Review Article

铋基纳米材料如何作为肿瘤诊断和治疗的很有前途的治疗药物?

卷 29, 期 11, 2022

发表于: 06 August, 2021

页: [1866 - 1890] 页: 25

弟呕挨: 10.2174/0929867328666210806123008

价格: $65

摘要

肿瘤微环境的复杂性和肿瘤的多样性严重影响了治疗效果,因此,为了提高疗效,临床研究的重点已逐渐从单一治疗转向联合治疗。多种单一疗法之间的协同增强相互作用主要促成了多模式合作治疗的诞生,其治疗的效果明显强于任何单一疗法。此外,对肿瘤位置的准确诊断对治疗也是至关重要的。铋基纳米材料(NMs)具有其独特的特性,包括低毒性、优良的光热转换效率以及高x射线计算机断层扫描和光声成像能力,具有巨大的性能,是很有前途的治疗平台。在这篇文章中,我们将简要介绍肿瘤微环境的主要特性及其对纳米医学作用机制的影响和目前铋的进展诊断和光热治疗使用铋联合疗法,这可能为您提供一种新的方法克服耐药性和缺氧。最后,本文讨论了这一有前景领域的进一步挑战和前景,并提出了铋纳米纳米的一些设计技巧,希望为研究人员提供一些灵感,为设计安全有效的癌症纳米治疗药物提供帮助。

关键词: 基于铋的NMs,光热治疗,治疗剂,癌症诊断和治疗,x射线计算机断层扫描成像,光声成像。

[1]
Santana-Viera, S.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z. Cytostatic drugs in environmental samples: An update on the extraction and determination procedures, TrAC. Trends Analyt. Chem., 2016, 80, 373-386.
[http://dx.doi.org/10.1016/j.trac.2015.08.016]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2020, 70(4), 313-313.
[http://dx.doi.org/10.3322/caac.21609] [PMID: 32767693]
[3]
Middleton, D.R.S.; McCormack, V.A.; Watts, M.J.; Schüz, J. Environmental geochemistry and cancer: a pertinent global health problem requiring interdisciplinary collaboration. Environ. Geochem. Health, 2020, 42(4), 1047-1056.
[http://dx.doi.org/10.1007/s10653-019-00303-9] [PMID: 31054071]
[4]
Chen, Y.; Wang, A-J.; Yuan, P-X.; Luo, X.; Xue, Y.; Feng, J.J. Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens. Bioelectron., 2019, 132, 294-301.
[http://dx.doi.org/10.1016/j.bios.2019.02.057] [PMID: 30884316]
[5]
Su, S.; Sun, Q.; Wan, L.; Gu, X.; Zhu, D.; Zhou, Y.; Chao, J.; Wang, L. Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification. Biosens. Bioelectron., 2019, 140, 111353.
[http://dx.doi.org/10.1016/j.bios.2019.111353] [PMID: 31150982]
[6]
Guo, Z.; Zhu, S.; Yong, Y. Synthesis of BSA-coated Bioi@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater., 2017, 29
[http://dx.doi.org/10.1002/adma.201704136]]
[7]
Zhou, M.; Tian, M.; Li, C. copper-based nanomaterials for cancer imaging and therapy. Bioconjug. Chem., 2016, 27(5), 1188-1199.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00156] [PMID: 27094828]
[8]
Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater., 2019, 31(9), e1800662.
[http://dx.doi.org/10.1002/adma.201800662] [PMID: 30039878]
[9]
Ren, L.; Liu, X.; Ji, T.; Deng, G.; Liu, F.; Yuan, H.; Yu, J.; Hu, J.; Lu, J. “all-in-one” theranostic agent with seven functions based on bi-doped metal chalcogenide nanoflowers. ACS Appl. Mater. Interfaces, 2019, 11(49), 45467-45478.
[http://dx.doi.org/10.1021/acsami.9b16962] [PMID: 31718131]
[10]
Hirayama, T.; Mukaimine, A.; Nishigaki, K.; Tsuboi, H.; Hirosawa, S.; Okuda, K.; Ebihara, M.; Nagasawa, H. Bismuth-rhodamine: a new red light-excitable photosensitizer. Dalton Trans., 2017, 46(46), 15991-15995.
[http://dx.doi.org/10.1039/C7DT03194G] [PMID: 28983547]
[11]
Liu, Y.; Zhuang, J.; Zhang, X.; Yue, C.; Zhu, N.; Yang, L.; Wang, Y.; Chen, T.; Wang, Y.; Zhang, L.W. Autophagy associated cytotoxicity and cellular uptake mechanisms of bismuth nanoparticles in human kidney cells. Toxicol. Lett., 2017, 275, 39-48.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.014] [PMID: 28445739]
[12]
Brown, A.L.; Naha, P.C.; Benavides-Montes, V.; Litt, H.I.; Goforth, A.M.; Cormode, D.P. Synthesis, X-ray opacity, and biological compatibility of ultra-high payload elemental bismuth nanoparticle x-ray contrast agents. Chem. Mater., 2014, 26(7), 2266-2274.
[http://dx.doi.org/10.1021/cm500077z] [PMID: 24803727]
[13]
Deng, J.; Xu, S.; Hu, W.; Xun, X.; Zheng, L.; Su, M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials, 2018, 154, 24-33.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.048] [PMID: 29120816]
[14]
Li, H.; Wang, R.; Sun, H. Systems approaches for unveiling the mechanism of action of bismuth drugs: new medicinal applications beyond Helicobacter pylori infection. Acc. Chem. Res., 2019, 52(1), 216-227.
[http://dx.doi.org/10.1021/acs.accounts.8b00439] [PMID: 30596427]
[15]
Liu, J.; Deng, Y.; Qin, X.; Li, B.; Zhang, J.; Xu, Y.; Ouyang, R.; Li, Y.; Miao, Y.; Sun, Y. Ultrafast synthesizing bismuth mesoporous nanolitchi radiosensitizer loading high dose DOX for CT-guided enhanced chemoradiotherapy. ACS Appl. Mater. Interfaces, 2019, 11(46), 42932-42942.
[http://dx.doi.org/10.1021/acsami.9b13647] [PMID: 31588738]
[16]
Lei, P.; An, R.; Zhang, P. Ultrafast synthesis of ultrasmall poly(vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal ct/photothermal-imaging-guided photothermal therapy. Adv. Funct. Mater., 2017, 27.
[http://dx.doi.org/10.1002/adfm.201702018]
[17]
Yang, S.; Li, Z.; Wang, Y.; Fan, X.; Miao, Z.; Hu, Y.; Li, Z.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional Bi@PPy-PEG core-shell nanohybrids for dual-modal imaging and photothermal therapy. ACS Appl. Mater. Interfaces, 2018, 10(2), 1605-1615.
[http://dx.doi.org/10.1021/acsami.7b17838] [PMID: 29272573]
[18]
Song, Y.; Wang, Y.; Wang, S. Immune-adjuvant loaded Bi2Se3 nanocage for photothermal-improved PD-L1 checkpoint blockade immune-tumor metastasis therapy. Nano Res., 2019, 12, 1770-1780.
[http://dx.doi.org/10.1007/s12274-019-2341-8]
[19]
Zheng, Z.; Chen, Q.; Dai, R.; Jia, Z.; Yang, C.; Peng, X.; Zhang, R. A continuous stimuli-responsive system for NIR-II fluorescence/photoacoustic imaging guided photothermal/gas synergistic therapy. Nanoscale, 2020, 12(21), 11562-11572.
[http://dx.doi.org/10.1039/D0NR02543G] [PMID: 32432283]
[20]
Feng, L.; Gai, S.; He, F.; Yang, P.; Zhao, Y. Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics. ACS Nano, 2020, 14(6), 7245-7258.
[http://dx.doi.org/10.1021/acsnano.0c02458] [PMID: 32432848]
[21]
Ma, Y.; Zhang, D-Y.; Peng, Z.; Guan, S.; Zhai, J. Delivery of platinum(IV) prodrugs via Bi2Te3 nanoparticles for photothermal-chemotherapy and photothermal/photoacoustic imaging. Mol. Pharm., 2020, 17(9), 3403-3411.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00458] [PMID: 32692573]
[22]
Li, X.E.; Yang, X.T.; Wu, R.X. Research progress of response strategies based on tumor microenvironment in drug delivery systems. J. Nanopart. Res., 2021, 23, 64.
[http://dx.doi.org/10.1007/s11051-020-05136-7]
[23]
Ou, K.; Xu, X.; Guan, S. Nanodrug carrier based on poly(ursolic acid) with self‐anticancer activity against colorectal cancer. Adv. Funct. Mater., 2019, 30, 1907857.
[http://dx.doi.org/10.1002/adfm.201907857]
[24]
Rabiee, S.; Tavakol, S.; Barati, M.; Joghataei, M.T. Autophagic, apoptotic, and necrotic cancer cell fates triggered by acidic pH microenvironment. J. Cell. Physiol., 2019, 234(7), 12061-12069.
[http://dx.doi.org/10.1002/jcp.27876] [PMID: 30515813]
[25]
Li, S.; Xiong, N.; Peng, Y.; Tang, K.; Bai, H.; Lv, X.; Jiang, Y.; Qin, X.; Yang, H.; Wu, C.; Zhou, P.; Liu, Y. Acidic pHe regulates cytoskeletal dynamics through conformational integrin β1 activation and promotes membrane protrusion. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(7), 2395-2408.
[http://dx.doi.org/10.1016/j.bbadis.2018.04.019] [PMID: 29698684]
[26]
Tavakol, S. Acidic pH derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. Med. Hypotheses, 2014, 83(6), 668-672.
[http://dx.doi.org/10.1016/j.mehy.2014.09.014] [PMID: 25459130]
[27]
Malekimusavi, H.; Ghaemi, A.; Masoudi, G.; Chogan, F.; Rashedi, H.; Yazdian, F.; Omidi, M.; Javadi, S.; Haghiralsadat, B.F.; Teimouri, M.; Faal Hamedani, N. Graphene oxide-l-arginine nanogel: A pH-sensitive fluorouracil nanocarrier. Biotechnol. Appl. Biochem., 2019, 66(5), 772-780.
[http://dx.doi.org/10.1002/bab.1768] [PMID: 31119802]
[28]
Tang, W.; Fan, W.; Wang, Z.; Zhang, W.; Zhou, S.; Liu, Y.; Yang, Z.; Shao, E.; Zhang, G.; Jacobson, O.; Shan, L.; Tian, R.; Cheng, S.; Lin, L.; Dai, Y.; Shen, Z.; Niu, G.; Xie, J.; Chen, X. Acidity/reducibility dual-responsive hollow mesoporous organosilica nanoplatforms for tumor-specific self-assembly and synergistic therapy. ACS Nano, 2018, 12(12), 12269-12283.
[http://dx.doi.org/10.1021/acsnano.8b06058] [PMID: 30418749]
[29]
Zhang, Q.; Chen, J.; Ma, M. A Bioenvironment-responsive versatile nanoplatform enabling rapid clearance and effective tumor homing for oxygen-enhanced radiotherapy. Chem. Mater., 2018, 30, 5412-5421.
[http://dx.doi.org/10.1021/acs.chemmater.8b02251]
[30]
Zhang, Y.; Chang, J.; Huang, F.; Yang, L.; Ren, C.; Ma, L.; Zhang, W.; Dong, H.; Liu, J.; Liu, J. Acid-triggered in situ aggregation of gold nanoparticles for multimodal tumor imaging and photothermal therapy. ACS Biomater. Sci. Eng., 2019, 5(3), 1589-1601.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01623] [PMID: 33405632]
[31]
Shen, Q.; Xu, L.; Li, R.; Wu, G.; Li, S.; Saw, P.E.; Zhou, Y.; Xu, X. A tumor microenvironment (TME)-responsive nanoplatform for systemic saporin delivery and effective breast cancer therapy. Chem. Commun. (Camb.), 2021, 57(20), 2563-2566.
[http://dx.doi.org/10.1039/D0CC07808E] [PMID: 33586714]
[32]
Godet, I.; Shin, Y.J.; Ju, J.A.; Ye, I.C.; Wang, G.; Gilkes, D.M. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat. Commun., 2019, 10(1), 4862.
[http://dx.doi.org/10.1038/s41467-019-12412-1] [PMID: 31649238]
[33]
Lequeux, A.; Noman, M.Z.; Xiao, M.; Sauvage, D.; Van Moer, K.; Viry, E.; Bocci, I.; Hasmim, M.; Bosseler, M.; Berchem, G.; Janji, B. Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Lett., 2019, 458, 13-20.
[http://dx.doi.org/10.1016/j.canlet.2019.05.021] [PMID: 31136782]
[34]
Ma, S.; Zhou, J.; Zhang, Y.; Yang, B.; He, Y.; Tian, C.; Xu, X.; Gu, Z. An oxygen self-sufficient fluorinated nanoplatform for relieved tumor hypoxia and enhanced photodynamic therapy of cancers. ACS Appl. Mater. Interfaces, 2019, 11(8), 7731-7742.
[http://dx.doi.org/10.1021/acsami.8b19840] [PMID: 30694643]
[35]
Hoffmann, C.; Mao, X.; Brown-Clay, J.; Moreau, F.; Al Absi, A.; Wurzer, H.; Sousa, B.; Schmitt, F.; Berchem, G.; Janji, B.; Thomas, C. Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci. Rep., 2018, 8(1), 10191.
[http://dx.doi.org/10.1038/s41598-018-28637-x] [PMID: 29976963]
[36]
Im, S.; Lee, J.; Park, D.; Park, A.; Kim, Y.M.; Kim, W.J. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano, 2019, 13(1), 476-488.
[http://dx.doi.org/10.1021/acsnano.8b07045] [PMID: 30563320]
[37]
Revuri, V.; Cherukula, K.; Nafiujjaman, M.; Vijayan, V.; Jeong, Y.Y.; Park, I.K.; Lee, Y.K. In situ oxygenic nanopods targeting tumor adaption to hypoxia potentiate image-guided photothermal therapy. ACS Appl. Mater. Interfaces, 2019, 11(22), 19782-19792.
[http://dx.doi.org/10.1021/acsami.9b03889] [PMID: 31088067]
[38]
Xu, J.; Han, W.; Yang, P. Tumor microenvironment-responsive mesoporous MnO2-coated upconversion nanoplatform for self-enhanced tumor theranostics. Adv. Funct. Mater., 2018, 28, 1803804.
[http://dx.doi.org/10.1002/adfm.201803804]
[39]
Zhen, W.; Liu, Y.; Jia, X. Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horiz., 2019, 4, 720-726.
[http://dx.doi.org/10.1039/C8NH00440D]
[40]
Li, Z.; Hu, Y.; Miao, Z.; Xu, H.; Li, C.; Zhao, Y.; Li, Z.; Chang, M.; Ma, Z.; Sun, Y.; Besenbacher, F.; Huang, P.; Yu, M. Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett., 2018, 18(11), 6778-6788.
[http://dx.doi.org/10.1021/acs.nanolett.8b02639] [PMID: 30288978]
[41]
Song, Y.; Wang, Y.; Zhu, Y. Biomodal tumor-targeted and redox-responsive Bi2Se3 hollow nanocubes for MSOT/CT imaging guided synergistic low-temperature photothermal radiotherapy. Adv. Healthc. Mater., 2019., 1900250.
[http://dx.doi.org/10.1002/adhm.201900250]
[42]
Badrigilan, S.; Shaabani, B.; Gharehaghaji, N.; Mesbahi, A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: “Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagn. Photodyn. Ther., 2019, 25, 504-514.
[http://dx.doi.org/10.1016/j.pdpdt.2018.10.021] [PMID: 30385298]
[43]
Li, Y.; Liu, J.; Qin, X.; Deng, Y.; Zhang, J.; Sun, Y. Ultrafast synthesis of fluorine-18 doped bismuth based upconversion nanophosphors for tri-modal CT/PET/UCL imaging in vivo. Chem. Commun. (Camb.), 2019, 55(50), 7259-7262.
[http://dx.doi.org/10.1039/C9CC02677K] [PMID: 31168526]
[44]
Liu, J.; Wang, P.; Zhang, X.; Wang, L.; Wang, D.; Gu, Z.; Tang, J.; Guo, M.; Cao, M.; Zhou, H.; Liu, Y.; Chen, C. Rapid degradation and high renal clearance of Cu3BiS3 nanodots for efficient cancer diagnosis and photothermal therapy in vivo. ACS Nano, 2016, 10(4), 4587-4598.
[http://dx.doi.org/10.1021/acsnano.6b00745] [PMID: 27014806]
[45]
Wang, Y.; Wu, Y.; Liu, Y. BSA-mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Adv. Funct. Mater., 2016, 26, 5335-5344.
[http://dx.doi.org/10.1002/adfm.201601341]
[46]
Cao, Y.; Wu, T.; Dai, W. TiO2 nanosheets with the au nanocrystal-decorated edge for mitochondria-targeting Enhanced sonodynamic therapy. Chem. Mater., 2019, 31, 9105-9114.
[http://dx.doi.org/10.1021/acs.chemmater.9b03430]
[47]
Zhang, C.; Ren, J.; Hua, J.; Xia, L.; He, J.; Huo, D.; Hu, Y. Multifunctional Bi2WO6 nanoparticles for CT-guided photothermal and oxygen-free photodynamic therapy. ACS Appl. Mater. Interfaces, 2018, 10(1), 1132-1146.
[http://dx.doi.org/10.1021/acsami.7b16000] [PMID: 29250955]
[48]
Li, A.; Li, X.; Yu, X.; Li, W.; Zhao, R.; An, X.; Cui, D.; Chen, X.; Li, W. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials, 2017, 112, 164-175.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.024] [PMID: 27768971]
[49]
Lei, P.; An, R.; Zheng, X.; Zhang, P.; Du, K.; Zhang, M.; Dong, L.; Gao, X.; Feng, J.; Zhang, H. Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS2 nanodots by “rookie method” for in vivo dual-modal CT/PA imaging and simultaneous photothermal therapy. Nanoscale, 2018, 10(35), 16765-16774.
[http://dx.doi.org/10.1039/C8NR04870C] [PMID: 30156243]
[50]
Mauri, M.; Collico, V.; Morelli, L. MnO Nanoparticles embedded in functional polymers as T1 contrast agents for magnetic resonance imaging. ACS Appl. Nano Mater., 2020, 3, 3787-3797.
[http://dx.doi.org/10.1021/acsanm.0c00474]
[51]
Schuerle, S.; Furubayashi, M.; Soleimany, A.P.; Gwisai, T.; Huang, W.; Voigt, C.; Bhatia, S.N. Genetic encoding of targeted magnetic resonance imaging contrast agents for tumor imaging. ACS Synth. Biol., 2020, 9(2), 392-401.
[http://dx.doi.org/10.1021/acssynbio.9b00416] [PMID: 31922737]
[52]
Detappe, A.; Thomas, E.; Tibbitt, M.W.; Kunjachan, S.; Zavidij, O.; Parnandi, N.; Reznichenko, E.; Lux, F.; Tillement, O.; Berbeco, R. Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance-computed tomography image guided radiation therapy. Nano Lett., 2017, 17(3), 1733-1740.
[http://dx.doi.org/10.1021/acs.nanolett.6b05055] [PMID: 28145723]
[53]
Lv, X.; Wang, X.; Li, T.; Wei, C.; Tang, Y.; Yang, T.; Wang, Q.; Yang, X.; Chen, H.; Shen, J.; Yang, H.; Ke, H. Rationally designed monodisperse Gd2 O3/Bi2 S3 hybrid nanodots for efficient cancer theranostics. Small, 2018, 14(49), e1802904.
[http://dx.doi.org/10.1002/smll.201802904] [PMID: 30358916]
[54]
Chen, X.; Wang, R.; Liu, D. Prussian blue analogue islands on BiOCl-Se nanosheets for MR/CT imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Bio Mater., 2019, 2, 1213-1224.
[http://dx.doi.org/10.1021/acsabm.8b00786]
[55]
Cheng, L.; Shen, S.; Shi, S.; Yi, Y.; Wang, X.; Song, G.; Yang, K.; Liu, G.; Barnhart, T.E.; Cai, W.; Liu, Z. FeSe2-Decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv. Funct. Mater., 2016, 26(13), 2185-2197.
[http://dx.doi.org/10.1002/adfm.201504810] [PMID: 27110230]
[56]
Song, G.; Liang, C.; Gong, H.; Li, M.; Zheng, X.; Cheng, L.; Yang, K.; Jiang, X.; Liu, Z. Core-Shell MnSe@Bi2 Se3 Fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater., 2015, 27(40), 6110-6117.
[http://dx.doi.org/10.1002/adma.201503006] [PMID: 26331476]
[57]
Wang, Y.; Cai, D.; Wu, H.; Fu, Y.; Cao, Y.; Zhang, Y.; Wu, D.; Tian, Q.; Yang, S. Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale, 2018, 10(9), 4452-4462.
[http://dx.doi.org/10.1039/C7NR07458A] [PMID: 29451575]
[58]
Ma, M.; Zhu, H.; Ling, J.; Gong, S.; Zhang, Y.; Xia, Y.; Tang, Z. Quasi-amorphous and hierarchical Fe2O3 supraparticles: Active T1-weighted magnetic resonance imaging in vivo and renal clearance. ACS Nano, 2020, 14(4), 4036-4044.
[http://dx.doi.org/10.1021/acsnano.9b08570] [PMID: 32196312]
[59]
Lei, P.; An, R.; Yao, S.; Wang, Q.; Dong, L.; Xu, X.; Du, K.; Feng, J.; Zhang, H. Ultrafast synthesis of novel hexagonal phase NaBiF4 upconversion nanoparticles at room temperature. Adv. Mater., 2017, 29(22), 1700505.
[http://dx.doi.org/10.1002/adma.201700505] [PMID: 28370594]
[60]
Lin, B.; Liu, J.; Wang, Y. Enhanced upconversion luminescence-guided synergistic antitumor therapy based on photodynamic therapy and immune checkpoint blockade. Chem. Mater., 2020, 32, 4627-4640.
[http://dx.doi.org/10.1021/acs.chemmater.0c01031]
[61]
Song, Y.; Lin, Z.; Kong, L. Meso-functionalization of silk fibroin by upconversion fluorescence and near infrared in vivo biosensing. Adv. Funct. Mater., 2017, 27, 1700628.
[http://dx.doi.org/10.1002/adfm.201700628]
[62]
Zhao, S.; Tian, R.; Shao, B.; Feng, Y.; Yuan, S.; Dong, L.; Zhang, L.; Liu, K.; Wang, Z.; You, H. Designing of UCNPs@Bi@SiO2 hybrid theranostic nanoplatforms for simultaneous multimodal imaging and photothermal therapy. ACS Appl. Mater. Interfaces, 2019, 11(1), 394-402.
[http://dx.doi.org/10.1021/acsami.8b19304] [PMID: 30543291]
[63]
Chen, D.; Wang, F.; Bi, J. Controlled synthesis and upconversion luminescence properties of Yb3+/Er3+ co-doped Bi2O3 nanospheres for optical and X-ray computed tomography imaging. Opt. Mater., 2020, 102, 109827.
[http://dx.doi.org/10.1016/j.optmat.2020.109827]
[64]
Li, Z.; Fan, X.; Liu, J.; Hu, Y.; Yang, Y.; Li, Z.; Sun, Y.; Chen, C.; Yu, M. Mesoporous silica-coated bismuth nanohybrids as a new platform for photoacoustic/computed tomography imaging and synergistic chemophotothermal therapy. Nanomedicine (Lond.), 2018, 13(18), 2283-2300.
[http://dx.doi.org/10.2217/nnm-2018-0106] [PMID: 30284502]
[65]
Tham, H.P.; Xu, K.; Lim, W.Q.; Chen, H.; Zheng, M.; Thng, T.G.S.; Venkatraman, S.S.; Xu, C.; Zhao, Y. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano, 2018, 12(12), 11936-11948.
[http://dx.doi.org/10.1021/acsnano.8b03007] [PMID: 30444343]
[66]
Han, Y.; Ouyang, J.; Li, Y.; Wang, F.; Jiang, J.H. Engineering H2O2 self-supplying nanotheranostic platform for targeted and imaging-guided chemodynamic therapy. ACS Appl. Mater. Interfaces, 2020, 12(1), 288-297.
[http://dx.doi.org/10.1021/acsami.9b18676] [PMID: 31834761]
[67]
Zhang, H.; Li, Y.; Pan, Z.; Chen, Y.; Fan, Z.; Tian, H.; Zhou, S.; Zhang, Y.; Shang, J.; Jiang, B.; Wang, F.; Luo, F.; Hou, Z. Multifunctional nanosystem based on graphene oxide for synergistic multistage tumor-targeting and combined chemo-photothermal therapy. Mol. Pharm., 2019, 16(5), 1982-1998.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01335] [PMID: 30892898]
[68]
Meng, X.; Zhang, B.; Yi, Y.; Cheng, H.; Wang, B.; Liu, Y.; Gong, T.; Yang, W.; Yao, Y.; Wang, H.; Bu, W. Accurate and real-time temperature monitoring during MR imaging guided PTT. Nano Lett., 2020, 20(4), 2522-2529.
[http://dx.doi.org/10.1021/acs.nanolett.9b05267] [PMID: 32208714]
[69]
Cao, Q.; Guo, X.; Zhang, W.; Guan, G.; Huang, X.; He, S.A.; Xu, M.; Zou, R.; Lu, X.; Hu, J. Flower-like Fe7S8/Bi2S3 superstructures with improved near-infrared absorption for efficient chemo-photothermal therapy. Dalton Trans., 2019, 48(10), 3360-3368.
[http://dx.doi.org/10.1039/C8DT04280B] [PMID: 30785146]
[70]
Dou, R.; Du, Z.; Bao, T.; Dong, X.; Zheng, X.; Yu, M.; Yin, W.; Dong, B.; Yan, L.; Gu, Z. The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer. Nanoscale, 2016, 8(22), 11531-11542.
[http://dx.doi.org/10.1039/C6NR01543C] [PMID: 27203525]
[71]
Chen, M.; Tang, S.; Guo, Z.; Wang, X.; Mo, S.; Huang, X.; Liu, G.; Zheng, N. Core-shell Pd@Au nanoplates as theranostic agents for in vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv. Mater., 2014, 26(48), 8210-8216.
[http://dx.doi.org/10.1002/adma.201404013] [PMID: 25363309]
[72]
Liu, S.; Wang, L.; Lin, M.; Wang, D.; Song, Z.; Li, S.; Ge, R.; Zhang, X.; Liu, Y.; Li, Z.; Sun, H.; Yang, B.; Zhang, H. Cu(II)-doped polydopamine-coated gold nanorods for tumor theranostics. ACS Appl. Mater. Interfaces, 2017, 9(51), 44293-44306.
[http://dx.doi.org/10.1021/acsami.7b13643] [PMID: 29235846]
[73]
Xuan, Y.; Yang, X-Q.; Song, Z-Y. High-security multifunctional nano-bismuth-sphere-cluster prepared from oral gastric drug for CT/PA dual-mode imaging and chemo-photothermal combined therapy in vivo. Adv. Funct. Mater., 2019, 29, 1900017.
[http://dx.doi.org/10.1002/adfm.201900017]
[74]
Li, L.; Lu, Y.; Jiang, C.; Zhu, Y.; Yang, X.; Hu, X.; Lin, Z.; Zhang, Y.; Peng, M.; Xia, H.; Mao, C. Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater., 2018, 28(5), 1704623.
[http://dx.doi.org/10.1002/adfm.201704623] [PMID: 29706855]
[75]
Lu, Y.; Li, L.; Lin, Z.; Li, M.; Hu, X.; Zhang, Y.; Peng, M.; Xia, H.; Han, G. Enhancing osteosarcoma killing and CT imaging using ultrahigh drug loading and nir-responsive bismuth sulfide@mesoporous silica nanoparticles. Adv. Healthc. Mater., 2018, 7(19), e1800602.
[http://dx.doi.org/10.1002/adhm.201800602] [PMID: 30102469]
[76]
Dutta, D.; Sailapu, S.K.; Simon, A.T.; Ghosh, S.S.; Chattopadhyay, A. Gold-nanocluster-embedded mucin nanoparticles for photodynamic therapy and bioimaging. Langmuir, 2019, 35(32), 10475-10483.
[http://dx.doi.org/10.1021/acs.langmuir.9b00998] [PMID: 31291114]
[77]
Cai, X.; Xie, Z.; Ding, B.; Shao, S.; Liang, S.; Pang, M.; Lin, J. Monodispersed copper(I)-based nano metal-organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy. Adv. Sci. (Weinh.), 2019, 6(15), 1900848.
[http://dx.doi.org/10.1002/advs.201900848] [PMID: 31406677]
[78]
Ke, Z.; Xie, A.; Chen, J.; Zou, Z.; Shen, L.; Dai, Y.; Zou, D. Naturally available hypericin undergoes electron transfer for type I photodynamic and photothermal synergistic therapy. Biomater. Sci., 2020, 8(9), 2481-2487.
[http://dx.doi.org/10.1039/D0BM00021C] [PMID: 32202278]
[79]
Guo, W.; Wang, F.; Ding, D. TiO2-x based nanoplatform for bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater., 2017, 29, 9262-9274.
[http://dx.doi.org/10.1021/acs.chemmater.7b03241]
[80]
Wang, J.; Sun, J.; Hu, W. A Porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater., 2020, 32, 2001862.
[http://dx.doi.org/10.1002/adma.202001862]
[81]
Zeng, L.; Zhao, H.; Zhu, Y.; Chen, S.; Zhang, Y.; Wei, D.; Sun, J.; Fan, H. A one-pot synthesis of multifunctional Bi2S3 nanoparticles and the construction of core-shell Bi2S3@Ce6-CeO2 nanocomposites for NIR-triggered phototherapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(18), 4093-4105.
[http://dx.doi.org/10.1039/D0TB00080A] [PMID: 32249879]
[82]
Cheng, Y.; Kong, X.; Chang, Y.; Feng, Y.; Zheng, R.; Wu, X.; Xu, K.; Gao, X.; Zhang, H. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv. Mater., 2020, 32(11), e1908109.
[http://dx.doi.org/10.1002/adma.201908109] [PMID: 32022983]
[83]
Yang, H.; Zhang, Y.; Song, J. Boosting phototherapeutic efficiency with single NIR laser-activated ultrasmall bismuth sulfide quantum dots. Chem. Eng. J., 2019, 375, 121941.
[http://dx.doi.org/10.1016/j.cej.2019.121941]
[84]
Sun, M.; Yang, D.; Wang, C.; Bi, H.; Zhou, Y.; Wang, X.; Xu, J.; He, F.; Gai, S.; Yang, P. AgBiS2-TPP nanocomposite for mitochondrial targeting photodynamic therapy, photothermal therapy and bio-imaging under 808 nm NIR laser irradiation. Biomater. Sci., 2019, 7(11), 4769-4781.
[http://dx.doi.org/10.1039/C9BM01077G] [PMID: 31509113]
[85]
Cheng, J.; Wang, W.; Xu, X. AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy. Mater. Sci. Eng. C-Mater, 2020, 107, 110324.
[http://dx.doi.org/10.1016/j.msec.2019.110324]]
[86]
Zheng, Z.; Chen, Q.; Rong, S.; Dai, R.; Jia, Z.; Peng, X.; Zhang, R. Two-stage activated nano-truck enhanced specific aggregation and deep delivery for synergistic tumor ablation. Nanoscale, 2020, 12(29), 15845-15856.
[http://dx.doi.org/10.1039/D0NR03661G] [PMID: 32696787]
[87]
Liu, F.; Lin, L.; Zhang, Y.; Wang, Y.; Sheng, S.; Xu, C.; Tian, H.; Chen, X. A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater., 2019, 31(40), e1902885.
[http://dx.doi.org/10.1002/adma.201902885] [PMID: 31423690]
[88]
Shi, Y.; Zhang, J.; Huang, H.; Cao, C.; Yin, J.; Xu, W.; Wang, W.; Song, X.; Zhang, Y.; Dong, X. Fe-doped polyoxometalate as acid-aggregated nanoplatform for NIR-II photothermal-enhanced chemodynamic therapy. Adv. Healthc. Mater., 2020, 9(9), e2000005.
[http://dx.doi.org/10.1002/adhm.202000005] [PMID: 32181991]
[89]
Hu, K.; Xie, L.; Zhang, Y.; Hanyu, M.; Yang, Z.; Nagatsu, K.; Suzuki, H.; Ouyang, J.; Ji, X.; Wei, J.; Xu, H.; Farokhzad, O.C.; Liang, S.H.; Wang, L.; Tao, W.; Zhang, M.R. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat. Commun., 2020, 11(1), 2778.
[http://dx.doi.org/10.1038/s41467-020-16513-0] [PMID: 32513979]
[90]
Sun, H.; Zhang, Y.; Chen, S.; Wang, R.; Chen, Q.; Li, J.; Luo, Y.; Wang, X.; Chen, H. Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Appl. Mater. Interfaces, 2020, 12(27), 30145-30154.
[http://dx.doi.org/10.1021/acsami.0c07013] [PMID: 32515573]
[91]
Yao, Y.; Cai, Y.; Wu, G.; Wei, F.; Li, X.; Chen, H.; Wang, S. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (Co(x)Mn(3-x)O4) for Fenton-Like reaction in water. J. Hazard. Mater., 2015, 296, 128-137.
[http://dx.doi.org/10.1016/j.jhazmat.2015.04.014] [PMID: 25913679]
[92]
Lin, L-S.; Huang, T.; Song, J.; Ou, X.Y.; Wang, Z.; Deng, H.; Tian, R.; Liu, Y.; Wang, J.F.; Liu, Y.; Yu, G.; Zhou, Z.; Wang, S.; Niu, G.; Yang, H.H.; Chen, X. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc., 2019, 141(25), 9937-9945.
[http://dx.doi.org/10.1021/jacs.9b03457] [PMID: 31199131]
[93]
Chen, Q.; Liang, C.; Sun, X.; Chen, J.; Yang, Z.; Zhao, H.; Feng, L.; Liu, Z. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA, 2017, 114(21), 5343-5348.
[http://dx.doi.org/10.1073/pnas.1701976114] [PMID: 28484000]
[94]
Chen, Q.; Luo, Y.; Du, W.; Liu, Z.; Zhang, S.; Yang, J.; Yao, H.; Liu, T.; Ma, M.; Chen, H. Clearable theranostic platform with a pH-independent chemodynamic therapy enhancement strategy for synergetic photothermal tumor therapy. ACS Appl. Mater. Interfaces, 2019, 11(20), 18133-18144.
[http://dx.doi.org/10.1021/acsami.9b02905] [PMID: 31046230]
[95]
Liu, X.; Liu, Y.; Wang, J.; Wei, T.; Dai, Z. Mild hyperthermia-enhanced enzyme-mediated tumor cell chemodynamic therapy. ACS Appl. Mater. Interfaces, 2019, 11(26), 23065-23071.
[http://dx.doi.org/10.1021/acsami.9b08257] [PMID: 31252482]
[96]
Liu, F.; Lin, L.; Sheng, S.; Xu, C.; Wang, Y.; Zhang, Y.; Wang, D.; Wu, J.; Li, Y.; Tian, H.; Chen, X. A glutathione-depleting chemodynamic therapy agent with photothermal and photoacoustic properties for tumor theranostics. Nanoscale, 2020, 12(3), 1349-1355.
[http://dx.doi.org/10.1039/C9NR09858E] [PMID: 31913380]
[97]
Zhao, Y.; Ding, B.; Xiao, X.; Jiang, F.; Wang, M.; Hou, Z.; Xing, B.; Teng, B.; Cheng, Z.; Ma, P.; Lin, J. Virus-like Fe3O4@Bi2S3 nanozymes with resistance-free apoptotic hyperthermia-augmented nanozymitic activity for enhanced synergetic cancer therapy. ACS Appl. Mater. Interfaces, 2020, 12(10), 11320-11328.
[http://dx.doi.org/10.1021/acsami.9b20661] [PMID: 32067461]
[98]
Huang, Y.; Huang, J.; Jiang, M. NIR-triggered theranostic Bi2S3 light transducer for on-demand NO release and synergistic gas/photothermal combination therapy of tumors. ACS Appl. Bio Mater., 2019, 2, 4769-4776.
[http://dx.doi.org/10.1021/acsabm.9b00522]
[99]
Li, S.; Song, X.; Zhu, W.; Chen, Y.; Zhu, R.; Wang, L.; Chen, X.; Song, J.; Yang, H. Light-Switchable yolk-mesoporous shell UCNPs@MgSiO3 for nitric oxide-evoked multidrug resistance reversal in cancer therapy. ACS Appl. Mater. Interfaces, 2020, 12(27), 30066-30076.
[http://dx.doi.org/10.1021/acsami.0c06102] [PMID: 32393026]
[100]
Ma, W.; Chen, X.; Fu, L.; Zhu, J.; Fan, M.; Chen, J.; Yang, C.; Yang, G.; Wu, L.; Mao, G.; Yang, X.; Mou, X.; Gu, Z.; Cai, X. Ultra-efficient antibacterial system based on photodynamic therapy and CO gas therapy for synergistic antibacterial and ablation biofilms. ACS Appl. Mater. Interfaces, 2020, 12(20), 22479-22491.
[http://dx.doi.org/10.1021/acsami.0c01967] [PMID: 32329344]
[101]
Zhang, C.; Zheng, D.W.; Li, C.X.; Zou, M.Z.; Yu, W.Y.; Liu, M.D.; Peng, S.Y.; Zhong, Z.L.; Zhang, X.Z. Hydrogen gas improves photothermal therapy of tumor and restrains the relapse of distant dormant tumor. Biomaterials, 2019, 223, 119472.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119472] [PMID: 31499254]
[102]
Yao, J.; Liu, Y.; Wang, J.; Jiang, Q.; She, D.; Guo, H.; Sun, N.; Pang, Z.; Deng, C.; Yang, W.; Shen, S. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials, 2019, 195, 51-62.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.029] [PMID: 30610993]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy