Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

转移性乳腺癌,向器官性和治疗学:综述

卷 21, 期 10, 2021

发表于: 05 August, 2021

页: [813 - 828] 页: 16

弟呕挨: 10.2174/1568009621666210806094410

价格: $65

摘要

乳腺癌的最后阶段包括癌细胞扩散到重要器官,如大脑、肝、肺和骨骼,这一过程被称为转移。一旦目标器官被转移性乳腺癌细胞所取代,其通常的功能就会受到损害,导致器官功能障碍和死亡。尽管对乳腺癌转移的研究意义重大,但它仍然是乳腺癌相关死亡的主要元凶。探索与乳腺癌转移起始和进展相关的复杂分子途径,可能会发现更有效的治疗这一毁灭性现象的方法。本文综述了近年来在理解乳腺癌转移、向器官性和治疗进展的复杂性方面的进展。

关键词: 乳腺癌,转移,转移相关基因,向器官性,侵袭,治疗。

Next »
图形摘要

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Gupta, G.P.; Massagué, J. Cancer metastasis: building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[3]
Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: a view of metastasis. J. Intern. Med., 2013, 274(2), 113-126.
[http://dx.doi.org/10.1111/joim.12084] [PMID: 23844915]
[4]
Kienast, Y.; von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med., 2010, 16(1), 116-122.
[http://dx.doi.org/10.1038/nm.2072] [PMID: 20023634]
[5]
Vanharanta, S.; Massagué, J. Origins of metastatic traits. Cancer Cell, 2013, 24(4), 410-421.
[http://dx.doi.org/10.1016/j.ccr.2013.09.007] [PMID: 24135279]
[6]
Fidler, I.J.; Gersten, D.M.; Hart, I.R. The biology of cancer invasion and metastasis. Adv. Cancer Res., 1978, 28, 149-250.
[http://dx.doi.org/10.1016/S0065-230X(08)60648-X] [PMID: 360795]
[7]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[8]
Naxerova, K.; Jain, R.K. Using tumour phylogenetics to identify the roots of metastasis in humans. Nat. Rev. Clin. Oncol., 2015, 12(5), 258-272.
[http://dx.doi.org/10.1038/nrclinonc.2014.238] [PMID: 25601447]
[9]
Liu, Q.; Zhang, H.; Jiang, X.; Qian, C.; Liu, Z.; Luo, D. Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol. Cancer, 2017, 16(1), 176.
[http://dx.doi.org/10.1186/s12943-017-0742-4] [PMID: 29197379]
[10]
Garner, H.; de Visser, K.E. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol., 2020, 20(8), 483-497.
[http://dx.doi.org/10.1038/s41577-019-0271-z] [PMID: 32024984]
[11]
Liu, Y.; Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell, 2016, 30(5), 668-681.
[http://dx.doi.org/10.1016/j.ccell.2016.09.011] [PMID: 27846389]
[12]
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[13]
Nguyen, D.X.; Bos, P.D.; Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer, 2009, 9(4), 274-284.
[http://dx.doi.org/10.1038/nrc2622] [PMID: 19308067]
[14]
Talmadge, J.E.; Fidler, I.J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res., 2010, 70(14), 5649-5669.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1040] [PMID: 20610625]
[15]
Klein, C.A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer, 2009, 9(4), 302-312.
[http://dx.doi.org/10.1038/nrc2627] [PMID: 19308069]
[16]
Hüsemann, Y.; Geigl, J.B.; Schubert, F.; Musiani, P.; Meyer, M.; Burghart, E.; Forni, G.; Eils, R.; Fehm, T.; Riethmüller, G.; Klein, C.A. Systemic spread is an early step in breast cancer. Cancer Cell, 2008, 13(1), 58-68.
[http://dx.doi.org/10.1016/j.ccr.2007.12.003] [PMID: 18167340]
[17]
Wan, L.; Pantel, K.; Kang, Y. Tumor metastasis: moving new biological insights into the clinic. Nat. Med., 2013, 19(11), 1450-1464.
[http://dx.doi.org/10.1038/nm.3391] [PMID: 24202397]
[18]
Minn, A.J.; Gupta, G.P.; Siegel, P.M.; Bos, P.D.; Shu, W.; Giri, D.D.; Viale, A.; Olshen, A.B.; Gerald, W.L.; Massagué, J. Genes that mediate breast cancer metastasis to lung. Nature, 2005, 436(7050), 518-524.
[http://dx.doi.org/10.1038/nature03799] [PMID: 16049480]
[19]
Kang, Y.; Siegel, P.M.; Shu, W.; Drobnjak, M.; Kakonen, S.M.; Cordón-Cardo, C.; Guise, T.A.; Massagué, J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 2003, 3(6), 537-549.
[http://dx.doi.org/10.1016/S1535-6108(03)00132-6] [PMID: 12842083]
[20]
Jin, L.; Zhang, Y.; Li, H.; Yao, L.; Fu, D.; Yao, X.; Xu, L.X.; Hu, X.; Hu, G. Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis. Cell Res., 2012, 22(9), 1356-1373.
[http://dx.doi.org/10.1038/cr.2012.90] [PMID: 22688893]
[21]
Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer, 2013, 108(3), 479-485.
[http://dx.doi.org/10.1038/bjc.2012.581] [PMID: 23299535]
[22]
Gandalovičová, A.; Vomastek, T.; Rosel, D.; Brábek, J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget, 2016, 7(18), 25022-25049.
[http://dx.doi.org/10.18632/oncotarget.7214] [PMID: 26872368]
[23]
Friedl, P.; Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer, 2003, 3(5), 362-374.
[http://dx.doi.org/10.1038/nrc1075] [PMID: 12724734]
[24]
Nieto, M.A. Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int. J. Dev. Biol., 2009, 53(8-10), 1541-1547.
[http://dx.doi.org/10.1387/ijdb.072410mn] [PMID: 19247945]
[25]
Hegerfeldt, Y.; Tusch, M.; Bröcker, E.B.; Friedl, P. Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies. Cancer Res., 2002, 62(7), 2125-2130.
[PMID: 11929834]
[26]
Li, D.M.; Feng, Y.M. Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res. Treat., 2011, 128(1), 7-21.
[http://dx.doi.org/10.1007/s10549-011-1499-x] [PMID: 21499686]
[27]
Cavallaro, U.; Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer, 2004, 4(2), 118-132.
[http://dx.doi.org/10.1038/nrc1276] [PMID: 14964308]
[28]
Christofori, G. New signals from the invasive front. Nature, 2006, 441(7092), 444-450.
[http://dx.doi.org/10.1038/nature04872] [PMID: 16724056]
[29]
Jie, X.X.; Zhang, X.Y.; Xu, C.J. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget, 2017, 8(46), 81558-81571.
[http://dx.doi.org/10.18632/oncotarget.18277] [PMID: 29113414]
[30]
Ota, I.; Li, X.Y.; Hu, Y.; Weiss, S.J. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20318-20323.
[http://dx.doi.org/10.1073/pnas.0910962106] [PMID: 19915148]
[31]
Micalizzi, D.S.; Christensen, K.L.; Jedlicka, P.; Coletta, R.D.; Barón, A.E.; Harrell, J.C.; Horwitz, K.B.; Billheimer, D.; Heichman, K.A.; Welm, A.L.; Schiemann, W.P.; Ford, H.L. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J. Clin. Invest., 2009, 119(9), 2678-2690.
[http://dx.doi.org/10.1172/JCI37815] [PMID: 19726885]
[32]
Christensen, K.L.; Patrick, A.N.; McCoy, E.L.; Ford, H.L. The six family of homeobox genes in development and cancer. Adv. Cancer Res., 2008, 101, 93-126.
[http://dx.doi.org/10.1016/S0065-230X(08)00405-3] [PMID: 19055944]
[33]
Blevins, M.A.; Towers, C.G.; Patrick, A.N.; Zhao, R.; Ford, H.L. The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin. Ther. Targets, 2015, 19(2), 213-225.
[http://dx.doi.org/10.1517/14728222.2014.978860] [PMID: 25555392]
[34]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[35]
Peinado, H.; Olmeda, D.; Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer, 2007, 7(6), 415-428.
[http://dx.doi.org/10.1038/nrc2131] [PMID: 17508028]
[36]
Zavadil, J.; Böttinger, E.P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005, 24(37), 5764-5774.
[http://dx.doi.org/10.1038/sj.onc.1208927] [PMID: 16123809]
[37]
Grusch, M.; Petz, M.; Metzner, T.; Oztürk, D.; Schneller, D.; Mikulits, W. The crosstalk of RAS with the TGF-β family during carcinoma progression and its implications for targeted cancer therapy. Curr. Cancer Drug Targets, 2010, 10(8), 849-857.
[http://dx.doi.org/10.2174/156800910793357943] [PMID: 20718708]
[38]
Massagué, J.; Wotton, D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J., 2000, 19(8), 1745-1754.
[http://dx.doi.org/10.1093/emboj/19.8.1745] [PMID: 10775259]
[39]
Danø, K.; Behrendt, N.; Høyer-Hansen, G.; Johnsen, M.; Lund, L.R.; Ploug, M.; Rømer, J. Plasminogen activation and cancer. Thromb. Haemost., 2005, 93(4), 676-681.
[http://dx.doi.org/10.1160/TH05-01-0054] [PMID: 15841311]
[40]
Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer, 2002, 2(3), 161-174.
[http://dx.doi.org/10.1038/nrc745] [PMID: 11990853]
[41]
Huang, H.Y.; Jiang, Z.F.; Li, Q.X.; Liu, J.Y.; Wang, T.; Zhang, R.; Zhao, J.; Xu, Y.M.; Bao, W.; Zhang, Y.; Jia, L.T.; Yang, A.G. Inhibition of human breast cancer cell invasion by siRNA against urokinase-type plasminogen activator. Cancer Invest., 2010, 28(7), 689-697.
[http://dx.doi.org/10.3109/07357901003735642] [PMID: 20636107]
[42]
Mitchell, K.; Svenson, K.B.; Longmate, W.M.; Gkirtzimanaki, K.; Sadej, R.; Wang, X.; Zhao, J.; Eliopoulos, A.G.; Berditchevski, F.; Dipersio, C.M. Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res., 2010, 70(15), 6359-6367.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4283] [PMID: 20631072]
[43]
Gocheva, V.; Zeng, W.; Ke, D.; Klimstra, D.; Reinheckel, T.; Peters, C.; Hanahan, D.; Joyce, J.A. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev., 2006, 20(5), 543-556.
[http://dx.doi.org/10.1101/gad.1407406] [PMID: 16481467]
[44]
Rolli, M.; Fransvea, E.; Pilch, J.; Saven, A.; Felding-Habermann, B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9482-9487.
[http://dx.doi.org/10.1073/pnas.1633689100] [PMID: 12874388]
[45]
Götte, M.; Yip, G.W. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res., 2006, 66(21), 10233-10237.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1464] [PMID: 17079438]
[46]
Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry, 1989, 28(4), 1737-1743.
[http://dx.doi.org/10.1021/bi00430a047] [PMID: 2541764]
[47]
Maxhimer, J.B.; Quiros, R.M.; Stewart, R.; Dowlatshahi, K.; Gattuso, P.; Fan, M.; Prinz, R.A.; Xu, X. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery, 2002, 132(2), 326-333.
[http://dx.doi.org/10.1067/msy.2002.125719] [PMID: 12219030]
[48]
Matsuda, K.; Maruyama, H.; Guo, F.; Kleeff, J.; Itakura, J.; Matsumoto, Y.; Lander, A.D.; Korc, M. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res., 2001, 61(14), 5562-5569.
[PMID: 11454708]
[49]
Cohen, I.; Pappo, O.; Elkin, M.; San, T.; Bar-Shavit, R.; Hazan, R.; Peretz, T.; Vlodavsky, I.; Abramovitch, R. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int. J. Cancer, 2006, 118(7), 1609-1617.
[http://dx.doi.org/10.1002/ijc.21552] [PMID: 16217746]
[50]
Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070), 946-953.
[http://dx.doi.org/10.1038/nature04480] [PMID: 16355212]
[51]
Shields, J.D.; Fleury, M.E.; Yong, C.; Tomei, A.A.; Randolph, G.J.; Swartz, M.A. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell, 2007, 11(6), 526-538.
[http://dx.doi.org/10.1016/j.ccr.2007.04.020] [PMID: 17560334]
[52]
Madlener, S.; Saiko, P.; Vonach, C.; Viola, K.; Huttary, N.; Stark, N.; Popescu, R.; Gridling, M.; Vo, N.T.; Herbacek, I.; Davidovits, A.; Giessrigl, B.; Venkateswarlu, S.; Geleff, S.; Jäger, W.; Grusch, M.; Kerjaschki, D.; Mikulits, W.; Golakoti, T.; Fritzer-Szekeres, M.; Szekeres, T.; Krupitza, G. Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell- cycle arrest, and inhibition of lymphendothelial gap formation in vitro. Br. J. Cancer, 2010, 102(9), 1361-1370.
[http://dx.doi.org/10.1038/sj.bjc.6605656] [PMID: 20424615]
[53]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[54]
Tsuji, T.; Ibaragi, S.; Hu, G.F. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res., 2009, 69(18), 7135-7139.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1618] [PMID: 19738043]
[55]
Huysentruyt, L.C.; Mukherjee, P.; Banerjee, D.; Shelton, L.M.; Seyfried, T.N. Metastatic cancer cells with macrophage properties: evidence from a new murine tumor model. Int. J. Cancer, 2008, 123(1), 73-84.
[http://dx.doi.org/10.1002/ijc.23492] [PMID: 18398829]
[56]
Nieswandt, B.; Hafner, M.; Echtenacher, B.; Männel, D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res., 1999, 59(6), 1295-1300.
[PMID: 10096562]
[57]
Im, J.H.; Fu, W.; Wang, H.; Bhatia, S.K.; Hammer, D.A.; Kowalska, M.A.; Muschel, R.J. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res., 2004, 64(23), 8613-8619.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2078] [PMID: 15574768]
[58]
Nash, G.F.; Turner, L.F.; Scully, M.F.; Kakkar, A.K. Platelets and cancer. Lancet Oncol., 2002, 3(7), 425-430.
[http://dx.doi.org/10.1016/S1470-2045(02)00789-1] [PMID: 12142172]
[59]
Bandyopadhyay, S.; Zhan, R.; Chaudhuri, A.; Watabe, M.; Pai, S.K.; Hirota, S.; Hosobe, S.; Tsukada, T.; Miura, K.; Takano, Y.; Saito, K.; Pauza, M.E.; Hayashi, S.; Wang, Y.; Mohinta, S.; Mashimo, T.; Iiizumi, M.; Furuta, E.; Watabe, K. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat. Med., 2006, 12(8), 933-938.
[http://dx.doi.org/10.1038/nm1444] [PMID: 16862154]
[60]
Fidler, I.J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J. Natl. Cancer Inst., 1970, 45(4), 773-782.
[PMID: 5513503]
[61]
Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; Massagué, J. Genes that mediate breast cancer metastasis to the brain. Nature, 2009, 459(7249), 1005-1009.
[http://dx.doi.org/10.1038/nature08021] [PMID: 19421193]
[62]
Gupta, G.P.; Nguyen, D.X.; Chiang, A.C.; Bos, P.D.; Kim, J.Y.; Nadal, C.; Gomis, R.R.; Manova-Todorova, K.; Massagué, J. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature, 2007, 446(7137), 765-770.
[http://dx.doi.org/10.1038/nature05760] [PMID: 17429393]
[63]
Peinado, H.; Lavotshkin, S.; Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol., 2011, 21(2), 139-146.
[http://dx.doi.org/10.1016/j.semcancer.2011.01.002] [PMID: 21251983]
[64]
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell, 2012, 148(3), 399-408.
[http://dx.doi.org/10.1016/j.cell.2012.01.021] [PMID: 22304911]
[65]
Semenza, G.L. Advances in cancer biology and therapy. J. Mol. Med. (Berl.), 2013, 91(4), 409.
[http://dx.doi.org/10.1007/s00109-013-1024-2] [PMID: 23515622]
[66]
Kaelin, W.G., Jr ROS: really involved in oxygen sensing. Cell Metab., 2005, 1(6), 357-358.
[http://dx.doi.org/10.1016/j.cmet.2005.05.006] [PMID: 16054083]
[67]
Gao, P.; Zhang, H.; Dinavahi, R.; Li, F.; Xiang, Y.; Raman, V.; Bhujwalla, Z.M.; Felsher, D.W.; Cheng, L.; Pevsner, J.; Lee, L.A.; Semenza, G.L.; Dang, C.V. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell, 2007, 12(3), 230-238.
[http://dx.doi.org/10.1016/j.ccr.2007.08.004] [PMID: 17785204]
[68]
Chen, J.; Imanaka, N.; Chen, J.; Griffin, J.D. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br. J. Cancer, 2010, 102(2), 351-360.
[http://dx.doi.org/10.1038/sj.bjc.6605486] [PMID: 20010940]
[69]
Lundgren, K.; Nordenskjöld, B.; Landberg, G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br. J. Cancer, 2009, 101(10), 1769-1781.
[http://dx.doi.org/10.1038/sj.bjc.6605369] [PMID: 19844232]
[70]
Petrella, B.L.; Lohi, J.; Brinckerhoff, C.E. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene, 2005, 24(6), 1043-1052.
[http://dx.doi.org/10.1038/sj.onc.1208305] [PMID: 15592504]
[71]
Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol., 2014, 5(3), 412-424.
[http://dx.doi.org/10.5306/wjco.v5.i3.412] [PMID: 25114856]
[72]
Makki, J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin. Med. Insights Pathol., 2015, 8, 23-31.
[http://dx.doi.org/10.4137/CPath.S31563] [PMID: 26740749]
[73]
Arpino, G.; Bardou, V.J.; Clark, G.M.; Elledge, R.M. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res., 2004, 6(3), R149-R156.
[http://dx.doi.org/10.1186/bcr767] [PMID: 15084238]
[74]
Yates, L. R.; Knappskog, S.; Wedge, D.; Farmery, J.H.R.; Gonzalez, S.; Martincorena, I.; Alexandrov, L.B.; Van Loo, P.; Haugland, H.K.; Lilleng, P.K.; Gundem, G.; Gerstung, M.; Pappaemmanuil, E.; Gazinska, P.; Bhosle, S.G.; Jones, D.; Raine, K.; Mudie, L.; Latimer, C.; Sawyer, E.; Desmedt, C.; Sotiriou, C.; Stratton, M.R.; Sieuwerts, A.M.; Lynch, A.G.; Martens, J.W.; Richardson, A.L.; Tutt, A.; Lonning, P.E.; Campbell, P.J. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell, 2017, 32(2), 169-184.
[http://dx.doi.org/10.1016/j.ccell.2017.07.005]
[75]
Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer, 2011, 11(6), 411-425.
[http://dx.doi.org/10.1038/nrc3055] [PMID: 21593787]
[76]
Hess, K.R.; Varadhachary, G.R.; Taylor, S.H.; Wei, W.; Raber, M.N.; Lenzi, R.; Abbruzzese, J.L. Metastatic patterns in adenocarcinoma. Cancer, 2006, 106(7), 1624-1633.
[http://dx.doi.org/10.1002/cncr.21778] [PMID: 16518827]
[77]
Bachmann, C.; Schmidt, S.; Staebler, A.; Fehm, T.; Fend, F.; Schittenhelm, J.; Wallwiener, D.; Grischke, E. CNS metastases in breast cancer patients: prognostic implications of tumor subtype. Med. Oncol., 2015, 32(1), 400.
[http://dx.doi.org/10.1007/s12032-014-0400-2] [PMID: 25433950]
[78]
Yazdani, A.; Dorri, S.; Atashi, A.; Shirafkan, H.; Zabolinezhad, H. Bone Metastasis Prognostic Factors in Breast Cancer. Breast Cancer (Auckl.), 2019, 13, 1178223419830978.
[http://dx.doi.org/10.1177/1178223419830978] [PMID: 30828246]
[79]
Savci-Heijink, C.D.; Halfwerk, H.; Koster, J.; van de Vijver, M.J. A novel gene expression signature for bone metastasis in breast carcinomas. Breast Cancer Res. Treat., 2016, 156(2), 249-259.
[http://dx.doi.org/10.1007/s10549-016-3741-z] [PMID: 26965286]
[80]
Leibbrandt, A.; Penninger, J.M. RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv. Exp. Med. Biol., 2009, 649, 100-113.
[http://dx.doi.org/10.1007/978-1-4419-0298-6_7] [PMID: 19731623]
[81]
Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer, 2002, 2(8), 584-593.
[http://dx.doi.org/10.1038/nrc867] [PMID: 12154351]
[82]
Roodman, G.D. Mechanisms of bone metastasis. N. Engl. J. Med., 2004, 350(16), 1655-1664.
[http://dx.doi.org/10.1056/NEJMra030831] [PMID: 15084698]
[83]
Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; Mohar, A.; Verástegui, E.; Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001, 410(6824), 50-56.
[http://dx.doi.org/10.1038/35065016] [PMID: 11242036]
[84]
Lynch, C.C. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone, 2011, 48(1), 44-53.
[http://dx.doi.org/10.1016/j.bone.2010.06.007] [PMID: 20601294]
[85]
Kwakwa, K.A.; Sterling, J.A. Integrin αvβ3 signaling in tumor-induced bone disease. Cancers (Basel), 2017, 9(7), E84.
[http://dx.doi.org/10.3390/cancers9070084] [PMID: 28698458]
[86]
Li, X.Q.; Lu, J.T.; Tan, C.C.; Wang, Q.S.; Feng, Y.M. RUNX2 promotes breast cancer bone metastasis by increasing integrin α5- mediated colonization. Cancer Lett., 2016, 380(1), 78-86.
[http://dx.doi.org/10.1016/j.canlet.2016.06.007] [PMID: 27317874]
[87]
Yoneda, T.; Hiasa, M.; Okui, T. Crosstalk between sensory nerves and cancer in bone. Curr. Osteoporos. Rep., 2018, 16(6), 648-656.
[http://dx.doi.org/10.1007/s11914-018-0489-x] [PMID: 30343404]
[88]
Guise, T.A.; Chirgwin, J.M. Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clin. Orthop. Relat. Res., 2003, (415)(Suppl.), S32-S38.
[http://dx.doi.org/10.1097/01.blo.0000093055.96273.69] [PMID: 14600590]
[89]
Bandyopadhyay, A.; Agyin, J.K.; Wang, L.; Tang, Y.; Lei, X.; Story, B.M.; Cornell, J.E.; Pollock, B.H.; Mundy, G.R.; Sun, L.Z. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res., 2006, 66(13), 6714-6721.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3565] [PMID: 16818646]
[90]
Oba, Y.; Chung, H. Y.; Choi, S. J.; Roodman, G. D. Eosinophil chemotactic factor-L (ECF-L): a novel osteoclast stimulating factor. J. Bone Mineral Res., 2003, 18(7), 1332-1341.
[91]
Boucharaba, A.; Serre, C.M.; Grès, S.; Saulnier-Blache, J.S.; Bordet, J.C.; Guglielmi, J.; Clézardin, P.; Peyruchaud, O. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J. Clin. Invest., 2004, 114(12), 1714-1725.
[http://dx.doi.org/10.1172/JCI200422123] [PMID: 15599396]
[92]
Gupta, G.P.; Massagué, J. Platelets and metastasis revisited: a novel fatty link. J. Clin. Invest., 2004, 114(12), 1691-1693.
[http://dx.doi.org/10.1172/JCI200423823] [PMID: 15599391]
[93]
Fisher, J.L.; Thomas-Mudge, R.J.; Elliott, J.; Hards, D.K.; Sims, N.A.; Slavin, J.; Martin, T.J.; Gillespie, M.T. Osteoprotegerin overexpression by breast cancer cells enhances orthotopic and osseous tumor growth and contrasts with that delivered therapeutically. Cancer Res., 2006, 66(7), 3620-3628.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3119] [PMID: 16585187]
[94]
Mangashetti, L.S.; Khapli, S.M.; Wani, M.R. IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling. J. Immunol., 2005, 175(2), 917-925.
[http://dx.doi.org/10.4049/jimmunol.175.2.917] [PMID: 16002690]
[95]
Qian, J.; Yehia, G.; Molina, C.; Fernandes, A.; Donnelly, R.; Anjaria, D.; Gascon, P.; Rameshwar, P. Cloning of human preprotachykinin-I promoter and the role of cyclic adenosine 5′- monophosphate response elements in its expression by IL-1 and stem cell factor. J. Immunol., 2001, 166(4), 2553-2561.
[http://dx.doi.org/10.4049/jimmunol.166.4.2553] [PMID: 11160316]
[96]
Jones, D.A.; Cummings, J.; Langdon, S.P.; Smyth, J.F. Preclinical studies on the broad-spectrum neuropeptide growth factor antagonist G. Gen. Pharmacol., 1997, 28(2), 183-189.
[http://dx.doi.org/10.1016/S0306-3623(96)00189-9] [PMID: 9013192]
[97]
Rameshwar, P.; Oh, H.S.; Yook, C.; Gascon, P.; Chang, V.T. Substance p-fibronectin-cytokine interactions in myeloproliferative disorders with bone marrow fibrosis. Acta Haematol., 2003, 109(1), 1-10.
[http://dx.doi.org/10.1159/000067268] [PMID: 12486316]
[98]
Rao, G.; Patel, P.S.; Idler, S.P.; Maloof, P.; Gascon, P.; Potian, J.A.; Rameshwar, P. Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Res., 2004, 64(8), 2874-2881.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3121] [PMID: 15087406]
[99]
Platel, V.; Faure, S.; Corre, I.; Clere, N. Endothelial-to-mesenchymal transition (endomt): roles in tumorigenesis, metastatic extravasation and therapy resistance. J. Oncol., 2019, 2019, 8361945.
[http://dx.doi.org/10.1155/2019/8361945] [PMID: 31467544]
[100]
Gilkes, D.M.; Semenza, G.L. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol., 2013, 9(11), 1623-1636.
[http://dx.doi.org/10.2217/fon.13.92] [PMID: 24156323]
[101]
Riccio, A.I.; Wodajo, F.M.; Malawer, M. Metastatic carcinoma of the long bones. Am. Fam. Physician, 2007, 76(10), 1489-1494.
[PMID: 18052014]
[102]
Kohno, N. Treatment of breast cancer with bone metastasis: bisphosphonate treatment - current and future. Int. J. Clin. Oncol., 2008, 13(1), 18-23.
[http://dx.doi.org/10.1007/s10147-007-0726-2] [PMID: 18307015]
[103]
Wong, M.; Pavlakis, N. Optimal management of bone metastases in breast cancer patients. Breast Cancer (Dove Med. Press), 2011, 3, 35-60.
[http://dx.doi.org/10.2147/BCTT.S6655] [PMID: 24367175]
[104]
Hiratani, T.; Asagi, Y.; Matsusaka, A.; Uchida, K.; Yamaguchi, H. In vitro antifungal activity of amorolfine, a new morpholine antimycotic agent. Jpn. J. Antibiot., 1991, 44(9), 993-1006.
[PMID: 1960861]
[105]
Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; Beck, J.T.; Ito, Y.; Yardley, D.; Deleu, I.; Perez, A.; Bachelot, T.; Vittori, L.; Xu, Z.; Mukhopadhyay, P.; Lebwohl, D.; Hortobagyi, G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med., 2012, 366(6), 520-529.
[http://dx.doi.org/10.1056/NEJMoa1109653] [PMID: 22149876]
[106]
Hiscox, S.; Barrett-Lee, P.; Borley, A.C.; Nicholson, R.I. Combining Src inhibitors and aromatase inhibitors: a novel strategy for overcoming endocrine resistance and bone loss. Eur. J. Cancer, 2010, 46(12), 2187-2195.
[http://dx.doi.org/10.1016/j.ejca.2010.04.012] [PMID: 20471823]
[107]
Tian, E.; Zhan, F.; Walker, R.; Rasmussen, E.; Ma, Y.; Barlogie, B.; Shaughnessy, J.D., Jr The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med., 2003, 349(26), 2483-2494.
[http://dx.doi.org/10.1056/NEJMoa030847] [PMID: 14695408]
[108]
Gennari, A.; Conte, P.; Rosso, R.; Orlandini, C.; Bruzzi, P. Survival of metastatic breast carcinoma patients over a 20-year period: a retrospective analysis based on individual patient data from six consecutive studies. Cancer, 2005, 104(8), 1742-1750.
[http://dx.doi.org/10.1002/cncr.21359] [PMID: 16149088]
[109]
Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; Bescós, C.; Di Croce, L.; Benitah, S.A. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541(7635), 41-45.
[http://dx.doi.org/10.1038/nature20791] [PMID: 27974793]
[110]
Smid, M.; Wang, Y.; Zhang, Y.; Sieuwerts, A.M.; Yu, J.; Klijn, J.G.; Foekens, J.A.; Martens, J.W. Subtypes of breast cancer show preferential site of relapse. Cancer Res., 2008, 68(9), 3108-3114.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5644] [PMID: 18451135]
[111]
Huber, M.A.; Kraut, N.; Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 2005, 17(5), 548-558.
[http://dx.doi.org/10.1016/j.ceb.2005.08.001] [PMID: 16098727]
[112]
Nigam, A. Breast cancer stem cells, pathways and therapeutic perspectives 2011. Indian J. Surg., 2013, 75(3), 170-180.
[http://dx.doi.org/10.1007/s12262-012-0616-3] [PMID: 24426422]
[113]
Yae, T.; Tsuchihashi, K.; Ishimoto, T.; Motohara, T.; Yoshikawa, M.; Yoshida, G.J.; Wada, T.; Masuko, T.; Mogushi, K.; Tanaka, H.; Osawa, T.; Kanki, Y.; Minami, T.; Aburatani, H.; Ohmura, M.; Kubo, A.; Suematsu, M.; Takahashi, K.; Saya, H.; Nagano, O. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat. Commun., 2012, 3, 883.
[http://dx.doi.org/10.1038/ncomms1892] [PMID: 22673910]
[114]
Harrison, H.; Farnie, G.; Howell, S.J.; Rock, R.E.; Stylianou, S.; Brennan, K.R.; Bundred, N.J.; Clarke, R.B. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res., 2010, 70(2), 709-718.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1681] [PMID: 20068161]
[115]
Dontu, G.; Jackson, K.W.; McNicholas, E.; Kawamura, M.J.; Abdallah, W.M.; Wicha, M.S. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res., 2004, 6(6), R605-R615.
[http://dx.doi.org/10.1186/bcr920] [PMID: 15535842]
[116]
Sansone, P.; Storci, G.; Giovannini, C.; Pandolfi, S.; Pianetti, S.; Taffurelli, M.; Santini, D.; Ceccarelli, C.; Chieco, P.; Bonafé, M. p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells, 2007, 25(3), 807-815.
[http://dx.doi.org/10.1634/stemcells.2006-0442] [PMID: 17158237]
[117]
Pal, D.; Kolluru, V.; Chandrasekaran, B.; Baby, B.V.; Aman, M.; Suman, S.; Sirimulla, S.; Sanders, M.A.; Alatassi, H.; Ankem, M.K.; Damodaran, C. Targeting aberrant expression of Notch-1 in ALDH+ cancer stem cells in breast cancer. Mol. Carcinog., 2017, 56(3), 1127-1136.
[http://dx.doi.org/10.1002/mc.22579] [PMID: 27753148]
[118]
Suman, S.; Das, T.P.; Damodaran, C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br. J. Cancer, 2013, 109(10), 2587-2596.
[http://dx.doi.org/10.1038/bjc.2013.642] [PMID: 24129237]
[119]
McGovern, M.; Voutev, R.; Maciejowski, J.; Corsi, A.K.; Hubbard, E.J. A “latent niche” mechanism for tumor initiation. Proc. Natl. Acad. Sci. USA, 2009, 106(28), 11617-11622.
[http://dx.doi.org/10.1073/pnas.0903768106] [PMID: 19564624]
[120]
Chen, W.; Cao, G.; Yuan, X.; Zhang, X.; Zhang, Q.; Zhu, Y.; Dong, Z.; Zhang, S. Notch-1 knockdown suppresses proliferation, migration and metastasis of salivary adenoid cystic carcinoma cells. J. Transl. Med., 2015, 13, 167.
[http://dx.doi.org/10.1186/s12967-015-0520-2] [PMID: 25990317]
[121]
Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev., 2007, 17(1), 45-51.
[http://dx.doi.org/10.1016/j.gde.2006.12.007] [PMID: 17208432]
[122]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[123]
Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol., 2010, 176(6), 2911-2920.
[http://dx.doi.org/10.2353/ajpath.2010.091125] [PMID: 20395444]
[124]
López-Knowles, E.; Zardawi, S.J.; McNeil, C.M.; Millar, E.K.; Crea, P.; Musgrove, E.A.; Sutherland, R.L.; O’Toole, S.A. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol. Biomarkers Prev., 2010, 19(1), 301-309.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0741] [PMID: 20056651]
[125]
Geyer, F.C.; Lacroix-Triki, M.; Savage, K.; Arnedos, M.; Lambros, M.B.; MacKay, A.; Natrajan, R.; Reis-Filho, J.S. beta- Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Modern Pathol. Inc, 2011, 24(2), 209-231.
[126]
Lindvall, C.; Zylstra, C.R.; Evans, N.; West, R.A.; Dykema, K.; Furge, K.A.; Williams, B.O. The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One, 2009, 4(6), e5813.
[http://dx.doi.org/10.1371/journal.pone.0005813] [PMID: 19503830]
[127]
Liu, C.C.; Prior, J.; Piwnica-Worms, D.; Bu, G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5136-5141.
[http://dx.doi.org/10.1073/pnas.0911220107] [PMID: 20194742]
[128]
Nusse, R. Wnt signaling and stem cell control. Cell Res., 2008, 18(5), 523-527.
[http://dx.doi.org/10.1038/cr.2008.47] [PMID: 18392048]
[129]
Zhuang, X.; Zhang, H.; Li, X.; Li, X.; Cong, M.; Peng, F.; Yu, J.; Zhang, X.; Yang, Q.; Hu, G. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat. Cell Biol., 2017, 19(10), 1274-1285.
[http://dx.doi.org/10.1038/ncb3613] [PMID: 28892080]
[130]
Pires, B.R.; DE Amorim, Í.S.; Souza, L.D.; Rodrigues, J.A.; Mencalha, A.L. Targeting cellular signaling pathways in breast cancer stem cells and its implication for cancer treatment. Anticancer Res., 2016, 36(11), 5681-5691.
[http://dx.doi.org/10.21873/anticanres.11151] [PMID: 27793889]
[131]
Hayashi, H.; Kume, T. Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem. Biophys. Res. Commun., 2008, 367(3), 584-589.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.183] [PMID: 18187037]
[132]
Han, B.; Qu, Y.; Jin, Y.; Yu, Y.; Deng, N.; Wawrowsky, K.; Zhang, X.; Li, N.; Bose, S.; Wang, Q.; Sakkiah, S.; Abrol, R.; Jensen, T.W.; Berman, B.P.; Tanaka, H.; Johnson, J.; Gao, B.; Hao, J.; Liu, Z.; Buttyan, R.; Ray, P.S.; Hung, M.C.; Giuliano, A.E.; Cui, X. FOXC1 Activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep., 2015, 13(5), 1046-1058.
[http://dx.doi.org/10.1016/j.celrep.2015.09.063] [PMID: 26565916]
[133]
Zuo, H. D.; Yao, Wu The role and the potential regulatory pathways of high expression of forkhead box C1 in promoting tumor growth and metastasis of basal-like breast cancer. J. B.U.ON., 2016, 21(4), 818-825.
[134]
Flemban, A.; Qualtrough, D. The potential role of hedgehog signaling in the luminal/basal phenotype of breast epithelia and in breast cancer invasion and metastasis. Cancers (Basel), 2015, 7(3), 1863-1884.
[http://dx.doi.org/10.3390/cancers7030866] [PMID: 26389956]
[135]
Santini, R.; Vinci, M.C.; Pandolfi, S.; Penachioni, J.Y.; Montagnani, V.; Olivito, B.; Gattai, R.; Pimpinelli, N.; Gerlini, G.; Borgognoni, L.; Stecca, B. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells, 2012, 30(9), 1808-1818.
[http://dx.doi.org/10.1002/stem.1160] [PMID: 22730244]
[136]
Zardawi, S.J.; O’Toole, S.A.; Sutherland, R.L.; Musgrove, E.A. Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol. Histopathol., 2009, 24(3), 385-398.
[PMID: 19130408]
[137]
Salem, M.L.; El-Badawy, A.S.; Li, Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology, 2015, 67(5), 749-759.
[http://dx.doi.org/10.1007/s10616-014-9830-0] [PMID: 25516358]
[138]
Okuhashi, Y.; Itoh, M.; Tohda, S. Hedgehog stimulation suppresses clonogenicity and activates notch signalling in t-lymphoblastic leukaemia jurkat cells. Anticancer Res., 2017, 37(9), 5005-5009.
[PMID: 28870926]
[139]
Gong, H.Y.; Hu, W.G.; Hu, Q.Y.; Li, X.P.; Song, Q.B. Radiation-induced pulmonary injury accelerated pulmonary metastasis in a mouse model of breast cancer. Oncol. Lett., 2015, 10(6), 3613-3618.
[http://dx.doi.org/10.3892/ol.2015.3810] [PMID: 26788178]
[140]
Boimel, P.J.; Smirnova, T.; Zhou, Z.N.; Wyckoff, J.; Park, H.; Coniglio, S.J.; Qian, B.Z.; Stanley, E.R.; Cox, D.; Pollard, J.W.; Muller, W.J.; Condeelis, J.; Segall, J.E. Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Res., 2012, 14(1), R23.
[http://dx.doi.org/10.1186/bcr3108] [PMID: 22314082]
[141]
Bachelder, R.E.; Wendt, M.A.; Mercurio, A.M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res., 2002, 62(24), 7203-7206.
[PMID: 12499259]
[142]
Mantovani, A.; Bonecchi, R.; Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol., 2006, 6(12), 907-918.
[http://dx.doi.org/10.1038/nri1964] [PMID: 17124512]
[143]
Wang, J.; Ou, Z.L.; Hou, Y.F.; Luo, J.M.; Chen, Y.; Zhou, J.; Shen, Z.Z.; Ding, J.; Shao, Z.M. Duffy antigen receptor for chemokines attenuates breast cancer growth and metastasis: an experiment with nude mice. Zhonghua Yi Xue Za Zhi, 2005, 85(29), 2033-2037.
[PMID: 16313795]
[144]
Maru, Y. The lung metastatic niche. J. Mol. Med. (Berl.), 2015, 93(11), 1185-1192.
[http://dx.doi.org/10.1007/s00109-015-1355-2] [PMID: 26489606]
[145]
Acharyya, S.; Oskarsson, T.; Vanharanta, S.; Malladi, S.; Kim, J.; Morris, P.G.; Manova-Todorova, K.; Leversha, M.; Hogg, N.; Seshan, V.E.; Norton, L.; Brogi, E.; Massagué, J. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 2012, 150(1), 165-178.
[http://dx.doi.org/10.1016/j.cell.2012.04.042] [PMID: 22770218]
[146]
Soikkeli, J.; Podlasz, P.; Yin, M.; Nummela, P.; Jahkola, T.; Virolainen, S.; Krogerus, L.; Heikkilä, P.; von Smitten, K.; Saksela, O.; Hölttä, E. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am. J. Pathol., 2010, 177(1), 387-403.
[http://dx.doi.org/10.2353/ajpath.2010.090748] [PMID: 20489157]
[147]
Oskarsson, T.; Acharyya, S.; Zhang, X.H.; Vanharanta, S.; Tavazoie, S.F.; Morris, P.G.; Downey, R.J.; Manova-Todorova, K.; Brogi, E.; Massagué, J. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med., 2011, 17(7), 867-874.
[http://dx.doi.org/10.1038/nm.2379] [PMID: 21706029]
[148]
O’Connell, J.T.; Sugimoto, H.; Cooke, V.G.; MacDonald, B.A.; Mehta, A.I.; LeBleu, V.S.; Dewar, R.; Rocha, R.M.; Brentani, R.R.; Resnick, M.B.; Neilson, E.G.; Zeisberg, M.; Kalluri, R. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16002-16007.
[http://dx.doi.org/10.1073/pnas.1109493108] [PMID: 21911392]
[149]
Malanchi, I.; Santamaria-Martínez, A.; Susanto, E.; Peng, H.; Lehr, H.A.; Delaloye, J.F.; Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 2011, 481(7379), 85-89.
[http://dx.doi.org/10.1038/nature10694] [PMID: 22158103]
[150]
Gao, D.; Joshi, N.; Choi, H.; Ryu, S.; Hahn, M.; Catena, R.; Sadik, H.; Argani, P.; Wagner, P.; Vahdat, L.T.; Port, J.L.; Stiles, B.; Sukumar, S.; Altorki, N.K.; Rafii, S.; Mittal, V. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res., 2012, 72(6), 1384-1394.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2905] [PMID: 22282653]
[151]
Ye, Y.; Liu, S.; Wu, C.; Sun, Z. TGFβ modulates inflammatory cytokines and growth factors to create premetastatic microenvironment and stimulate lung metastasis. J. Mol. Histol., 2015, 46(4-5), 365-375.
[http://dx.doi.org/10.1007/s10735-015-9633-4] [PMID: 26208571]
[152]
Park, C.Y.; Min, K.N.; Son, J.Y.; Park, S.Y.; Nam, J.S.; Kim, D.K.; Sheen, Y.Y. An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition. Cancer Lett., 2014, 351(1), 72-80.
[http://dx.doi.org/10.1016/j.canlet.2014.05.006] [PMID: 24887560]
[153]
Hiratsuka, S.; Watanabe, A.; Aburatani, H.; Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol., 2006, 8(12), 1369-1375.
[http://dx.doi.org/10.1038/ncb1507] [PMID: 17128264]
[154]
Li, X.J.; Gangadaran, P.; Kalimuthu, S.; Oh, J.M.; Zhu, L.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Role of pulmonary macrophages in initiation of lung metastasis in anaplastic thyroid cancer. Int. J. Cancer, 2016, 139(11), 2583-2592.
[http://dx.doi.org/10.1002/ijc.30387] [PMID: 27537102]
[155]
Cao, H.; Dan, Z.; He, X.; Zhang, Z.; Yu, H.; Yin, Q.; Li, Y. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano, 2016, 10(8), 7738-7748.
[http://dx.doi.org/10.1021/acsnano.6b03148] [PMID: 27454827]
[156]
El Rayes, T.; Catena, R.; Lee, S.; Stawowczyk, M.; Joshi, N.; Fischbach, C.; Powell, C.A.; Dannenberg, A.J.; Altorki, N.K.; Gao, D.; Mittal, V. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl. Acad. Sci. USA, 2015, 112(52), 16000-16005.
[http://dx.doi.org/10.1073/pnas.1507294112] [PMID: 26668367]
[157]
Granot, Z.; Jablonska, J. Distinct functions of neutrophil in cancer and its regulation. Mediators Inflamm., 2015, 2015, 701067.
[http://dx.doi.org/10.1155/2015/701067] [PMID: 26648665]
[158]
Chen, Q.; Massague, J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin. Cancer Res.,, 2012, 18(20), 5520-5525.
[159]
Xu, K.; Tian, X.; Oh, S.Y.; Movassaghi, M.; Naber, S.P.; Kuperwasser, C.; Buchsbaum, R.J. The fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasis. Breast Cancer Res., 2016, 18(1), 14.
[http://dx.doi.org/10.1186/s13058-016-0674-8] [PMID: 26821678]
[160]
Vadrevu, S. K.; Sharma, S.; Chintala, N.; Patel, J.; Karbowniczek, M.; Markiewski, M. Studying the role of alveolar macrophages in breast cancer metastasis. J. Visualized Exp., JoVE, 2016.
[http://dx.doi.org/10.3791/54306]
[161]
Kim, H.M.; Jung, W.H.; Koo, J.S. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J. Transl. Med., 2015, 13, 222.
[http://dx.doi.org/10.1186/s12967-015-0587-9] [PMID: 26163388]
[162]
Christen, S.; Lorendeau, D.; Schmieder, R.; Broekaert, D.; Metzger, K.; Veys, K.; Elia, I.; Buescher, J.M.; Orth, M.F.; Davidson, S.M.; Grünewald, T.G.; De Bock, K.; Fendt, S.M. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep., 2016, 17(3), 837-848.
[http://dx.doi.org/10.1016/j.celrep.2016.09.042] [PMID: 27732858]
[163]
Gao, H.; Chakraborty, G.; Lee-Lim, A.P.; Mo, Q.; Decker, M.; Vonica, A.; Shen, R.; Brogi, E.; Brivanlou, A.H.; Giancotti, F.G. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 2012, 150(4), 764-779.
[http://dx.doi.org/10.1016/j.cell.2012.06.035] [PMID: 22901808]
[164]
Song, K.H.; Park, M.S.; Nandu, T.S.; Gadad, S.; Kim, S.C.; Kim, M.Y. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat. Commun., 2016, 7, 13796.
[http://dx.doi.org/10.1038/ncomms13796] [PMID: 27982029]
[165]
Ci, Y.; Qiao, J.; Han, M. Molecular mechanisms and metabolomics of natural polyphenols interfering with breast cancer metastasis. Molecules, 2016, 21(12), E1634.
[http://dx.doi.org/10.3390/molecules21121634] [PMID: 27999314]
[166]
Gonzalez-Angulo, A.M.; Morales-Vasquez, F.; Hortobagyi, G.N. Overview of resistance to systemic therapy in patients with breast cancer. Adv. Exp. Med. Biol., 2007, 608, 1-22.
[http://dx.doi.org/10.1007/978-0-387-74039-3_1] [PMID: 17993229]
[167]
Koike, Y.; Ohta, Y.; Saitoh, W.; Yamashita, T.; Kanomata, N.; Moriya, T.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer, 2017, 24(5), 683-693.
[http://dx.doi.org/10.1007/s12282-017-0757-0] [PMID: 28144905]
[168]
Bartholomeusz, C.; Xie, X.; Pitner, M.K.; Kondo, K.; Dadbin, A.; Lee, J.; Saso, H.; Smith, P.D.; Dalby, K.N.; Ueno, N.T. MEK inhibitor selumetinib (azd6244; arry-142886) prevents lung metastasis in a triple-negative breast cancer xenograft model. Mol. Cancer Ther., 2015, 14(12), 2773-2781.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0243] [PMID: 26384399]
[169]
Cao, H.; Zhang, Z.; Zhao, S.; He, X.; Yu, H.; Yin, Q.; Gu, W.; Chen, L.; Li, Y. Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. J. Controlled Release, 2015, 205, 162-171.
[170]
Gray, M.J.; Gong, J.; Hatch, M.M.; Nguyen, V.; Hughes, C.C.; Hutchins, J.T.; Freimark, B.D. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res., 2016, 18(1), 50.
[http://dx.doi.org/10.1186/s13058-016-0708-2] [PMID: 27169467]
[171]
Ma, R.; Feng, Y.; Lin, S.; Chen, J.; Lin, H.; Liang, X.; Zheng, H.; Cai, X. Mechanisms involved in breast cancer liver metastasis. J. Transl. Med., 2015, 13, 64.
[http://dx.doi.org/10.1186/s12967-015-0425-0] [PMID: 25885919]
[172]
Wendel, C.; Hemping-Bovenkerk, A.; Krasnyanska, J.; Mees, S.T.; Kochetkova, M.; Stoeppeler, S.; Haier, J. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One, 2012, 7(1), e30046.
[http://dx.doi.org/10.1371/journal.pone.0030046] [PMID: 22253872]
[173]
Stormes, K.A.; Lemken, C.A.; Lepre, J.V.; Marinucci, M.N.; Kurt, R.A. Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Res. Treat., 2005, 89(2), 209-212.
[http://dx.doi.org/10.1007/s10549-004-5328-3] [PMID: 15692764]
[174]
Kim, S.; Han, J.; Shin, I.; Kil, W.H.; Lee, J.E.; Nam, S.J. A functional comparison between the HER2(high)/HER3 and the HER2(low)/HER3 dimers on heregulin-β1-induced MMP-1 and MMP-9 expression in breast cancer cells. Exp. Mol. Med., 2012, 44(8), 473-482.
[http://dx.doi.org/10.3858/emm.2012.44.8.054] [PMID: 22627808]
[175]
Tabariès, S.; Ouellet, V.; Hsu, B.E.; Annis, M.G.; Rose, A.A.; Meunier, L.; Carmona, E.; Tam, C.E.; Mes-Masson, A.M.; Siegel, P.M. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res., 2015, 17, 45.
[http://dx.doi.org/10.1186/s13058-015-0558-3] [PMID: 25882816]
[176]
Hazan, R.B.; Phillips, G.R.; Qiao, R.F.; Norton, L.; Aaronson, S.A. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol., 2000, 148(4), 779-790.
[http://dx.doi.org/10.1083/jcb.148.4.779] [PMID: 10684258]
[177]
Tabariès, S.; Dupuy, F.; Dong, Z.; Monast, A.; Annis, M.G.; Spicer, J.; Ferri, L.E.; Omeroglu, A.; Basik, M.; Amir, E.; Clemons, M.; Siegel, P.M. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol. Cell. Biol., 2012, 32(15), 2979-2991.
[http://dx.doi.org/10.1128/MCB.00299-12] [PMID: 22645303]
[178]
Tabariès, S.; Dong, Z.; Annis, M.G.; Omeroglu, A.; Pepin, F.; Ouellet, V.; Russo, C.; Hassanain, M.; Metrakos, P.; Diaz, Z.; Basik, M.; Bertos, N.; Park, M.; Guettier, C.; Adam, R.; Hallett, M.; Siegel, P.M. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene, 2011, 30(11), 1318-1328.
[http://dx.doi.org/10.1038/onc.2010.518] [PMID: 21076473]
[179]
Shabo, I.; Olsson, H.; Stål, O.; Svanvik, J. Breast cancer expression of DAP12 is associated with skeletal and liver metastases and poor survival. Clin. Breast Cancer, 2013, 13(5), 371-377.
[http://dx.doi.org/10.1016/j.clbc.2013.05.003] [PMID: 23810293]
[180]
Yang, J.; Wu, N.N.; Huang, D.J.; Luo, Y.C.; Huang, J.Z.; He, H.Y.; Lu, H.L.; Song, W.L. PPFIA1 is upregulated in liver metastasis of breast cancer and is a potential poor prognostic indicator of metastatic relapse. Tumour Biol., 2017, 39(7), 1010428317713492.
[http://dx.doi.org/10.1177/1010428317713492] [PMID: 28720060]
[181]
Erler, J.T.; Bennewith, K.L.; Nicolau, M.; Dornhöfer, N.; Kong, C.; Le, Q.T.; Chi, J.T.; Jeffrey, S.S.; Giaccia, A.J. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006, 440(7088), 1222-1226.
[http://dx.doi.org/10.1038/nature04695] [PMID: 16642001]
[182]
Katoh, M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int. J. Mol. Med., 2016, 38(1), 3-15.
[http://dx.doi.org/10.3892/ijmm.2016.2620] [PMID: 27245147]
[183]
Ghattass, K.; El-Sitt, S.; Zibara, K.; Rayes, S.; Haddadin, M.J.; El-Sabban, M.; Gali-Muhtasib, H. The quinoxaline di-N-oxide DCQ blocks breast cancer metastasis in vitro and in vivo by targeting the hypoxia inducible factor-1 pathway. Mol. Cancer, 2014, 13, 12.
[http://dx.doi.org/10.1186/1476-4598-13-12] [PMID: 24461075]
[184]
Maximiano, S.; Magalhaes, P.; Guerreiro, M. P.; Morgado, M. Trastuzumab in the treatment of breast cancer. BioDrugs: Clin. Immunotherapeutics, Biopharm. Gene Ther., 2016, 30(2), 75-86.
[185]
Diamond, J.R.; Finlayson, C.A.; Borges, V.F. Hepatic complications of breast cancer. Lancet Oncol., 2009, 10(6), 615-621.
[http://dx.doi.org/10.1016/S1470-2045(09)70029-4] [PMID: 19482250]
[186]
Miller, W.R. Aromatase inhibitors: prediction of response and nature of resistance. Expert Opin. Pharmacother., 2010, 11(11), 1873-1887.
[http://dx.doi.org/10.1517/14656566.2010.487863] [PMID: 20497094]
[187]
Chao, Y.; Wu, Q.; Shepard, C.; Wells, A. Hepatocyte induced re- expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin. Exp. Metastasis, 2012, 29(1), 39-50.
[http://dx.doi.org/10.1007/s10585-011-9427-3] [PMID: 21964676]
[188]
Witzel, I.; Oliveira-Ferrer, L.; Pantel, K.; Müller, V.; Wikman, H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res., 2016, 18(1), 8.
[http://dx.doi.org/10.1186/s13058-015-0665-1] [PMID: 26781299]
[189]
Scott, B.J.; Kesari, S. Leptomeningeal metastases in breast cancer. Am. J. Cancer Res., 2013, 3(2), 117-126.
[PMID: 23593536]
[190]
Weil, R.J.; Palmieri, D.C.; Bronder, J.L.; Stark, A.M.; Steeg, P.S. Breast cancer metastasis to the central nervous system. Am. J. Pathol., 2005, 167(4), 913-920.
[http://dx.doi.org/10.1016/S0002-9440(10)61180-7] [PMID: 16192626]
[191]
Bendell, J.C.; Domchek, S.M.; Burstein, H.J.; Harris, L.; Younger, J.; Kuter, I.; Bunnell, C.; Rue, M.; Gelman, R.; Winer, E. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer, 2003, 97(12), 2972-2977.
[http://dx.doi.org/10.1002/cncr.11436] [PMID: 12784331]
[192]
Burstein, H.J.; Lieberman, G.; Slamon, D.J.; Winer, E.P.; Klein, P. Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first- line trastuzumab-based therapy. Ann. Oncol., 2005, 16(11), 1772-1777.
[http://dx.doi.org/10.1093/annonc/mdi371] [PMID: 16150805]
[193]
Sevenich, L.; Bowman, R.L.; Mason, S.D.; Quail, D.F.; Rapaport, F.; Elie, B.T.; Brogi, E.; Brastianos, P.K.; Hahn, W.C.; Holsinger, L.J.; Massagué, J.; Leslie, C.S.; Joyce, J.A. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol., 2014, 16(9), 876-888.
[http://dx.doi.org/10.1038/ncb3011] [PMID: 25086747]
[194]
Valiente, M.; Obenauf, A.C.; Jin, X.; Chen, Q.; Zhang, X.H.; Lee, D.J.; Chaft, J.E.; Kris, M.G.; Huse, J.T.; Brogi, E.; Massagué, J. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 2014, 156(5), 1002-1016.
[http://dx.doi.org/10.1016/j.cell.2014.01.040] [PMID: 24581498]
[195]
Wrobel, J.K.; Toborek, M. Blood-brain barrier remodeling during brain metastasis formation. Mol. Med., 2016, 22, 32-40.
[http://dx.doi.org/10.2119/molmed.2015.00207] [PMID: 26837070]
[196]
Termini, J.; Neman, J.; Jandial, R. Role of the neural niche in brain metastatic cancer. Cancer Res., 2014, 74(15), 4011-4015.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1226] [PMID: 25035392]
[197]
Owens, T.; Renno, T.; Taupin, V.; Krakowski, M. Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol. Today, 1994, 15(12), 566-571.
[http://dx.doi.org/10.1016/0167-5699(94)90218-6] [PMID: 7848517]
[198]
Goldberg, S.B.; Gettinger, S.N.; Mahajan, A.; Chiang, A.C.; Herbst, R.S.; Sznol, M.; Tsiouris, A.J.; Cohen, J.; Vortmeyer, A.; Jilaveanu, L.; Yu, J.; Hegde, U.; Speaker, S.; Madura, M.; Ralabate, A.; Rivera, A.; Rowen, E.; Gerrish, H.; Yao, X.; Chiang, V.; Kluger, H.M. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol., 2016, 17(7), 976-983.
[http://dx.doi.org/10.1016/S1470-2045(16)30053-5] [PMID: 27267608]
[199]
Fitzgerald, D.P.; Emerson, D.L.; Qian, Y.; Anwar, T.; Liewehr, D.J.; Steinberg, S.M.; Silberman, S.; Palmieri, D.; Steeg, P.S. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther., 2012, 11(9), 1959-1967.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0061] [PMID: 22622283]
[200]
Hu, Z.I.; McArthur, H.L.; Ho, A.Y. The abscopal effect of radiation therapy: what is it and how can we use it in breast cancer? Curr. Breast Cancer Rep., 2017, 9(1), 45-51.
[http://dx.doi.org/10.1007/s12609-017-0234-y] [PMID: 28344743]
[201]
He, M.; Zhang, J.X.; Jiang, Y.Z.; Chen, Y.L.; Yang, H.Y.; Tang, L.C.; Shao, Z.M.; Di, G.H. The lymph node ratio as an independent prognostic factor for node-positive triple-negative breast cancer. Oncotarget, 2017, 8(27), 44870-44880.
[http://dx.doi.org/10.18632/oncotarget.17413] [PMID: 28496004]
[202]
Kuru, B.; Camlibel, M.; Dinc, S.; Gulcelik, M. A.; Alagol, H. Prognostic significance of axillary node and infraclavicular lymph node status after mastectomy. European J. Surgical Oncol.,, 2003, 29(10), 839-844.
[203]
Newman, L.A. Epidemiology of locally advanced breast cancer. Semin. Radiat. Oncol., 2009, 19(4), 195-203.
[http://dx.doi.org/10.1016/j.semradonc.2009.05.003] [PMID: 19732683]
[204]
Carter, C.L.; Allen, C.; Henson, D.E. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer, 1989, 63(1), 181-187.
[http://dx.doi.org/10.1002/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H] [PMID: 2910416]
[205]
He, Z.Y.; Wu, S.G.; Yang, Q.; Sun, J.Y.; Li, F.Y.; Lin, Q.; Lin, H.X. Breast cancer subtype is associated with axillary lymph node metastasis: a retrospective cohort study. Medicine (Baltimore), 2015, 94(48), e2213.
[http://dx.doi.org/10.1097/MD.0000000000002213] [PMID: 26632910]
[206]
Kim, J.Y.; Shin, J.K.; Lee, S.H. The breast tumor strain ratio is a predictive parameter for axillary lymph node metastasis in patients with invasive breast cancer. AJR Am. J. Roentgenol., 2015, 205(6), W630-8.
[http://dx.doi.org/10.2214/AJR.14.14269] [PMID: 26587952]
[207]
Lyman, G.H.; Somerfield, M.R.; Bosserman, L.D.; Perkins, C.L.; Weaver, D.L.; Giuliano, A.E. Sentinel lymph node biopsy for patients with early-stage breast cancer: american society of clinical oncology clinical practice guideline update. J. Clin. Oncol., 2017, 35(5), 561-564.
[http://dx.doi.org/10.1200/JCO.2016.71.0947] [PMID: 27937089]
[208]
Kamath, V.J.; Giuliano, R.; Dauway, E.L.; Cantor, A.; Berman, C.; Ku, N.N.; Cox, C.E.; Reintgen, D.S. Characteristics of the sentinel lymph node in breast cancer predict further involvement of higher-echelon nodes in the axilla: a study to evaluate the need for complete axillary lymph node dissection. Arch. Surg., 2001, 136(6), 688-692.
[http://dx.doi.org/10.1001/archsurg.136.6.688] [PMID: 11387010]
[209]
Liang, F.; Qu, H.; Lin, Q.; Yang, Y.; Ruan, X.; Zhang, B.; Liu, Y.; Yu, C.; Zhang, H.; Fang, X.; Hao, X. Molecular biomarkers screened by next-generation RNA sequencing for non-sentinel lymph node status prediction in breast cancer patients with metastatic sentinel lymph nodes. World J. Surg. Oncol., 2015, 13, 258.
[http://dx.doi.org/10.1186/s12957-015-0642-2] [PMID: 26311227]
[210]
DeSantis, C.; Siegel, R.; Bandi, P.; Jemal, A. Breast cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(6), 409-418.
[http://dx.doi.org/10.3322/caac.20134] [PMID: 21969133]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy