Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A Novel Imidazo[1,2-a]pyridine Compound Reduces Cell Viability and Induces Apoptosis of HeLa Cells by p53/Bax-Mediated Activation of Mitochondrial Pathway

Author(s): Yang Yu, Yanwen Li, Xinjie Yang, Qiuyi Deng, Bin Xu, Hua Cao* and Jianwen Mao*

Volume 22, Issue 6, 2022

Published on: 05 August, 2021

Page: [1102 - 1110] Pages: 9

DOI: 10.2174/1871520621666210805130925

Price: $65

Abstract

Background: Despite emerging research on new treatment strategies, chemotherapy remains one of the most important therapeutic modalities for cancers. Imidazopyridines are important targets in organic chemistry and, given their numerous applications, they are worthy of attention.

Objective: The objective of this study was to design and synthesize a novel series of imidazo[1,2-a]pyridine-derived compounds and investigate their antitumor effects and the underlying mechanisms.

Methods: Imidazo[1,2-a]pyridine-derived compounds were synthesized with new strategies and conventional methods. The antitumor activities of the new compounds were evaluated by MTT assay. Flow cytometry and immunofluorescence were performed to examine the effects of the most effective antiproliferative compound on cell apoptosis. Western blot analysis was used to assess the expression of apoptotic proteins.

Results: Fifty-two new imidazo[1,2-a]pyridine compounds were designed and successfully synthesized. The compound, 1-(imidazo[1,2-a]pyridin-3-yl)-2-(naphthalen-2-yl)ethane-1,2-dione, named La23, showed high potential for suppressing the viability of HeLa cells (IC50 15.32 μM). La23 inhibited cell proliferation by inducing cell apoptosis, and it reduced the mitochondrial membrane potential of HeLa cells. Moreover, treatment with La23 appeared to increase the expression of apoptotic-related protein P53, Bax, cleaved caspase-3, and cytochrome c at a low concentration range.

Conclusion: The novel imidazo[1,2-a]pyridine compound, La23, was synthesized and it suppressed cell growth by inducing cell apoptosis via the p53/Bax mitochondrial apoptotic pathway.

Keywords: Imidazo[1, 2-a]pyridine, tumor cells, apoptosis, p53/Bax, mitochondrial membrane potential, cytochrome c.

Graphical Abstract

[1]
El-Sayed, W.M.; Hussin, W.A.; Al-Faiyz, Y.S.; Ismail, M.A. The position of imidazopyridine and metabolic activation are pivotal factors in the antimutagenic activity of novel imidazo[1,2-a]pyridine derivatives. Eur. J. Pharmacol., 2013, 715(1-3), 212-218.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.018] [PMID: 23747653]
[2]
Tian, X.; Song, L.; Wang, M.; Lv, Z.; Wu, J.; Yu, W.; Chang, J. Synthesis of novel imidazo[1,2-a]pyridin-2-amines from arylamines and nitriles via sequential addition and I2/KI-mediated oxidative cyclization. Chem, 2016, 22(22), 7617-7622.
[http://dx.doi.org/10.1002/chem.201600849] [PMID: 27112949]
[3]
Deep, A.; Bhatia, R.K.; Kaur, R.; Kumar, S.; Jain, U.K.; Singh, H.; Batra, S.; Kaushik, D.; Deb, P.K. Imidazo[1,2-a]pyridine scaffold as prospective therapeutic agents. Curr. Top. Med. Chem., 2017, 17(2), 238-250.
[http://dx.doi.org/10.2174/1568026616666160530153233] [PMID: 27237332]
[4]
Tantry, S.J.; Markad, S.D.; Shinde, V.; Bhat, J.; Balakrishnan, G.; Gupta, A.K.; Ambady, A.; Raichurkar, A.; Kedari, C.; Sharma, S.; Mudugal, N.V.; Narayan, A.; Naveen Kumar, C.N.; Nanduri, R.; Bharath, S.; Reddy, J.; Panduga, V.; Prabhakar, K.R.; Kandaswamy, K.; Saralaya, R.; Kaur, P.; Dinesh, N.; Guptha, S.; Rich, K.; Murray, D.; Plant, H.; Preston, M.; Ashton, H.; Plant, D.; Walsh, J.; Alcock, P.; Naylor, K.; Collier, M.; Whiteaker, J.; McLaughlin, R.E.; Mallya, M.; Panda, M.; Rudrapatna, S.; Ramachandran, V.; Shandil, R.; Sambandamurthy, V.K.; Mdluli, K.; Cooper, C.B.; Rubin, H.; Yano, T.; Iyer, P.; Narayanan, S.; Kavanagh, S.; Mukherjee, K.; Balasubramanian, V.; Hosagrahara, V.P.; Solapure, S.; Ravishankar, S.; Hameed, P. S. Discovery of imidazo[1,2-a]pyridine ethers and squaramides as selective and potent inhibitors of mycobacterial adenosine triphosphate (ATP) synthesis. J. Med. Chem., 2017, 60(4), 1379-1399.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01358] [PMID: 28075132]
[5]
Xi, J.B.; Fang, Y.F.; Frett, B.; Zhu, M.L.; Zhu, T.; Kong, Y.N.; Guan, F.J.; Zhao, Y.; Zhang, X.W.; Li, H.Y.; Ma, M.L.; Hu, W. Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. Eur. J. Med. Chem., 2017, 126, 1083-1106.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.026] [PMID: 28039836]
[6]
Almeida, G.M.; Rafique, J.; Saba, S.; Siminski, T.; Mota, N.S.R.S.; Filho, D.W.; Braga, A.L.; Pedrosa, R.C.; Ourique, F. Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem. Biophys. Res. Commun., 2018, 503(3), 1291-1297.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.039] [PMID: 30017191]
[7]
Li, L.N.; Wang, L.; Cheng, Y.N.; Cao, Z.Q.; Zhang, X.K.; Guo, X.L. Discovery and characterization of 4-hydroxy-2-pyridone derivative sambutoxin as a potent and promising anticancer drug candidate: Activity and molecular mechanism. Mol. Pharm., 2018, 15(11), 4898-4911.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00525] [PMID: 30223653]
[8]
Hassan, G.S.; Abdel Rahman, D.E.; Nissan, Y.M.; Abdelmajeed, E.A.; Abdelghany, T.M. Novel pyrazolopyrimidines: Synthesis, in vitro cytotoxic activity and mechanistic investigation. Eur. J. Med. Chem., 2017, 138, 565-576.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.003] [PMID: 28704759]
[9]
Zhao, H.; Xu, X.; Lei, S.; Shao, D.; Jiang, C.; Shi, J.; Zhang, Y.; Liu, L.; Lei, S.; Sun, H.; Huang, Q. Iturin A-like lipopeptides from Bacillus subtilis trigger apoptosis, paraptosis, and autophagy in Caco-2 cells. J. Cell. Physiol., 2019, 234(5), 6414-6427.
[http://dx.doi.org/10.1002/jcp.27377] [PMID: 30238995]
[10]
Pan, Y.; Li, P.; Jia, R.; Wang, M.; Yin, Z.; Cheng, A. Regulation of Apoptosis During Porcine Circovirus Type 2 Infection. Front. Microbiol., 2018, 9, 2086.
[http://dx.doi.org/10.3389/fmicb.2018.02086] [PMID: 30233552]
[11]
Dam, J.; Ismail, Z.; Kurebwa, T.; Gangat, N.; Harmse, L.; Marques, H.M.; Lemmerer, A.; Bode, M.L.; de Koning, C.B. Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity. Eur. J. Med. Chem., 2017, 126, 353-368.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.041] [PMID: 27907874]
[12]
Song, Y.; Lin, X.; Kang, D.; Li, X.; Zhan, P.; Liu, X.; Zhang, Q. Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate. Eur. J. Med. Chem., 2014, 82, 293-307.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.063] [PMID: 24922544]
[13]
Lu, Y.; Yan, Y.; Wang, L.; Wang, X.; Gao, J.; Xi, T.; Wang, Z.; Jiang, F. Design, facile synthesis and biological evaluations of novel pyrano[3,2-a]phenazine hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2017, 127, 928-943.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.068] [PMID: 27836197]
[14]
Cao, S.L.G.C.Y.M.L.C.H.C.J.T.H. Regioselective copper-catalyzed oxidative cross-coupling of imidazo[1,2-a]pyridines with methyl ketones: an efficient route for synthesis of 1,2-diketones. Adv. Synth. Catal., 2016, 358(1), 7.
[15]
Wang, C.; Lei, S.; Cao, H.; Qiu, S.; Liu, J.; Deng, H.; Yan, C. Regioselective copper-catalyzed dicarbonylation of imidazo[1,2-a]pyridines with N,N-disubstituted acetamide or acetone: An approach to 1,2-diketones using molecular oxygen. J. Org. Chem., 2015, 80(24), 12725-12732.
[http://dx.doi.org/10.1021/acs.joc.5b02417] [PMID: 26595127]
[16]
Mao, J.; Xu, B.; Li, H.; Chen, L.; Jin, X.; Zhu, J.; Wang, W.; Zhu, L.; Zuo, W.; Chen, W.; Wang, L. Lack of association between stretch-activated and volume-activated Cl currents in hepatocellular carcinoma cells. J. Cell. Physiol., 2011, 226(5), 1176-1185.
[http://dx.doi.org/10.1002/jcp.22443] [PMID: 20945353]
[17]
Lee, H.; Kim, S.J.; Jung, K.H.; Son, M.K.; Yan, H.H.; Hong, S.; Hong, S.S. A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol. Rep., 2013, 30(2), 863-869.
[http://dx.doi.org/10.3892/or.2013.2499] [PMID: 23708425]
[18]
Ingersoll, M.A.; Lyons, A.S.; Muniyan, S.; D’Cunha, N.; Robinson, T.; Hoelting, K.; Dwyer, J.G.; Bu, X.R.; Batra, S.K.; Lin, M.F. Novel Imidazopyridine Derivatives Possess Anti-Tumor Effect on Human Castration-Resistant Prostate Cancer Cells. PLoS One, 2015, 10(6), e0131811.
[http://dx.doi.org/10.1371/journal.pone.0131811] [PMID: 26121643]
[19]
Martínez-Urbina, M.A.; Zentella, A.; Vilchis-Reyes, M.A.; Guzmán, A.; Vargas, O.; Ramírez Apan, M.T.; Ventura Gallegos, J.L.; Díaz, E. 6-Substituted 2-(N-trifluoroacetylamino)imidazopyridines induce cell cycle arrest and apoptosis in SK-LU-1 human cancer cell line. Eur. J. Med. Chem., 2010, 45(3), 1211-1219.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.049] [PMID: 20045224]
[20]
Aliwaini, S.; Awadallah, A.M.; Morjan, R.Y.; Ghunaim, M.; Alqaddi, H.; Abuhamad, A.Y.; Awadallah, E.A.; Abughefra, Y.M. Novel imidazo[1,2-a]pyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol. Lett., 2019, 18(1), 830-837.
[http://dx.doi.org/10.3892/ol.2019.10341] [PMID: 31289560]
[21]
Chen, P.; Liu, H.P.; Ji, H.H.; Sun, N.X.; Feng, Y.Y. A cold-water soluble polysaccharide isolated from Grifola frondosa induces the apoptosis of HepG2 cells through mitochondrial passway. Int. J. Biol. Macromol., 2019, 125, 1232-1241.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.098] [PMID: 30236758]
[22]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 150845.
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[23]
Oliveira, M.S.; Barbosa, M.I.F.; de Souza, T.B.; Moreira, D.R.M.; Martins, F.T.; Villarreal, W.; Machado, R.P.; Doriguetto, A.C.; Soares, M.B.P.; Bezerra, D.P. A novel platinum complex containing a piplartine derivative exhibits enhanced cytotoxicity, causes oxidative stress and triggers apoptotic cell death by ERK/p38 pathway in human acute promyelocytic leukemia HL-60 cells. Redox Biol., 2019, 20, 182-194.
[http://dx.doi.org/10.1016/j.redox.2018.10.006] [PMID: 30359932]
[24]
Scarlett, J.L.; Sheard, P.W.; Hughes, G.; Ledgerwood, E.C.; Ku, H.H.; Murphy, M.P. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett., 2000, 475(3), 267-272.
[http://dx.doi.org/10.1016/S0014-5793(00)01681-1] [PMID: 10869569]
[25]
Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis, 2003, 8(2), 115-128.
[http://dx.doi.org/10.1023/A:1022945107762] [PMID: 12766472]
[26]
Li, Y.L.; Zhang, J.; Min, D.; Hongyan, Z.; Lin, N.; Li, Q.S. Anticancer effects of 1,3-dihydroxy-2-methylanthraquinone and the ethyl acetate fraction of hedyotis diffusa willd against HepG2 carcinoma cells mediated via apoptosis. PLoS One, 2016, 11(4), e0151502.
[http://dx.doi.org/10.1371/journal.pone.0151502] [PMID: 27064569]
[27]
Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol., 2018, 8(5), 180002.
[http://dx.doi.org/10.1098/rsob.180002] [PMID: 29769323]
[28]
Renault, T. T.; Dejean, L. M.; Manon, S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev, , 2017, 161(Pt B), 201-210.
[http://dx.doi.org/10.1016/j.mad.2016.04.007]
[29]
Yamaguchi, R.; Lartigue, L.; Perkins, G. Targeting Mcl-1 and other Bcl-2 family member proteins in cancer therapy. Pharmacol. Ther., 2019, 195, 13-20.
[http://dx.doi.org/10.1016/j.pharmthera.2018.10.009] [PMID: 30347215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy