Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Review Article

Drosophila: A Model to Study the Pathogenesis of Parkinson’s Disease

Author(s): Rahul and Yasir Hasan Siddique*

Volume 21, Issue 3, 2022

Published on: 24 November, 2021

Page: [259 - 277] Pages: 19

DOI: 10.2174/1871527320666210809120621

Price: $65

conference banner
Abstract

Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer’s disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.

Keywords: Neurodegenerative diseases, α-synuclein, parkinson’s disease, dopamine, serotonin, pathogenesis

Graphical Abstract

[1]
Rubin GM, Yandell MD, Wortman JR, et al. Comparative genomics of the eukaryotes. Science 2000; 287(5461): 2204-15.
[http://dx.doi.org/10.1126/science.287.5461.2204] [PMID: 10731134]
[2]
Bosco G, Campbell P, Leiva-Neto JT, Markow TA. Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 2007; 177(3): 1277-90.
[http://dx.doi.org/10.1534/genetics.107.075069] [PMID: 18039867]
[3]
Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev 2010; 20(4): 376-83.
[http://dx.doi.org/10.1016/j.gde.2010.05.001] [PMID: 20570131]
[4]
Demir E, Dickson BJ. fruitless splicing specifies male courtship behavior in Drosophila. Cell 2005; 121(5): 785-94.
[http://dx.doi.org/10.1016/j.cell.2005.04.027] [PMID: 15935764]
[5]
Ashburner M. Drosophila A laboratory handbook. Cold spring harbor laboratory press; 2004.
[6]
Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 493-514.
[http://dx.doi.org/10.3233/JPD-130250] [PMID: 24275605]
[7]
Fares MB, Jagannath S, Lashuel HA. Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 2021; 22(2): 111-31.
[http://dx.doi.org/10.1038/s41583-020-00416-6] [PMID: 33432241]
[8]
Sharma V, Kohli S, Brahmachari V. Correlation between desiccation stress response and epigenetic modifications of genes in Drosophila melanogaster: An example of environment-epigenome interaction. Biochim Biophys Acta Gene Regul Mech 2017; 1860(10): 1058-68.
[http://dx.doi.org/10.1016/j.bbagrm.2017.08.001] [PMID: 28801151]
[9]
Benzer S. From the gene to behavior. JAMA 1971; 218(7): 1015-22.
[http://dx.doi.org/10.1001/jama.1971.03190200047010] [PMID: 4942064]
[10]
Warrick JM, Paulson HL, Gray-Board GL, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 1998; 93(6): 939-49.
[http://dx.doi.org/10.1016/S0092-8674(00)81200-3] [PMID: 9635424]
[11]
Jackson GR, Salecker I, Dong X, et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 1998; 21(3): 633-42.
[http://dx.doi.org/10.1016/S0896-6273(00)80573-5] [PMID: 9768849]
[12]
Ren X, Holsteens K, Li H, et al. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Sci China Life Sci 2017; 60(5): 476-89.
[http://dx.doi.org/10.1007/s11427-017-9029-9] [PMID: 28527116]
[13]
Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 2001; 11(6): 1114-25.
[http://dx.doi.org/10.1101/gr.169101] [PMID: 11381037]
[14]
Kasture AS, Hummel T, Sucic S, Freissmuth M. Big lessons from tiny flies: Drosophila melanogaster as a model to explore dysfunction of dopaminergic and serotonergic neurotransmitter systems. Int J Mol Sci 2018; 19(6): 1788.
[http://dx.doi.org/10.3390/ijms19061788] [PMID: 29914172]
[15]
Menon KP, Carrillo RA, Zinn K. Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2013; 2(5): 647-70.
[http://dx.doi.org/10.1002/wdev.108] [PMID: 24014452]
[16]
Griffith LC, Budnik V. Plasticity and second messengers during synapse development. Int Rev Neurobiol 2006; 75: 237-65.
[http://dx.doi.org/10.1016/S0074-7742(06)75011-5] [PMID: 17137931]
[17]
Tabuchi K, Südhof TC. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 2002; 79(6): 849-59.
[http://dx.doi.org/10.1006/geno.2002.6780] [PMID: 12036300]
[18]
Sun M, Xing G, Yuan L, et al. Neuroligin 2 is required for synapse development and function at the Drosophila neuromuscular junction. J Neurosci 2011; 31(2): 687-99.
[http://dx.doi.org/10.1523/JNEUROSCI.3854-10.2011] [PMID: 21228178]
[19]
Lahey T, Gorczyca M, Jia XX, Budnik V. The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure. Neuron 1994; 13(4): 823-35.
[http://dx.doi.org/10.1016/0896-6273(94)90249-6] [PMID: 7946331]
[20]
Davis RL, Takayasu H, Eberwine M, Myres J. Cloning and characterization of mammalian homologs of the Drosophila dunce+ gene. Proc Natl Acad Sci USA 1989; 86(10): 3604-8.
[http://dx.doi.org/10.1073/pnas.86.10.3604] [PMID: 2542942]
[21]
Keshishian H, Broadie K, Chiba A, Bate M. The drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu Rev Neurosci 1996; 19(1): 545-75.
[http://dx.doi.org/10.1146/annurev.ne.19.030196.002553] [PMID: 8833454]
[22]
Mao Z, Davis RL. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 2009; 3: 5.
[http://dx.doi.org/10.3389/neuro.04.005.2009] [PMID: 19597562]
[23]
Aso Y, Rubin GM. Dopaminergic neurons write and update memories with cell-type-specific rules. eLife 2016; 5: e16135.
[http://dx.doi.org/10.7554/eLife.16135] [PMID: 27441388]
[24]
Fernandez RW, Akinleye AA, Nurilov M, et al. Modulation of social space by dopamine in Drosophila melanogaster, but no effect on the avoidance of the Drosophila stress odorant. Biol Lett 2017; 13(8): 20170369.
[http://dx.doi.org/10.1098/rsbl.2017.0369] [PMID: 28794277]
[25]
Alekseyenko OV, Chan YB, Li R, Kravitz EA. Single dopaminergic neurons that modulate aggression in Drosophila. Proc Natl Acad Sci USA 2013; 110(15): 6151-6.
[http://dx.doi.org/10.1073/pnas.1303446110] [PMID: 23530210]
[26]
Riemensperger T, Isabel G, Coulom H, et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci USA 2011; 108(2): 834-9.
[http://dx.doi.org/10.1073/pnas.1010930108] [PMID: 21187381]
[27]
Yamagata N, Ichinose T, Aso Y, et al. Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc Natl Acad Sci USA 2015; 112(2): 578-83.
[http://dx.doi.org/10.1073/pnas.1421930112] [PMID: 25548178]
[28]
Berry JA, Cervantes-Sandoval I, Chakraborty M, Davis RL. Sleep facilitates memory by blocking dopamine neuron-mediated forgetting. Cell 2015; 161(7): 1656-67.
[http://dx.doi.org/10.1016/j.cell.2015.05.027] [PMID: 26073942]
[29]
Neckameyer WS, White K. Drosophila tyrosine hydroxylase is encoded by the pale locus. J Neurogenet 1993; 8(4): 189-99.
[http://dx.doi.org/10.3109/01677069309083448] [PMID: 8100577]
[30]
Liu T, Dartevelle L, Yuan C, et al. Increased dopamine level enhances male-male courtship in Drosophila. J Neurosci 2008; 28(21): 5539-46.
[http://dx.doi.org/10.1523/JNEUROSCI.5290-07.2008] [PMID: 18495888]
[31]
Cichewicz K, Garren EJ, Adiele C, et al. A new brain dopamine-deficient Drosophila and its pharmacological and genetic rescue. Genes Brain Behav 2017; 16(3): 394-403.
[http://dx.doi.org/10.1111/gbb.12353] [PMID: 27762066]
[32]
Rahul NF, Naz F, Jyoti S, Siddique YH. Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease. Sci Rep 2020; 10(1): 13793.
[http://dx.doi.org/10.1038/s41598-020-70236-2] [PMID: 32796885]
[33]
Pörzgen P, Park SK, Hirsh J, Sonders MS, Amara SG. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol Pharmacol 2001; 59(1): 83-95.
[http://dx.doi.org/10.1124/mol.59.1.83] [PMID: 11125028]
[34]
Kurian MA, Zhen J, Cheng SY, et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 2009; 119(6): 1595-603.
[http://dx.doi.org/10.1172/JCI39060] [PMID: 19478460]
[35]
Asjad HMM, Kasture A, El-Kasaby A, et al. Pharmacochaperoning in a Drosophila model system rescues human dopamine transporter variants associated with infantile/juvenile parkinsonism. J Biol Chem 2017; 292(47): 19250-65.
[http://dx.doi.org/10.1074/jbc.M117.797092] [PMID: 28972153]
[36]
Aso Y, Herb A, Ogueta M, et al. Three dopamine pathways induce aversive odor memories with different stability. PLoS Genet 2012; 8(7): e1002768.
[http://dx.doi.org/10.1371/journal.pgen.1002768] [PMID: 22807684]
[37]
Rohwedder A, Wenz NL, Stehle B, et al. Four individually identified paired dopamine neurons signal reward in larval Drosophila. Curr Biol 2016; 26(5): 661-9.
[http://dx.doi.org/10.1016/j.cub.2016.01.012] [PMID: 26877086]
[38]
Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 2012; 22(22): 2114-23.
[http://dx.doi.org/10.1016/j.cub.2012.09.008] [PMID: 23022067]
[39]
Ueno T, Tomita J, Tanimoto H, et al. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 2012; 15(11): 1516-23.
[http://dx.doi.org/10.1038/nn.3238] [PMID: 23064381]
[40]
Sitaraman D, Zars M, Laferriere H, et al. Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci USA 2008; 105(14): 5579-84.
[http://dx.doi.org/10.1073/pnas.0710168105] [PMID: 18385379]
[41]
Yuan Q, Lin F, Zheng X, Sehgal A. Serotonin modulates circadian entrainment in Drosophila. Neuron 2005; 47(1): 115-27.
[http://dx.doi.org/10.1016/j.neuron.2005.05.027] [PMID: 15996552]
[42]
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5(5): e10806.
[http://dx.doi.org/10.1371/journal.pone.0010806] [PMID: 20520823]
[43]
Majeed ZR, Abdeljaber E, Soveland R, et al. Modulatory action by the serotonergic system: behavior and neurophysiology in Drosophila melanogaster. Neural Plast 2016; 2016: 7291438.
[http://dx.doi.org/10.1155/2016/7291438] [PMID: 26989517]
[44]
Kaneko T, Macara AM, Li R, et al. Serotonergic modulation enables pathway-specific plasticity in a developing sensory circuit in Drosophila. Neuron 2017; 95(3): 623-638.e4.
[http://dx.doi.org/10.1016/j.neuron.2017.06.034] [PMID: 28712652]
[45]
Scheunemann L, Plaçais PY, Dromard Y, Schwärzel M, Preat T. Dunce phosphodiesterase acts as a checkpoint for Drosophila long-term memory in a pair of serotonergic Neurons. Neuron 2018; 98(2): 350-365.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.03.032] [PMID: 29673482]
[46]
Coleman CM, Neckameyer WS. Serotonin synthesis by two distinct enzymes in Drosophila melanogaster. Arch Insect Biochem Physiol 2005; 59(1): 12-31.
[http://dx.doi.org/10.1002/arch.20050] [PMID: 15822093]
[47]
Demchyshyn LL, Pristupa ZB, Sugamori KS, et al. Cloning, expression, and localization of a chloride-facilitated, cocaine-sensitive serotonin transporter from Drosophila melanogaster. Proc Natl Acad Sci USA 1994; 91(11): 5158-62.
[http://dx.doi.org/10.1073/pnas.91.11.5158] [PMID: 8197200]
[48]
Ries AS, Hermanns T, Poeck B, Strauss R. Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment. Nat Commun 2017; 8: 15738.
[http://dx.doi.org/10.1038/ncomms15738] [PMID: 28585544]
[49]
Niederkofler V, Asher TE, Dymecki SM. Functional interplay between dopaminergic and serotonergic neuronal systems during development and adulthood. ACS Chem Neurosci 2015; 6(7): 1055-70.
[http://dx.doi.org/10.1021/acschemneuro.5b00021] [PMID: 25747116]
[50]
Niens J, Reh F, Çoban B, et al. Dopamine modulates serotonin innervation in the Drosophila brain. Front Syst Neurosci 2017; 11: 76.
[http://dx.doi.org/10.3389/fnsys.2017.00076] [PMID: 29085286]
[51]
Joly JS, Recher G, Brombin A, Ngo K, Hartenstein V. A conserved developmental mechanism builds complex visual systems in insects and vertebrates. Curr Biol 2016; 26(20): R1001-9.
[http://dx.doi.org/10.1016/j.cub.2016.08.017] [PMID: 27780043]
[52]
Clark DA, Demb JB. Parallel computations in insect and mammalian visual motion processing. Curr Biol 2016; 26(20): R1062-72.
[http://dx.doi.org/10.1016/j.cub.2016.08.003] [PMID: 27780048]
[53]
Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 1997; 20(1): 595-631.
[http://dx.doi.org/10.1146/annurev.neuro.20.1.595] [PMID: 9056726]
[54]
Kamikouchi A, Inagaki HK, Effertz T, et al. The neural basis of Drosophila gravity-sensing and hearing. Nature 2009; 458(7235): 165-71.
[http://dx.doi.org/10.1038/nature07810] [PMID: 19279630]
[55]
Abraira VE, Ginty DD. The sensory neurons of touch. Neuron 2013; 79(4): 618-39.
[http://dx.doi.org/10.1016/j.neuron.2013.07.051] [PMID: 23972592]
[56]
Li L, Rutlin M, Abraira VE, et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 2011; 147(7): 1615-27.
[http://dx.doi.org/10.1016/j.cell.2011.11.027] [PMID: 22196735]
[57]
Sakurai K, Akiyama M, Cai B, et al. The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Rep 2013; 5(1): 87-98.
[http://dx.doi.org/10.1016/j.celrep.2013.08.051] [PMID: 24120861]
[58]
Sivertsen MS, Perreault MC, Glover JC. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories. J Comp Neurol 2016; 524(6): 1270-91.
[http://dx.doi.org/10.1002/cne.23904] [PMID: 26400815]
[59]
Tuthill JC, Wilson RI. Mechanosensation and adaptive motor control in insects. Curr Biol 2016; 26(20): R1022-38.
[http://dx.doi.org/10.1016/j.cub.2016.06.070] [PMID: 27780045]
[60]
Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL. TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 2009; 29(15): 4808-19.
[http://dx.doi.org/10.1523/JNEUROSCI.5380-08.2009] [PMID: 19369549]
[61]
Brierley SM, Castro J, Harrington AM, et al. TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. J Physiol 2011; 589(Pt 14): 3575-93.
[http://dx.doi.org/10.1113/jphysiol.2011.206789] [PMID: 21558163]
[62]
Buschmann T, Ewald A, von Twickel A, Büschges A. Controlling legs for locomotion-insights from robotics and neurobiology. Bioinspir Biomim 2015; 10(4): 041001.
[http://dx.doi.org/10.1088/1748-3190/10/4/041001] [PMID: 26119450]
[63]
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011; 12(3): 139-53.
[http://dx.doi.org/10.1038/nrn2993] [PMID: 21304548]
[64]
Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118(2): 401-15.
[http://dx.doi.org/10.1242/dev.118.2.401] [PMID: 8223268]
[65]
Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 2000; 18(8): 896-8.
[http://dx.doi.org/10.1038/78531] [PMID: 10932163]
[66]
Ni JQ, Markstein M, Binari R, et al. Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 2008; 5(1): 49-51.
[http://dx.doi.org/10.1038/nmeth1146] [PMID: 18084299]
[67]
Dietzl G, Chen D, Schnorrer F, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007; 448(7150): 151-6.
[http://dx.doi.org/10.1038/nature05954] [PMID: 17625558]
[68]
Hardy J. Genetic analysis of pathways to Parkinson disease. Neuron 2010; 68(2): 201-6.
[http://dx.doi.org/10.1016/j.neuron.2010.10.014] [PMID: 20955928]
[69]
Imai Y, Gehrke S, Wang HQ, et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 2008; 27(18): 2432-43.
[http://dx.doi.org/10.1038/emboj.2008.163] [PMID: 18701920]
[70]
Lin CH, Tsai PI, Wu RM, Chien CT. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J Neurosci 2010; 30(39): 13138-49.
[http://dx.doi.org/10.1523/JNEUROSCI.1737-10.2010] [PMID: 20881132]
[71]
Lee SB, Kim W, Lee S, Chung J. Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila. Biochem Biophys Res Commun 2007; 358(2): 534-9.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.156] [PMID: 17498648]
[72]
Hindle S, Afsari F, Stark M, et al. Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy. Hum Mol Genet 2013; 22(11): 2129-40.
[http://dx.doi.org/10.1093/hmg/ddt061] [PMID: 23396536]
[73]
Godena VK, Brookes-Hocking N, Moller A, et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 2014; 5(1): 5245.
[http://dx.doi.org/10.1038/ncomms6245] [PMID: 25316291]
[74]
Cording AC, Shiaelis N, Petridi S, et al. Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease. npj. Parkinsons Dis 2017; 3(1): 1-8.
[75]
Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J. Alpha-synuclein oligomers: a new hope. Acta Neuropathol 2017; 134(6): 819-38.
[http://dx.doi.org/10.1007/s00401-017-1755-1] [PMID: 28803412]
[76]
Mizuno H, Fujikake N, Wada K, Nagai Y. α-Synuclein transgenic Drosophila as a model of Parkinson’s disease and related synucleinopathies. Parkinsons Dis 2010; 2011: 212706.
[PMID: 21209707]
[77]
Feany MB, Bender WWA. Drosophila model of Parkinson’s disease. Nature 2000; 404(6776): 394-8.
[http://dx.doi.org/10.1038/35006074] [PMID: 10746727]
[78]
Chen AY, Xia S, Wilburn P, Tully T. Olfactory deficits in an alpha-synuclein fly model of Parkinson’s disease. PLoS One 2014; 9(5): e97758.
[http://dx.doi.org/10.1371/journal.pone.0097758] [PMID: 24879013]
[79]
Ordonez DG, Lee MK, Feany MB. α-Synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 2018; 97(1): 108-124.e6.
[http://dx.doi.org/10.1016/j.neuron.2017.11.036] [PMID: 29249285]
[80]
Roy B, Jackson GR. Interactions between Tau and α-synuclein augment neurotoxicity in a Drosophila model of Parkinson’s disease. Hum Mol Genet 2014; 23(11): 3008-23.
[http://dx.doi.org/10.1093/hmg/ddu011] [PMID: 24430504]
[81]
Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci 2007; 27(12): 3338-46.
[http://dx.doi.org/10.1523/JNEUROSCI.0285-07.2007] [PMID: 17376994]
[82]
Du G, Liu X, Chen X, et al. Drosophila histone deacetylase 6 protects dopaminergic neurons against α-synuclein toxicity by promoting inclusion formation. Mol Biol Cell 2010; 21(13): 2128-37.
[http://dx.doi.org/10.1091/mbc.e10-03-0200] [PMID: 20444973]
[83]
Alexopoulou Z, Lang J, Perrett RM, et al. Deubiquitinase Usp8 regulates α-synuclein clearance and modifies its toxicity in Lewy body disease. Proc Natl Acad Sci USA 2016; 113(32): E4688-97.
[http://dx.doi.org/10.1073/pnas.1523597113] [PMID: 27444016]
[84]
Fujiwara H, Hasegawa M, Dohmae N, et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.
[http://dx.doi.org/10.1038/ncb748] [PMID: 11813001]
[85]
Chen L, Feany MB. α-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 2005; 8(5): 657-63.
[http://dx.doi.org/10.1038/nn1443] [PMID: 15834418]
[86]
Chen L, Periquet M, Wang X, et al. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest 2009; 119(11): 3257-65.
[http://dx.doi.org/10.1172/JCI39088] [PMID: 19855133]
[87]
Breda C, Nugent ML, Estranero JG, et al. Rab11 modulates α-synuclein-mediated defects in synaptic transmission and behaviour. Hum Mol Genet 2015; 24(4): 1077-91.
[http://dx.doi.org/10.1093/hmg/ddu521] [PMID: 25305083]
[88]
Dinter E, Saridaki T, Nippold M, et al. Rab7 induces clearance of α-synuclein aggregates. J Neurochem 2016; 138(5): 758-74.
[http://dx.doi.org/10.1111/jnc.13712] [PMID: 27333324]
[89]
Yin G, Lopes da Fonseca T, Eisbach SE, et al. α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiol Dis 2014; 70: 149-61.
[http://dx.doi.org/10.1016/j.nbd.2014.06.018] [PMID: 24983211]
[90]
Botella JA, Bayersdorfer F, Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson’s disease. Neurobiol Dis 2008; 30(1): 65-73.
[http://dx.doi.org/10.1016/j.nbd.2007.11.013] [PMID: 18243716]
[91]
Fatima A, Rahul , Siddique YH. Role of tangeritin against cognitive impairments in transgenic Drosophila model of Parkinson’s disease. Neurosci Lett 2019; 705: 112-7.
[http://dx.doi.org/10.1016/j.neulet.2019.04.047] [PMID: 31039425]
[92]
Siddique YH, Jyoti S, Naz F. Protective effect of luteolin on the transgenic Drosophila model of Parkinson’s disease. Braz J Pharm Sci 2018; 54(3): 1-13.
[http://dx.doi.org/10.1590/s2175-97902018000317760]
[93]
Jahromi SR, Haddadi M, Shivanandappa T, Ramesh SR. Attenuation of neuromotor deficits by natural antioxidants of Decalepis hamiltonii in transgenic Drosophila model of Parkinson’s disease. Neuroscience 2015; 293: 136-50.
[http://dx.doi.org/10.1016/j.neuroscience.2015.02.048] [PMID: 25754960]
[94]
Knight AL, Yan X, Hamamichi S, et al. The glycolytic enzyme, GPI, is a functionally conserved modifier of dopaminergic neurodegeneration in Parkinson’s models. Cell Metab 2014; 20(1): 145-57.
[http://dx.doi.org/10.1016/j.cmet.2014.04.017] [PMID: 24882066]
[95]
Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009; 361(17): 1651-61.
[http://dx.doi.org/10.1056/NEJMoa0901281] [PMID: 19846850]
[96]
Erickson AH, Ginns EI, Barranger JA. Biosynthesis of the lysosomal enzyme glucocerebrosidase. J Biol Chem 1985; 260(26): 14319-24.
[http://dx.doi.org/10.1016/S0021-9258(17)38720-3] [PMID: 3932353]
[97]
Grabowski GA. Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 2008; 372(9645): 1263-71.
[http://dx.doi.org/10.1016/S0140-6736(08)61522-6] [PMID: 19094956]
[98]
Siebert M, Sidransky E, Westbroek W. Glucocerebrosidase is shaking up the synucleinopathies. Brain 2014; 137(Pt 5): 1304-22.
[http://dx.doi.org/10.1093/brain/awu002] [PMID: 24531622]
[99]
Robinson SW, Herzyk P, Dow JA, Leader DP. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster. Nucleic Acids Res 2013; 41(Database issue): D744-50.
[http://dx.doi.org/10.1093/nar/gks1141] [PMID: 23203866]
[100]
Kinghorn KJ, Grönke S, Castillo-Quan JI, et al. A Drosophila model of neuronopathic Gaucher disease demonstrates lysosomal-autophagic defects and altered mTOR signalling and is functionally rescued by rapamycin. J Neurosci 2016; 36(46): 11654-70.
[http://dx.doi.org/10.1523/JNEUROSCI.4527-15.2016] [PMID: 27852774]
[101]
Suzuki M, Fujikake N, Takeuchi T, et al. Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant α-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson’s disease. Hum Mol Genet 2015; 24(23): 6675-86.
[http://dx.doi.org/10.1093/hmg/ddv372] [PMID: 26362253]
[102]
Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AH. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep 2016; 6: 31380.
[http://dx.doi.org/10.1038/srep31380] [PMID: 27539639]
[103]
Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89(1): 168-75.
[http://dx.doi.org/10.1016/j.ajhg.2011.06.008] [PMID: 21763483]
[104]
Williams ET, Chen X, Moore DJ. VPS35, the retromer complex and Parkinson’s disease. J Parkinsons Dis 2017; 7(2): 219-33.
[http://dx.doi.org/10.3233/JPD-161020] [PMID: 28222538]
[105]
Korolchuk VI, Schütz MM, Gómez-Llorente C, et al. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J Cell Sci 2007; 120(Pt 24): 4367-76.
[http://dx.doi.org/10.1242/jcs.012336] [PMID: 18057029]
[106]
Miura E, Hasegawa T, Konno M, et al. VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol Dis 2014; 71: 1-13.
[http://dx.doi.org/10.1016/j.nbd.2014.07.014] [PMID: 25107340]
[107]
Inoshita T, Arano T, Hosaka Y, et al. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in Drosophila. Hum Mol Genet 2017; 26(15): 2933-48.
[http://dx.doi.org/10.1093/hmg/ddx179] [PMID: 28482024]
[108]
Wang HS, Toh J, Ho P, Tio M, Zhao Y, Tan EK. In vivo evidence of pathogenicity of VPS35 mutations in the Drosophila. Mol Brain 2014; 7: 73.
[http://dx.doi.org/10.1186/s13041-014-0073-y] [PMID: 25288323]
[109]
Pankratz N, Nichols WC, Uniacke SK, et al. Genome-wide linkage analysis and evidence of gene-by-gene interactions in a sample of 362 multiplex Parkinson disease families. Hum Mol Genet 2003; 12(20): 2599-608.
[http://dx.doi.org/10.1093/hmg/ddg270] [PMID: 12925570]
[110]
Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72(6): 893-901.
[http://dx.doi.org/10.1002/ana.23687] [PMID: 23071076]
[111]
Sherer TB, Richardson JR, Testa CM, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 2007; 100(6): 1469-79.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04333.x] [PMID: 17241123]
[112]
Choi WS, Kruse SE, Palmiter RD, Xia Z. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci USA 2008; 105(39): 15136-41.
[http://dx.doi.org/10.1073/pnas.0807581105] [PMID: 18812510]
[113]
Rao SV, Hemalatha P, Yetish S, Muralidhara M, Rajini PS. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: behavioural and biochemical evidence. Metab Brain Dis 2019; 34(5): 1341-53.
[http://dx.doi.org/10.1007/s11011-019-00451-y] [PMID: 31214956]
[114]
Pramod Kumar P, Harish Prashanth KV. Diet with Low Molecular Weight Chitosan exerts neuromodulation in Rotenone induced Drosophila model of Parkinson’s disease. Food Chem Toxicol 2020; 146: 111860.
[http://dx.doi.org/10.1016/j.fct.2020.111860] [PMID: 33212211]
[115]
Sandström J, Broyer A, Zoia D, et al. Potential mechanisms of development-dependent adverse effects of the herbicide paraquat in 3D rat brain cell cultures. Neurotoxicology 2017; 60: 116-24.
[http://dx.doi.org/10.1016/j.neuro.2017.04.010] [PMID: 28467894]
[116]
Srivastav S, Anand BG, Fatima M, et al. Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster. ACS Chem Neurosci 2020; 11(22): 3772-85.
[http://dx.doi.org/10.1021/acschemneuro.0c00366] [PMID: 33125229]
[117]
Neuroprotectiveactivity of pyrazolone derivatives against paraquat-induced oxidative stress and locomotor impairment in Drosophila. Int J Curr Res Rev 2020; 12(23): 68.
[http://dx.doi.org/10.31782/IJCRR.2020.122329]
[118]
Poulopoulos M, Levy OA, Alcalay RN. The neuropathology of genetic Parkinson’s disease. Mov Disord 2012; 27(7): 831-42.
[http://dx.doi.org/10.1002/mds.24962] [PMID: 22451330]
[119]
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25(7): 816-24.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[120]
Liu M, Yu S, Wang J, et al. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson’s disease. J Ethnopharmacol 2020; 247: 112213.
[http://dx.doi.org/10.1016/j.jep.2019.112213] [PMID: 31562951]
[121]
Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 2006; 441(7097): 1162-6.
[http://dx.doi.org/10.1038/nature04779] [PMID: 16672981]
[122]
Liu S, Sawada T, Lee S, et al. Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet 2012; 8(3): e1002537.
[http://dx.doi.org/10.1371/journal.pgen.1002537] [PMID: 22396657]
[123]
Van Dam D, De Deyn PP. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol 2011; 164(4): 1285-300.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01299.x] [PMID: 21371009]
[124]
Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 2006; 5(5): 387-98.
[http://dx.doi.org/10.1038/nrd2031] [PMID: 16672925]
[125]
Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J 2010; 5(12): 1261-76.
[http://dx.doi.org/10.1002/biot.201000183] [PMID: 21154667]
[126]
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 2014; 5: 279.
[http://dx.doi.org/10.3389/fgene.2014.00279] [PMID: 25250042]
[127]
Bodhicharla R, Nagarajan A, Winter J, et al. Effects of α-synuclein overexpression in transgenic Caenorhabditis elegans strains. CNS Neurol Disord Drug Targets 2012; 11(8): 965-75.
[http://dx.doi.org/10.2174/1871527311211080005] [PMID: 23244416]
[128]
Kumar J, Park KC, Awasthi A, Prasad B. Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS Neurol Disord Drug Targets 2015; 14(2): 295-302.
[http://dx.doi.org/10.2174/1871527314666150116110212] [PMID: 25613505]
[129]
Nazir A. Editorial (Hot Topic: Model System Caenorhabditis elegans and Neurodegenerative). CNS Neurol Disord Drug Targets 2012; 11(8): 955-6.
[http://dx.doi.org/10.2174/1871527311211080003] [PMID: 23441984]
[130]
Jadiya P, Nazir A. Environmental toxicants as extrinsic epigenetic factors for parkinsonism: studies employing transgenic C. elegans model. CNS Neurol Disord Drug Targets 2012; 11(8): 976-83.
[http://dx.doi.org/10.2174/1871527311211080006] [PMID: 23244436]
[131]
Vistbakka J, VanDuyn N, Wong G, Nass R. C. elegans as a genetic model system to identify Parkinson’s disease-associated therapeutic targets. CNS Neurol Disord Drug Targets 2012; 11(8): 957-64.
[http://dx.doi.org/10.2174/1871527311211080004] [PMID: 23244419]
[132]
Kaur S, Sammi SR, Jadiya P, Nazir A. RNAi of cat-2, a putative tyrosine hydroxylase, increases alpha synuclein aggregation and associated effects in transgenic C. elegans. CNS Neurol Disord Drug Targets 2012; 11(4): 387-94.
[http://dx.doi.org/10.2174/187152712800792811] [PMID: 22483307]
[133]
Prüßing K, Voigt A, Schulz JB. Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener 2013; 8: 35.
[http://dx.doi.org/10.1186/1750-1326-8-35] [PMID: 24267573]
[134]
Hey J, Kliman RM. Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 2002; 160(2): 595-608.
[http://dx.doi.org/10.1093/genetics/160.2.595] [PMID: 11861564]
[135]
Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 2010; 9(4): 504-23.
[http://dx.doi.org/10.2174/187152710791556104] [PMID: 20522007]
[136]
Rahul Jyoti S. Effect of Eucalyptus citriodora extract on hsp70 expression and tissue damage in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9. Phytopharmacology 2012; 3: 111-21.
[137]
Rahul JS, Naz F, et al. Toxic effects of gentamicin in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Toxicol Res 2014; 3(3): 168-76.
[http://dx.doi.org/10.1039/c3tx50093d]
[138]
Rahul JS, Jyoti S, Naz F, Siddique YH. Evaluation of the toxic potential of cefotaxime in the third instar larvae of transgenic Drosophila melanogaster. Chem Biol Interact 2015; 233: 71-80.
[http://dx.doi.org/10.1016/j.cbi.2015.03.004] [PMID: 25770931]
[139]
Siddique YH, Fatima A, Jyoti S, et al. Evaluation of the toxic potential of graphene copper nanocomposite (GCNC) in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg(9.). PLoS One 2013; 8(12): e80944.
[http://dx.doi.org/10.1371/journal.pone.0080944] [PMID: 24339891]
[140]
Siddique YH, Naz F, Jyoti S, et al. Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Parkinsons Dis 2014; 2014: 262058.
[http://dx.doi.org/10.1155/2014/262058] [PMID: 25538856]
[141]
Siddique YH, Haidari M, Khan W, et al. Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Toxicol Mech Methods 2015; 25(6): 425-32.
[http://dx.doi.org/10.3109/15376516.2015.1045653] [PMID: 26000624]
[142]
Siddique YH, Khan W, Fatima A, et al. Effect of bromocriptine alginate nanocomposite (BANC) on a transgenic Drosophila model of Parkinson’s disease. Dis Model Mech 2016; 9(1): 63-8.
[PMID: 26542705]
[143]
Siddique YH, Naz F, Jyoti S, Ali F, Rahul . Rahul. Effect of Genistein on the transgenic Drosophila model of Parkinson’s disease. J Diet Suppl 2019; 16(5): 550-63.
[http://dx.doi.org/10.1080/19390211.2018.1472706] [PMID: 29969325]
[144]
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63(2): 411-36.
[http://dx.doi.org/10.1124/pr.110.003293] [PMID: 21415126]
[145]
Ashburner M, Bergman CM. Drosophila melanogaster: a case study of a model genomic sequence and its consequences. Genome Res 2005; 15(12): 1661-7.
[http://dx.doi.org/10.1101/gr.3726705] [PMID: 16339363]
[146]
Ara G, Afzal M, Jyoti S, et al. Effect of Myricetin on the loss of dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease. Curr Drug Ther 2019; 14(1): 58-64.
[http://dx.doi.org/10.2174/1574885513666180529114546]
[147]
Khanam S, Naz F, Ali F, et al. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol Mech Methods 2018; 28(9): 699-708.
[http://dx.doi.org/10.1080/15376516.2018.1502386] [PMID: 30019977]
[148]
Fatima A, Khanam S, Jyoti S, et al. Effect of tangeritin against cyclophosphamide-induced toxicity in the larvae of transgenic Drosophila melanogaster (hsp70-lac Z) Bg9. J Diet Suppl 2018; 15(6): 893-909.
[http://dx.doi.org/10.1080/19390211.2017.1406425]
[149]
Ali F, Rahul , Jyoti S, et al. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci Lett 2019; 692: 90-9.
[http://dx.doi.org/10.1016/j.neulet.2018.10.053] [PMID: 30420334]
[150]
Rahul, Siddique YH. “Neurodegenerative diseases and flavonoids: special reference to kaempferol. CNS Neurol Disord Drug Targets 2021; 20: 1.
[151]
Beg T, Jyoti S, Naz F, et al. Protective effect of Kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17(6): 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[152]
Naz F, Rahul , Fatima M, et al. Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson’s disease. Neuropharmacology 2020; 177: 108216.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108216] [PMID: 32707222]
[153]
Siddique YH, Varshney H. Rahul. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease. Comput Toxicol 2020; 17: 100148.
[154]
Siddique YH. Effect of Cabergoline on cognitive impairments in transgenic Drosophila model of Parkinson’s disease. Lett Drug Des Discov 2020; 17(10): 1261-9.
[http://dx.doi.org/10.2174/1570180817999200514100917]
[155]
Ali Khan M, Jyoti S. Effect of lemon grass extract against methyl methanesulfonate-induced toxicity. Toxin Rev 2019; 1-15.
[http://dx.doi.org/10.1080/15569543.2019.1657152]
[156]
Najib NHM, Nies YH. AbdHalim SAS. Modeling parkinson’s disease in zebrafish. CNS Neurol Disord Drug Targets 2020; 19(5): 386-99.
[http://dx.doi.org/10.2174/1871527319666200708124117]
[157]
Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013; 496(7446): 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[158]
Bandmann O, Burton EA. Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 2010; 40(1): 58-65.
[http://dx.doi.org/10.1016/j.nbd.2010.05.017] [PMID: 20493258]
[159]
Etchin J, Kanki JP, Look AT. Zebrafish as a model for the study of human cancer. Methods Cell Biol 2011; 105: 309-37.
[http://dx.doi.org/10.1016/B978-0-12-381320-6.00013-8] [PMID: 21951536]
[160]
Berman J, Payne E, Hall C. The zebrafish as a tool to study hematopoiesis, human blood diseases, and immune function. Adv Hematol 2012; 2012: 425345.
[http://dx.doi.org/10.1155/2012/425345] [PMID: 23082077]
[161]
Chakravarty S, Reddy BR, Sudhakar SR, et al. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One 2013; 8(5): e63302.
[http://dx.doi.org/10.1371/journal.pone.0063302] [PMID: 23691016]
[162]
Nguyen D, Xu T. The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 2008; 1(1): 56-66.
[http://dx.doi.org/10.1242/dmm.000232] [PMID: 19048054]
[163]
Janus C, Welzl H. Mouse models of neurodegenerative diseases: criteria and general methodology. Mouse models for drug discovery. Humana Press 2010; 323-45.
[http://dx.doi.org/10.1007/978-1-60761-058-8_19]
[164]
Liu Y, Meyer C, Xu C, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 2013; 304(5): G449-68.
[http://dx.doi.org/10.1152/ajpgi.00199.2012] [PMID: 23275613]
[165]
Fillat C, Dierssen M, de Lagrán MM, Altafaj X. Insights from mouse models to understand neurodegeneration in Down syndrome. CNS Neurol Disord Drug Targets 2010; 9(4): 429-38.
[http://dx.doi.org/10.2174/187152710791556159] [PMID: 20522013]
[166]
Noble W, Hanger DP, Gallo JM. Transgenic mouse models of tauopathy in drug discovery. CNS Neurol Disord Drug Targets 2010; 9(4): 403-28.
[http://dx.doi.org/10.2174/187152710791556131] [PMID: 20522014]
[167]
Hussain I. APP transgenic mouse models and their use in drug discovery to evaluate amyloid- lowering therapeutics. CNS Neurol Disord Drug Targets 2010; 9(4): 395-402.
[http://dx.doi.org/10.2174/187152710791556087] [PMID: 20522015]
[168]
Gulino R, Forte S, Parenti R, Gulisano M. TDP-43 as a modulator of synaptic plasticity in a mouse model of spinal motoneuron degeneration. CNS Neurol Disord Drug Targets 2015; 14(1): 55-60.
[http://dx.doi.org/10.2174/1871527314666150116115414] [PMID: 25613499]
[169]
Min KT, Benzer S. Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration. Curr Biol 1997; 7(11): 885-8.
[http://dx.doi.org/10.1016/S0960-9822(06)00378-2] [PMID: 9382801]
[170]
Elia AJ, Parkes TL, Kirby K, et al. Expression of human FALS SOD in motorneurons of Drosophila. Free Radic Biol Med 1999; 26(9-10): 1332-8.
[http://dx.doi.org/10.1016/S0891-5849(98)00333-5] [PMID: 10381207]
[171]
Williams DW, Tyrer M, Shepherd D. Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 2000; 428(4): 630-40.
[http://dx.doi.org/10.1002/1096-9861(20001225)428:4<630::AID-CNE4>3.0.CO;2-X] [PMID: 11077417]
[172]
Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000; 287(5459): 1837-40.
[http://dx.doi.org/10.1126/science.287.5459.1837] [PMID: 10710314]
[173]
Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000; 408(6808): 101-6.
[http://dx.doi.org/10.1038/35040584] [PMID: 11081516]
[174]
Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M. A model for studying Alzheimer’s Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci 2004; 26(3): 365-75.
[http://dx.doi.org/10.1016/j.mcn.2004.03.001] [PMID: 15234342]
[175]
Ren J, Jegga AG, Zhang M, et al. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet 2011; 20(17): 3424-36.
[http://dx.doi.org/10.1093/hmg/ddr251] [PMID: 21653638]
[176]
Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development 2017; 144(5): 905-15.
[http://dx.doi.org/10.1242/dev.140657] [PMID: 28174239]
[177]
Zhang SX, Rogulja D, Crickmore MA. Dopaminergic circuitry underlying mating drive. Neuron 2016; 91(1): 168-81.
[http://dx.doi.org/10.1016/j.neuron.2016.05.020] [PMID: 27292538]
[178]
Huang C, Wang P, Xie Z, Wang L, Zhong Y. The differential requirement of mushroom body α/β subdivisions in long-term memory retrieval in Drosophila. Protein Cell 2013; 4(7): 512-9.
[http://dx.doi.org/10.1007/s13238-013-3035-8] [PMID: 23722532]
[179]
Sun J, Xu AQ, Giraud J, et al. Neural control of startle-induced locomotion by the mushroom bodies and associated neurons in Drosophila. Front Syst Neurosci 2018; 12: 6.
[http://dx.doi.org/10.3389/fnsys.2018.00006] [PMID: 29643770]
[180]
Sitaraman D, Aso Y, Rubin GM, Nitabach MN. Control of sleep by dopaminergic inputs to the Drosophila mushroom body. Front Neural Circuits 2015; 9: 73.
[http://dx.doi.org/10.3389/fncir.2015.00073] [PMID: 26617493]
[181]
Landayan D, Feldman DS, Wolf FW. Satiation state-dependent dopaminergic control of foraging in Drosophila. Sci Rep 2018; 8(1): 5777.
[http://dx.doi.org/10.1038/s41598-018-24217-1] [PMID: 29636522]
[182]
Azanchi R, Kaun KR, Heberlein U. Competing dopamine neurons drive oviposition choice for ethanol in Drosophila. Proc Natl Acad Sci USA 2013; 110(52): 21153-8.
[http://dx.doi.org/10.1073/pnas.1320208110] [PMID: 24324162]
[183]
Liu Q, Tabuchi M, Liu S, et al. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science 2017; 356(6337): 534-9.
[http://dx.doi.org/10.1126/science.aal3245] [PMID: 28473588]
[184]
Koundakjian EJ, Cowan DM, Hardy RW, Becker AH. The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 2004; 167(1): 203-6.
[http://dx.doi.org/10.1534/genetics.167.1.203] [PMID: 15166147]
[185]
Bauer H, Demerec M, Kaufmann BP. X-ray induced chromosomal alterations in Drosophila melanogaster. Genetics 1938; 23(6): 610-30.
[http://dx.doi.org/10.1093/genetics/23.6.610] [PMID: 17246905]
[186]
Vaccaro A, Issa AR, Seugnet L, Birman S, Klarsfeld A. Drosophila clock is required in brain pacemaker neurons to prevent premature locomotor aging independently of its circadian function. PLoS Genet 2017; 13(1): e1006507.
[http://dx.doi.org/10.1371/journal.pgen.1006507] [PMID: 28072817]
[187]
Marella S, Mann K, Scott K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 2012; 73(5): 941-50.
[http://dx.doi.org/10.1016/j.neuron.2011.12.032] [PMID: 22405204]
[188]
Lee PT, Lin HW, Chang YH, et al. Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proc Natl Acad Sci USA 2011; 108(33): 13794-9.
[http://dx.doi.org/10.1073/pnas.1019483108] [PMID: 21808003]
[189]
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4: e03868.
[http://dx.doi.org/10.7554/eLife.03868] [PMID: 25564731]
[190]
Alekseyenko OV, Chan YB, Fernandez MP, Bülow T, Pankratz MJ, Kravitz EA. Single serotonergic neurons that modulate aggression in Drosophila. Curr Biol 2014; 24(22): 2700-7.
[http://dx.doi.org/10.1016/j.cub.2014.09.051] [PMID: 25447998]
[191]
Xu L, He J, Kaiser A, et al. A single pair of serotonergic neurons counteracts serotonergic inhibition of ethanol attraction in Drosophila. PLoS One 2016; 11(12): e0167518.
[http://dx.doi.org/10.1371/journal.pone.0167518] [PMID: 27936023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy