989-y] [PMID: 30419845]
[28]
Hutt, M.; Marquardt, L.; Seifert, O.; Siegemund, M.; Müller, I.; Kulms, D.; Pfizenmaier, K.; Kontermann, R.E. Superior properties of Fc-comprising scTRAIL fusion proteins. Mol. Cancer Ther., 2017, 16(12), 2792-2802.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0551] [PMID: 28904131]
[29]
Pavlinkova, G.; Batra, S.K.; Colcher, D.; Booth, B.J.; Baranowska-Kortylewicz, J. Constructs of biotin mimetic peptide with CC49 single-chain Fv designed for tumor pretargeting. Peptides, 2003, 24(3), 353-362.
[http://dx.doi.org/10.1016/S0196-9781(03)00049-4] [PMID: 12732332]
[30]
Staneloudi, C.; Smith, K.A.; Hudson, R.; Malatesti, N.; Savoie, H.; Boyle, R.W.; Greenman, J. Development and characterization of novel photosensitizer: ScFv conjugates for use in photodynamic therapy of cancer. Immunology, 2007, 120(4), 512-517.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02522.x] [PMID: 17343613]
[31]
Du, P.; Wang, X.; Yin, T.; Zhang, X.; Zhang, Z.; Yu, W.; Wang, M.; Luo, C.; Yu, L. Anti-tumor effect of single-chain antibody to Reg3a in colorectal cancer. Exp. Cell Res., 2020, 396(1), 112278.
[http://dx.doi.org/10.1016/j.yexcr.2020.112278] [PMID: 32918897]
[32]
Huang, C. RGD4C peptide mediates anti-p21Ras scFv entry into tumor cells and produces an inhibitory effect on the human colon cancer cell line sw480. 2020.
[33]
Wei, D.; Tao, Z.; Shi, Q.; Wang, L.; Liu, L.; She, T.; Yi, Q.; Wen, X.; Liu, L.; Li, S.; Yang, H.; Jiang, X. Selective photokilling of colorectal tumors by near-infrared photoimmunotherapy with a gpa33-targeted single-chain antibody variable fragment conjugate. Mol. Pharm., 2020, 17(7), 2508-2517.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00210] [PMID: 32396000]
[34]
Panjideh, H.; Da Silva Coelho, V.C.; Dernedde, J.; Bachran, C.; Förster, G.J.; Franke, J.; Fasold, P.; Fuchs, H.; Thiel, E.; Deckert, P.M. Biodistribution and efficacy of [131I]A33scFv:CDy, a recombinant antibody-enzyme protein for colon cancer. Int. J. Oncol., 2008, 32(4), 925-930.
[PMID: 18360720]
[35]
Li, L.; Deng, L.; Meng, X.; Gu, C.; Meng, L.; Li, K.; Zhang, X.; Meng, Y.; Xu, W.; Zhao, L.; Chen, J.; Zhu, Z.; Huang, H. Tumor-targeting anti-EGFR x anti-PD1 bispecific antibody inhibits EGFR-overexpressing tumor growth by combining EGFR blockade and immune activation with direct tumor cell killing. Transl. Oncol., 2021, 14(1), 100916.
[http://dx.doi.org/10.1016/j.tranon.2020.100916] [PMID: 33129108]
[36]
Sureban, S.M.; Berahovich, R.; Zhou, H.; Xu, S.; Wu, L.; Ding, K.; May, R.; Qu, D.; Bannerman-Menson, E.; Golubovskaya, V.; Houchen, C.W. DCLK1 monoclonal antibody-based car-t cells as a novel treatment strategy against human colorectal cancers. Cancers (Basel), 2019, 12(1), 54.
[http://dx.doi.org/10.3390/cancers12010054] [PMID: 31878090]
[37]
Liang, G-Q.; Liu, J.; Zhou, X.X.; Lin, Z.X.; Chen, T.; Chen, G.; Wei, H. Anti-CXCR4 single-chain variable fragment antibodies have anti-tumor activity. Front. Oncol., 2020, 10, 571194.
[http://dx.doi.org/10.3389/fonc.2020.571194] [PMID: 33392074]
[38]
Hao, H.; Zhen, Y.; Wang, Z.; Chen, F.; Xie, X. A novel therapeutic drug for colon cancer: EpCAM scFv-truncated protamine (tp)-siRNA. Cell Biol. Int., 2013, 37(8), 860-864.
[http://dx.doi.org/10.1002/cbin.10112] [PMID: 23576466]
[39]
Lee, J.H. Expression, function, and glycosylation of anti-colorectal cancer large single-chain antibody (LSC) in plant. Plant Biotechnol. Rep., 2020, •••, 1-9.
[http://dx.doi.org/10.1007/s11816-020-00610-z]
[40]
Karacay, H.; McBride, W.J.; Griffiths, G.L.; Sharkey, R.M.; Barbet, J.; Hansen, H.J.; Goldenberg, D.M. Experimental pretargeting studies of cancer with a humanized anti-CEA x murine anti-[In-DTPA] bispecific antibody construct and a (99m)Tc-/(188)Re-labeled peptide. Bioconjug. Chem., 2000, 11(6), 842-854.
[http://dx.doi.org/10.1021/bc0000379] [PMID: 11087333]
[41]
Gautherot, E.; Bouhou, J.; Le Doussal, J.M.; Manetti, C.; Martin, M.; Rouvier, E.; Barbet, J. Therapy for colon carcinoma xenografts with bispecific antibody-targeted, iodine-131-labeled bivalent hapten. Cancer, 1997, 80(12)(Suppl.), 2618-2623.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19971215)80:12+<2618:AID-CNCR37>3.0.CO;2-D] [PMID: 9406716]
[42]
Lane, D.M.; Eagle, K.F.; Begent, R.H.; Hope-Stone, L.D.; Green, A.J.; Casey, J.L.; Keep, P.A.; Kelly, A.M.; Ledermann, J.A.; Glaser, M.G. Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labelled antibody to carcinoembryonic antigen: Phase I/II study with comparative biodistribution of intact and F(ab’)2 antibodies. Br. J. Cancer, 1994, 70(3), 521-525.
[http://dx.doi.org/10.1038/bjc.1994.338] [PMID: 8080740]
[43]
Cheal, S.M.; Xu, H.; Guo, H.F.; Lee, S.G.; Punzalan, B.; Chalasani, S.; Fung, E.K.; Jungbluth, A.; Zanzonico, P.B.; Carrasquillo, J.A.; O’Donoghue, J.; Smith-Jones, P.M.; Wittrup, K.D.; Cheung, N.V.; Larson, S.M. Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity 86Y- or 177Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(5), 925-937.
[http://dx.doi.org/10.1007/s00259-015-3254-8] [PMID: 26596724]
[44]
Deng, C.; Xiong, J.; Gu, X.; Chen, X.; Wu, S.; Wang, Z.; Wang, D.; Tu, J.; Xie, J. Novel recombinant immunotoxin of EGFR specific nanobody fused with cucurmosin, construction and antitumor efficiency in vitro. Oncotarget, 2017, 8(24), 38568-38580.
[http://dx.doi.org/10.18632/oncotarget.16930] [PMID: 28445134]
[45]
Bellaye, P-S.; Moreau, M.; Raguin, O.; Oudot, A.; Bernhard, C.; Vrigneaud, J.M.; Dumont, L.; Vandroux, D.; Denat, F.; Cochet, A.; Brunotte, F.; Collin, B. Radiolabeled F(ab’)2-cetuximab for theranostic purposes in colorectal and skin tumor-bearing mice models. Clin. Transl. Oncol., 2018, 20(12), 1557-1570.
[http://dx.doi.org/10.1007/s12094-018-1886-4] [PMID: 29777377]
[46]
Zhu, Y.; Bassoff, N.; Reinshagen, C.; Bhere, D.; Nowicki, M.O.; Lawler, S.E.; Roux, J.; Shah, K. Bi-specific molecule against EGFR and death receptors simultaneously targets proliferation and death pathways in tumors. Sci. Rep., 2017, 7(1), 2602.
[http://dx.doi.org/10.1038/s41598-017-02483-9] [PMID: 28572590]
[47]
Lázaro-Gorines, R.; Ruiz-de-la-Herrán, J.; Navarro, R.; Sanz, L.; Álvarez-Vallina, L.; Martínez-Del-Pozo, A.; Gavilanes, J.G.; Lacadena, J. A novel carcinoembryonic antigen (CEA)-targeted trimeric immunotoxin shows significantly enhanced antitumor activity in human colorectal cancer xenografts. Sci. Rep., 2019, 9(1), 11680.
[http://dx.doi.org/10.1038/s41598-019-48285-z] [PMID: 31406218]
[48]
Waldron, N.N.; Barsky, S.H.; Dougherty, P.R.; Vallera, D.A. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target. Oncol., 2014, 9(3), 239-249.
[http://dx.doi.org/10.1007/s11523-013-0290-9] [PMID: 23900680]
[49]
Brünker, P.; Wartha, K.; Friess, T.; Grau-Richards, S.; Waldhauer, I.; Koller, C.F.; Weiser, B.; Majety, M.; Runza, V.; Niu, H.; Packman, K.; Feng, N.; Daouti, S.; Hosse, R.J.; Mössner, E.; Weber, T.G.; Herting, F.; Scheuer, W.; Sade, H.; Shao, C.; Liu, B.; Wang, P.; Xu, G.; Vega-Harring, S.; Klein, C.; Bosslet, K.; Umaña, P. RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis. Mol. Cancer Ther., 2016, 15(5), 946-957.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0647] [PMID: 27037412]
[50]
Patnaik, A.; Gordon, M.; Tsai, F.; Papadopoulos, K.P.; Rasco, D.; Beeram, M.; Fu, S.; Janku, F.; Hynes, S.M.; Gundala, S.R.; Willard, M.D.; Zhang, W.; Lin, A.B.; Hong, D. A phase I study of LY3164530, a bispecific antibody targeting MET and EGFR, in patients with advanced or metastatic cancer. Cancer Chemother. Pharmacol., 2018, 82(3), 407-418.
[http://dx.doi.org/10.1007/s00280-018-3623-7] [PMID: 29926131]
[51]
Schanzer, J.M.; Wartha, K.; Croasdale, R.; Moser, S.; Künkele, K.P.; Ries, C.; Scheuer, W.; Duerr, H.; Pompiati, S.; Pollman, J.; Stracke, J.; Lau, W.; Ries, S.; Brinkmann, U.; Klein, C.; Umana, P. A novel glycoengineered bispecific antibody format for targeted inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor type I (IGF-1R) demonstrating unique molecular properties. J. Biol. Chem., 2014, 289(27), 18693-18706.
[http://dx.doi.org/10.1074/jbc.M113.528109] [PMID: 24841203]
[52]
Kamakura, D. Mechanism of action of a T cell-dependent bispecific antibody as a breakthrough immunotherapy against refractory colorectal cancer with an oncogenic mutation. Cancer Immunol. Immunother., 2020, •••, 1-12.
[http://dx.doi.org/10.1007/s00262-020-02667-9] [PMID: 32666260]
[53]
Casey, J.L.; King, D.J.; Chaplin, L.C.; Haines, A.M.; Pedley, R.B.; Mountain, A.; Yarranton, G.T.; Begent, R.H. Preparation, characterisation and tumour targeting of cross-linked divalent and trivalent anti-tumour Fab’ fragments. Br. J. Cancer, 1996, 74(9), 1397-1405.
[http://dx.doi.org/10.1038/bjc.1996.555] [PMID: 8912535]
[54]
Behr, T.M.; Blumenthal, R.D.; Memtsoudis, S.; Sharkey, R.M.; Gratz, S.; Becker, W.; Goldenberg, D.M. Cure of metastatic human colonic cancer in mice with radiolabeled monoclonal antibody fragments. Clin. Cancer Res., 2000, 6(12), 4900-4907.
[PMID: 11156250]
[55]
Li, L. Radioimmunotherapy of human colon cancer xenografts by using 131I labeled-CAb1 F (ab′) 2. Int. J. Radiat. Oncol. Biol. Phys., 2006, 66(4), 1238-1244.
[56]
Fujiwara, K.; Masutani, M.; Tachibana, M.; Okada, N. Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem. Biophys. Res. Commun., •••, 527(2), 350-357.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.071] [PMID: 32216966]
[57]
αPD1-MSLN-CAR T cells for the treatment of msln-positive advanced solid tumors. 2020.
[58]
Treated blood cells, cyclophosphamide, fludarabine phosphate, and aldesleukin in treating patients with cancer. 2010.
[59]
Engineered TILs/CAR-TILs to treat advanced solid tumors. 2006.
[60]
Wiiger, M.T.; Gehrken, H.B.; Fodstad, Ø.; Maelandsmo, G.M.; Andersson, Y. A novel human recombinant single-chain antibody target-ing CD166/ALCAM inhibits cancer cell invasion in vitro and in vivo tumour growth. Cancer Immunol. Immunother., •••, 59(11), 1665-1674.
[http://dx.doi.org/10.1007/s00262-010-0892-3] [PMID: 20635083]
[61]
Patterson, K.G.; Dixon Pittaro, J.L.; Bastedo, P.S.; Hess, D.A.; Haeryfar, S.M.; McCormick, J.K. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen. PLoS One, 2014, 9(4), e95200.
[http://dx.doi.org/10.1371/journal.pone.0095200] [PMID: 24736661]
[62]
Osada, T.; Hsu, D.; Hammond, S.; Hobeika, A.; Devi, G.; Clay, T.M.; Lyerly, H.K.; Morse, M.A. Metastatic colorectal cancer cells from patients previously treated with chemotherapy are sensitive to T-cell killing mediated by CEA/CD3-bispecific T-cell-engaging BiTE antibody. Br. J. Cancer, 2010, 102(1), 124-133.
[http://dx.doi.org/10.1038/sj.bjc.6605364] [PMID: 19953093]
[63]
Kao, C-H.; Wang, J.Y.; Chuang, K.H.; Chuang, C.H.; Cheng, T.C.; Hsieh, Y.C.; Tseng, Y.L.; Chen, B.M.; Roffler, S.R.; Cheng, T.L. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles. Biomaterials, 2014, 35(37), 9930-9940.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.032] [PMID: 25212525]
[64]
Oberst, M.D. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas.MAbs; Taylor & Francis, 2014.
[http://dx.doi.org/10.4161/19420862.2014.975660]
[65]
Peng, L.; Oberst, M.D.; Huang, J.; Brohawn, P.; Morehouse, C.; Lekstrom, K.; Baeuerle, P.A.; Wu, H.; Yao, Y.; Coats, S.R.; Dall’Acqua, W.; Damschroder, M.; Hammond, S.A. The CEA/CD3-bispecific antibody MEDI-565 (MT111) binds a nonlinear epitope in the full-length but not a short splice variant of CEA. PLoS One, 2012, 7(5), e36412.
[http://dx.doi.org/10.1371/journal.pone.0036412] [PMID: 22574157]
[66]
Zhang, X.; Xiao, G.G.; Gao, Y. Characterization of human colorectal cancer MDR1/P-gp Fab antibody. The Scientific World Journal, 2013, 2013
[67]
Jayson, G.C.; Parker, G.J.; Mullamitha, S.; Valle, J.W.; Saunders, M.; Broughton, L.; Lawrance, J.; Carrington, B.; Roberts, C.; Issa, B.; Buckley, D.L.; Cheung, S.; Davies, K.; Watson, Y.; Zinkewich-Péotti, K.; Rolfe, L.; Jackson, A. Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J. Clin. Oncol., 2005, 23(5), 973-981.
[http://dx.doi.org/10.1200/JCO.2005.01.032] [PMID: 15466784]
[68]
Lakins, M.A.; Koers, A.; Giambalvo, R.; Munoz-Olaya, J.; Hughes, R.; Goodman, E.; Marshall, S.; Wollerton, F.; Batey, S.; Gliddon, D.; Tuna, M.; Brewis, N. FS222, a CD137/PD-L1 tetravalent bispecific antibody exhibits low toxicity and anti-tumor activity in colorectal cancer models. Clin. Cancer Res., 2020, 26(15), 4154-4167.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2958] [PMID: 32345647]
[69]
Magee, M.S.; Abraham, T.S.; Baybutt, T.R.; Flickinger, J.C., Jr; Ridge, N.A.; Marszalowicz, G.P.; Prajapati, P.; Hersperger, A.R.; Waldman, S.A.; Snook, A.E. Human GUCY2C-targeted chimeric antigen receptor (CAR)-expressing T cells eliminate colorectal cancer metastases. Cancer Immunol. Res., 2018, 6(5), 509-516.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0362] [PMID: 29615399]
[70]
Zhang, B-L.; Li, D.; Gong, Y.L.; Huang, Y.; Qin, D.Y.; Jiang, L.; Liang, X.; Yang, X.; Gou, H.F.; Wang, Y.S.; Wei, Y.Q.; Wang, W. Preclinical evaluation of chimeric antigen receptor–modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer. Hum. Gene Ther., 2019, 30(4), 402-412.
[http://dx.doi.org/10.1089/hum.2018.229] [PMID: 30693795]
[71]
Hege, K.M.; Bergsland, E.K.; Fisher, G.A.; Nemunaitis, J.J.; Warren, R.S.; McArthur, J.G.; Lin, A.A.; Schlom, J.; June, C.H.; Sherwin, S.A. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer, 2017, 5(1), 22.
[http://dx.doi.org/10.1186/s40425-017-0222-9] [PMID: 28344808]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy