Abstract
Purpose: Accumulating evidence indicates that elevated levels of methionine are associated with cognitive decline, including loss of memory. The exact mechanisms behind this observation are not completely understood but could be related to an increase in oxidative stress markers in hippocampal tissues. The above increase in oxidative stress could be directly caused by an increase in the blood levels of methionine (hypermethioninemia) or one of its metabolites, such as homocysteine. Pioglitazone is a drug primarily used for the treatment of type 2 diabetes mellitus. Several reports showed that using pioglitazone protects against cognitive decline observed in Alzheimer's disease. Pioglitazone has antioxidant properties independent of its hypoglycemic effects. Taken together, we hypothesized that pioglitazone protects against memory loss triggered by elevated levels of methionine through lowering oxidative stress in the hippocampus.
Methods: To test this hypothesis, we used chronic administration of L-methionine in a rat model. Spatial learning and memory were evaluated in the model using a radial arm water maze (RAWM). The levels of several markers related to oxidative stress were measured in hippocampal tissues recovered from experimental rats.
Results: Current results showed that administration of L-methionine was associated with a significant loss of short- and long-term memory and an increase in blood homocysteine levels. The above memory changes were associated with an increase in lipid peroxidation and a decrease in the activity of catalase and glutathione peroxidase antioxidant enzymes in the hippocampus. The combined treatment of pioglitazone with L-methionine protected rat model from memory loss. It also prevented changes observed in lipid peroxidation and changes in the activity of catalase and glutathione peroxidase enzymes.
Conclusion: Current findings indicate that pioglitazone is a viable therapeutic option that protects against cognitive changes observed upon administration of L-methionine.
Keywords: Pioglitazone, L-methionine, memory, learning, hippocampus, maze, oxidative stress.
Graphical Abstract
[http://dx.doi.org/10.1128/ecosalplus.3.6.1.7] [PMID: 26443567]
[http://dx.doi.org/10.1017/S0007114520002998] [PMID: 32718370]
[http://dx.doi.org/10.1093/jn/nxaa254] [PMID: 33000166]
[http://dx.doi.org/10.1016/j.clnu.2008.01.001] [PMID: 18294740]
[http://dx.doi.org/10.1016/j.exger.2013.02.021] [PMID: 23454735]
[http://dx.doi.org/10.1016/j.bbapap.2004.08.010]
[http://dx.doi.org/10.1007/s11064-012-0749-6] [PMID: 22437435]
[http://dx.doi.org/10.2174/1570159X11666131120223201] [PMID: 24669211]
[PMID: 15644997]
[http://dx.doi.org/10.1016/j.aninu.2017.08.009] [PMID: 30167479]
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.08.017] [PMID: 21482442]
[http://dx.doi.org/10.1089/ars.2008.2073] [PMID: 18837652]
[http://dx.doi.org/10.1016/j.jns.2010.07.013] [PMID: 20810133]
[http://dx.doi.org/10.1007/s12031-018-1158-3] [PMID: 30140995]
[http://dx.doi.org/10.1007/s00726-003-0026-8] [PMID: 14661100]
[http://dx.doi.org/10.1152/ajpheart.00548.2005] [PMID: 16085680]
[http://dx.doi.org/10.1016/j.physbeh.2020.113263] [PMID: 33246002]
[http://dx.doi.org/10.1080/10641963.2016.1226894] [PMID: 28287889]
[http://dx.doi.org/10.1016/j.bbr.2008.10.010] [PMID: 18983875]
[http://dx.doi.org/10.1016/j.lfs.2006.07.018] [PMID: 16904700]
[http://dx.doi.org/10.1007/s12640-013-9437-9] [PMID: 24277156]
[http://dx.doi.org/10.1097/FBP.0000000000000479] [PMID: 30829662]
[http://dx.doi.org/10.1016/j.bbr.2019.112350] [PMID: 31711893]
[http://dx.doi.org/10.1038/nrn2335] [PMID: 18270514]
[http://dx.doi.org/10.1016/0891-5849(94)90079-5] [PMID: 7982629]
[http://dx.doi.org/10.1016/0160-5402(84)90059-7] [PMID: 6536823]
[http://dx.doi.org/10.1007/s00726-017-2494-2] [PMID: 28929442]
[http://dx.doi.org/10.1097/MEG.0000000000001141] [PMID: 29683981]
[http://dx.doi.org/10.1186/s13024-015-0057-0] [PMID: 26590557]
[http://dx.doi.org/10.1007/s12035-016-0051-8] [PMID: 27544235]
[http://dx.doi.org/10.1111/fcp.12473]
[http://dx.doi.org/10.4103/1673-5374.251333] [PMID: 30804256]
[http://dx.doi.org/10.1007/s11011-018-0298-z] [PMID: 30094804]
[http://dx.doi.org/10.1097/JCMA.0000000000000103] [PMID: 30932940]
[http://dx.doi.org/10.1097/j.pain.0000000000001448] [PMID: 30507781]
[http://dx.doi.org/10.3389/fphar.2018.01103] [PMID: 30349478]
[http://dx.doi.org/10.1038/s41598-019-49835-1] [PMID: 31548602]
[http://dx.doi.org/10.1016/j.lfs.2019.117047] [PMID: 31730865]
[http://dx.doi.org/10.1007/s11064-019-02907-0] [PMID: 31713708]
[http://dx.doi.org/10.1159/000488183] [PMID: 29554649]
[http://dx.doi.org/10.1016/j.expneurol.2017.11.009] [PMID: 29162435]
[http://dx.doi.org/10.1016/j.bbr.2015.06.004] [PMID: 26057356]
[http://dx.doi.org/10.1093/hmg/ddx088] [PMID: 28334897]
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.060] [PMID: 25662510]
[http://dx.doi.org/10.1016/j.otoeng.2013.08.008] [PMID: 23527990]
[http://dx.doi.org/10.1016/j.parkreldis.2017.08.005] [PMID: 28807493]
[http://dx.doi.org/10.1016/j.molmet.2018.01.013] [PMID: 29398615]
[http://dx.doi.org/10.1073/pnas.1817391116] [PMID: 30765523]