Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Berberine in the Treatment of Neurodegenerative Diseases and Nanotechnology Enabled Targeted Delivery

Author(s): Roohi Mohi-ud-din*, Reyaz Hassan Mir, Taha Umair Wani, Abdul Jalil Shah, Nazia Banday and Faheem Hyder Pottoo*

Volume 25, Issue 4, 2022

Published on: 04 August, 2021

Page: [616 - 633] Pages: 18

DOI: 10.2174/1386207324666210804122539

Price: $65

conference banner
Abstract

Background: Berberine (BBR), an alkaloidal compound found in many plants, is widely used for hundreds of years in the traditional system of Chinese medicine.

Objective/Aim: The present review is aimed to summarize the potential of Berberine in the amelioration of various neurological disorders.

Methods: The collection of data for the compilation of this review work was searched in PubMed Scopus, Google Scholar, and Science Direct. Of late, researchers are more focused on its beneficial role in neurodegenerative diseases.

Results: BBR has proven its protective role in numerous neurotoxicity models including, oxygen-glucose deprivation, mercury-induced, neurodegenerative model by ibotenic acid, and hypoxia caused by COCl2. BBR treatment averts the generation of reactive oxygen species in the oxygen-glucose deprivation model. Further, it subdues cytochrome c along with the divulge of apoptosis-inducing factors that indicate its beneficial action in the management of stroke. BBR diminished hydrogen peroxide-induced neuronal damage by enhancing the PI3k / Akt / Nrf-2 based pathway and showed a preventive impact on neurites of SH-SY5Y cells by averting the formation of ROS and inhibiting apoptosis. The impact of BBR on neurological disorder using a transgenic AD type mouse strain (TgCRND8) showed a reduction in the piling up of amyloid-β plaque. In mice, administration of BBR in the dose range of 5-10m/kg has been reported to raise the levels of serotonin (47%), dopamine (31%), and norepinephrine (29%) in CNS to allay depression.

Conclusion: The present review is aimed to summarize the potential of Berberine in the amelioration of various neurological disorders.

Keywords: Neuronanomedicine, berberine, nanotechnology, phytopharmaceutical, neurological disorders, Nrf-2 pathway, serotonin, dopamine, norepinephrine.

Graphical Abstract

[1]
Amir, M.; Ahmad, N.; Sarfaroz, M.; Ahmad, W.; Ahmad, S.; Mujeeb, M.; Hyder Pottoo, F. Tamarindus indica fruit: Pharmacognostical standardization, detection of contaminant, and in vitro antioxidant activity. J. Pharm. Bioallied Sci., 2019, 11(4), 355-363.
[http://dx.doi.org/10.4103/jpbs.JPBS_46_19] [PMID: 31619918]
[2]
Hassan, R.; Masoodi, M.H. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6, 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[3]
Mir, R.H.; Masoodi, M.H. Phytochemical screening and liquid chromatography-mass spectrometry studies of ethyl acetate extract of origanum vulgare. Int. J. Pharm. Investig., 2020, 10, 132-135.
[http://dx.doi.org/10.5530/ijpi.2020.2.24]
[4]
Mir, R.H.; Sawhney, G.; Verma, R.; Ahmad, B.; Kumar, P.; Ranjana, S. Oreganum vulgare: In-vitro assessment of cytotoxicity, molecular docking studies, antioxidant, and evaluation of anti-inflammatory activity in lps stimulated raw 264.7 cells.Medicinal Chemistry; Shariqah, United Arab Emirates, 2020.
[5]
Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus berberis linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2020, 24(5), 624-644.
[PMID: 33143603]
[6]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem., 2016, 8(6), 531-541.
[http://dx.doi.org/10.1038/nchem.2479] [PMID: 27219696]
[8]
Siddiqui, A.A.; Iram, F.; Siddiqui, S.; Sahu, K. Role of natural products in drug discovery process. Int. J. Drug Dev. Res., 2014, 6, 172-204.
[9]
Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[10]
Hassan Mir, R.; Godavari, G.; Siddiqui, N.A.; Ahmad, B.; Mothana, R.A.; Ullah, R.; Almarfadi, O.M.; Jachak, S.M.; Masoodi, M.H. Design, synthesis, molecular modelling, and biological evaluation of oleanolic acid-arylidene derivatives as potential anti-inflammatory agents. Drug Des. Devel. Ther., 2021, 15, 385-397.
[http://dx.doi.org/10.2147/DDDT.S291784] [PMID: 33574657]
[11]
Chauhan, D.S.; Gupta, P.; Pottoo, F.H.; Amir, M. Secondary metabolites in the treatment of diabetes mellitus: A paradigm shift. Curr. Drug Metab., 2020, 21(7), 493-511.
[http://dx.doi.org/10.2174/1389200221666200514081947] [PMID: 32407267]
[12]
Dar, M.A.; Bhat, M.F.; Hassan, R.; Masoodi, M.H.; Mir, S.R.; Mohiuddin, R. Extensive phytochemistry, comprehensive traditional uses, and critical pharmacological profile of the great mullein: Verbascum thapsus L. Nat. Prod. J., 2019, 9, 158-171.
[http://dx.doi.org/10.2174/2210315508666180821153531]
[13]
Mir, R.H.; Bhat, M.F.; Sawhney, G.; Kumar, P.; Andrabi, N.I.; Shaikh, M.; Mohi-Ud-Din, R.; Masoodi, M.H. Prunella vulgaris L: Critical pharmacological, expository traditional uses and extensive phytochemistry: A review. Curr. Drug Discov. Technol., 2021.
[http://dx.doi.org/10.2174/1570163818666210203181542] [PMID: 33538676]
[14]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.A.; Jachak, S.M.; Masoodi, M.H. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[15]
Mir, R.H.; Masoodi, M.H. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16, 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[16]
Mohi-Ud-Din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2021.
[http://dx.doi.org/10.2174/1570159X19666210428120514] [PMID: 33913406]
[17]
Shah, A.J.; Mir, R.H.; Mohi-Ud-Din, R.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2021.
[http://dx.doi.org/10.2174/1570159X19666210426115234] [PMID: 33902421]
[18]
Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. Anti-inflammatory assessment of 3-Acetylmyricadiol in LPS-Stimulated Raw 264.7 Macrophages. Comb. Chem. High Throughput Screen., 2021.
[http://dx.doi.org/10.2174/1386207324666210319122650] [PMID: 33745430]
[19]
Beutler, J. A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2009, 46, 9.11. 1-9.11. 21.
[http://dx.doi.org/10.1002/0471141755.ph0911s46]
[20]
Mishra, S.; Sharma, S.; Javed, M.N.; Pottoo, F.H.; Barkat, M.A. Harshita; Alam, M.S.; Amir, M.; Sarafroz, M. Bioinspired nanocomposites: Applications in disease diagnosis and treatment. Pharm. Nanotechnol., 2019, 7(3), 206-219.
[http://dx.doi.org/10.2174/2211738507666190425121509] [PMID: 31030662]
[21]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A. Harshita; Sarafroz, M.; Amir, M. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm. Nanotechnol., 2019, 7(3), 220-233.
[http://dx.doi.org/10.2174/2211738507666190429103814] [PMID: 31486751]
[22]
Rehman, S.; Nabi, B.; Pottoo, F.H.; Baboota, S.; Ali, J. Lipid nanoformulations in the treatment of neuropsychiatric diseases: An approach to overcome the blood brain barrier. Curr. Drug Metab., 2020, 21(9), 674-684.
[http://dx.doi.org/10.2174/1573399816666200627214129]
[23]
Kumar, B.; Pandey, M.; Pottoo, F.H.; Fayaz, F.; Sharma, A.; Sahoo, P.K. Liposomes: Novel drug delivery approach for targeting parkinson’s disease. Curr. Pharm. Des., 2020, 26(37), 4721-4737.
[http://dx.doi.org/10.2174/1381612826666200128145124] [PMID: 32003666]
[24]
Wani, T.U.; Mohi-Ud-Din, R.; Wani, T.A.; Itoo, A.M.; Sheikh, F.A.; Khan, N.A. Green synthesis, spectroscopic characterization and biomedical applications of carbon nanotubes. Curr. Pharm. Biotechnol., 2020, 22(6), 793-807.
[http://dx.doi.org/10.2174/1389201021999201110205615] [PMID: 33176640]
[25]
Wani, T.U.; Mohi-Ud-Din, R.; Mir, R.H.; Itoo, A.M.; Mir, K.B.; Fazli, A.A. Exosomes harnessed as nanocarriers for cancer therapy-current status and potential for future clinical applications. Curr. Mol. Med., 2021.
[PMID: 32933459]
[26]
Tan, W.; Li, Y.; Chen, M.; Wang, Y. Berberine hydrochloride: Anticancer activity and nanoparticulate delivery system. Int. J. Nanomedicine, 2011, 6, 1773-1777.
[http://dx.doi.org/10.2147/IJN.S22683] [PMID: 21931477]
[27]
Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B, 2012, 2, 327-334.
[http://dx.doi.org/10.1016/j.apsb.2012.06.003]
[28]
Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: A potential phytochemical with multispectrum therapeutic activities. Expert Opin. Investig. Drugs, 2010, 19(10), 1297-1307.
[http://dx.doi.org/10.1517/13543784.2010.517745] [PMID: 20836620]
[29]
Anis, K.V.; Rajeshkumar, N.V.; Kuttan, R. Inhibition of chemical carcinogenesis by berberine in rats and mice. J. Pharm. Pharmacol., 2001, 53(5), 763-768.
[http://dx.doi.org/10.1211/0022357011775901] [PMID: 11370717]
[30]
Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X-J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One, 2015, 10.
[31]
Jiang, Q.L.P.; Wu, X. Berberine attenuates lipopolysaccharide-induced extracelluar matrix accumulation and inflammation in rat mesangial cells: Involvement of NF-κB signaling pathway. Mol. Cell. Endocrinol., 2011, 331, 34-40.
[32]
Arayne, M.S.; Sultana, N.; Bahadur, S.S. The berberis story: Berberis vulgaris in therapeutics. Pak. J. Pharm. Sci., 2007, 20(1), 83-92.
[PMID: 17337435]
[33]
Inbaraj, J.J.; Kukielczak, B.M.; Bilski, P.; Sandvik, S.L.; Chignell, C.F. Photochemistry and photocytotoxicity of alkaloids from Goldenseal (Hydrastis canadensis L.) 1. Berberine. Chem. Res. Toxicol., 2001, 14(11), 1529-1534.
[http://dx.doi.org/10.1021/tx0155247] [PMID: 11712911]
[34]
Wang, N.; Tan, H-Y.; Li, L.; Yuen, M-F.; Feng, Y. Berberine and Coptidis Rhizoma as potential anticancer agents: Recent updates and future perspectives. J. Ethnopharmacol., 2015, 176, 35-48.
[http://dx.doi.org/10.1016/j.jep.2015.10.028] [PMID: 26494507]
[35]
Domingo, M.P.; Pardo, J.; Cebolla, V.; Galvez, E.M. Berberine: A fluorescent alkaloid with a variety of applications from medicine to chemistry. Mini Rev. Org. Chem., 2010, 7, 335-340.
[http://dx.doi.org/10.2174/157019310792246445]
[36]
Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[37]
Chen, W.; Miao, Y-Q.; Fan, D-J.; Yang, S-S.; Lin, X.; Meng, L-K.; Tang, X. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech, 2011, 12(2), 705-711.
[http://dx.doi.org/10.1208/s12249-011-9632-z] [PMID: 21637946]
[38]
Liu, Y-T.; Hao, H-P.; Xie, H-G.; Lai, L.; Wang, Q.; Liu, C-X.; Wang, G.J. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab. Dispos., 2010, 38(10), 1779-1784.
[http://dx.doi.org/10.1124/dmd.110.033936] [PMID: 20634337]
[39]
Pan, G.Y.; Wang, G.J.; Liu, X.D.; Fawcett, J.P.; Xie, Y.Y. The involvement of P-glycoprotein in berberine absorption. Pharmacol. Toxicol., 2002, 91(4), 193-197.
[http://dx.doi.org/10.1034/j.1600-0773.2002.t01-1-910403.x] [PMID: 12530470]
[40]
Feng, R.; Shou, J-W.; Zhao, Z-X.; He, C-Y.; Ma, C.; Huang, M.; Fu, J.; Tan, X.S.; Li, X.Y.; Wen, B.Y.; Chen, X.; Yang, X.Y.; Ren, G.; Lin, Y.; Chen, Y.; You, X.F.; Wang, Y.; Jiang, J.D. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci. Rep., 2015, 5, 12155.
[http://dx.doi.org/10.1038/srep12155] [PMID: 26174047]
[41]
Boskabady MH (2006)14(4):208–213, “Effects of hydroethanolic extract of Berberis vulgaris fruit on rabbit isolated heart. Daru, 2006, 14, 208-213.
[42]
Kulkarni, S.K.; Dandiya, P.C.; Varandani, N.L. Pharmacological investigations of berberine sulphate. Jpn. J. Pharmacol., 1972, 22(1), 11-16.
[http://dx.doi.org/10.1016/S0021-5198(19)31702-0] [PMID: 4260852]
[43]
Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21.
[http://dx.doi.org/10.3389/fmolb.2018.00021] [PMID: 29616225]
[44]
Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008, 57(5), 712-717.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[45]
Yang, S.; Wang, X. A research on the erupted fetal diseases caused by traditional Chinese drugs--discussion from the issue that Chinese goldthread rhizome is prohibited in Singapore. J. Tradit. Chin. Med., 2008, 28(3), 235-240.
[http://dx.doi.org/10.1016/S0254-6272(08)60055-2] [PMID: 19004212]
[46]
Shin, K.S.; Choi, H.S.; Zhao, T.T.; Suh, K.H.; Kwon, I.H.; Choi, S.O.; Lee, M.K. Neurotoxic effects of berberine on long-term L-DOPA administration in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Arch. Pharm. Res., 2013, 36(6), 759-767.
[http://dx.doi.org/10.1007/s12272-013-0051-4] [PMID: 23539311]
[47]
Kwon, I.H.; Choi, H.S.; Shin, K.S.; Lee, B.K.; Lee, C.K.; Hwang, B.Y.; Lim, S.C.; Lee, M.K. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci. Lett., 2010, 486(1), 29-33.
[http://dx.doi.org/10.1016/j.neulet.2010.09.038] [PMID: 20851167]
[48]
Kysenius, K.; Brunello, C.A.; Huttunen, H.J. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. PLoS One, 2014, 9.
[http://dx.doi.org/10.1371/journal.pone.0107129]
[49]
Hu, X.; Wu, X.; Huang, Y.; Tong, Q.; Takeda, S.; Qing, Y. Berberine induces double-strand DNA breaks in Rev3 deficient cells. Mol. Med. Rep., 2014, 9(5), 1883-1888.
[http://dx.doi.org/10.3892/mmr.2014.1999] [PMID: 24584584]
[50]
Kareem, O.; Bader, G.N.; Pottoo, F.H.; Amir, M.; Barkat, M.A.; Pandey, M. Beclin 1 complex and neurodegenerative disorders.Quality control of cellular protein in neurodegenerative disorders; Global, I.G.I., Ed.; , 2020, pp. 236-260.
[http://dx.doi.org/10.4018/978-1-7998-1317-0.ch009]
[51]
Ibrahim, A.M.; Pottoo, F.H.; Dahiya, E.S.; Khan, F.A.; Kumar, J.B.S. Neuron-glia interactions: Molecular basis of alzheimer’s disease and applications of neuroproteomics. Eur. J. Neurosci., 2020, 52(2), 2931-2943.
[http://dx.doi.org/10.1111/ejn.14838] [PMID: 32463535]
[52]
Pardon, M-C.; Rattray, I. What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci. Biobehav. Rev., 2008, 32(6), 1103-1120.
[http://dx.doi.org/10.1016/j.neubiorev.2008.03.005] [PMID: 18436304]
[53]
Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol. Lett., 2002, 23(3), 199-208.
[PMID: 12080279]
[54]
Venkataraman, A.; Kalk, N.; Sewell, G.; Ritchie, C.W.; Lingford-Hughes, A. Alcohol and alzheimer’s disease-does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in alzheimer’s disease? Alcohol Alcohol., 2017, 52(2), 151-158.
[PMID: 27915236]
[55]
McNamara, P.; Zaporojan, L.; Doherty, C.P.; Coen, R.F.; Bergin, C. HIV and other infectious causes of dementia. Neurodegenerative Disorders; Springer, 2016, pp. 255-268.
[http://dx.doi.org/10.1007/978-3-319-23309-3_14]
[56]
Pottoo, F.H.; Tabassum, N.; Javed, M.N.; Nigar, S.; Sharma, S.; Barkat, M.A. Harshita; Alam, M.S.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur. J. Pharm. Sci., 2020, 146, 105261.
[http://dx.doi.org/10.1016/j.ejps.2020.105261] [PMID: 32061655]
[57]
Pottoo, F.H.; Tabassum, N.; Javed, M.N.; Nigar, S.; Rasheed, R.; Khan, A.; Barkat, M.A.; Alam, M.S.; Maqbool, A.; Ansari, M.A.; Barreto, G.E.; Ashraf, G.M. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol. Neurobiol., 2019, 56(2), 1233-1247.
[http://dx.doi.org/10.1007/s12035-018-1121-x] [PMID: 29881945]
[58]
Pottoo, F.H.; Bhowmik, M.; Vohora, D. Raloxifene protects against seizures and neurodegeneration in a mouse model mimicking epilepsy in postmenopausal woman. Eur. J. Pharm. Sci., 2014, 65, 167-173.
[http://dx.doi.org/10.1016/j.ejps.2014.09.002] [PMID: 25218046]
[59]
Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative diseases: Regenerative mechanisms and novel therapeutic approaches. Brain Sci., 2018, 8(9), 177.
[http://dx.doi.org/10.3390/brainsci8090177] [PMID: 30223579]
[60]
Götz, M.E.; Künig, G.; Riederer, P.; Youdim, M.B. Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther., 1994, 63(1), 37-122.
[http://dx.doi.org/10.1016/0163-7258(94)90055-8] [PMID: 7972344]
[61]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3, 205-214.
[http://dx.doi.org/10.1038/nrd1330]
[62]
Ischiropoulos, H.; Beckman, J.S. Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest., 2003, 111(2), 163-169.
[http://dx.doi.org/10.1172/JCI200317638] [PMID: 12531868]
[63]
Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993, 262(5134), 689-695.
[http://dx.doi.org/10.1126/science.7901908] [PMID: 7901908]
[64]
Simpson, E.P.; Yen, A.A.; Appel, S.H. Oxidative Stress: A common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr. Opin. Rheumatol., 2003, 15(6), 730-736.
[http://dx.doi.org/10.1097/00002281-200311000-00008] [PMID: 14569202]
[65]
Mhatre, M.; Floyd, R.A.; Hensley, K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J. Alzheimers Dis., 2004, 6(2), 147-157.
[http://dx.doi.org/10.3233/JAD-2004-6206] [PMID: 15096698]
[66]
Howland, D.S.; Liu, J.; She, Y.; Goad, B.; Maragakis, N.J.; Kim, B.; Erickson, J.; Kulik, J.; DeVito, L.; Psaltis, G.; DeGennaro, L.J.; Cleveland, D.W.; Rothstein, J.D. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA, 2002, 99(3), 1604-1609.
[http://dx.doi.org/10.1073/pnas.032539299] [PMID: 11818550]
[67]
Shaw, P.J.; Ince, P.G. Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J. Neurol., 1997, 244(Suppl. 2), S3-S14.
[http://dx.doi.org/10.1007/BF03160574] [PMID: 9178165]
[68]
Valentine, J.S.; Hart, P.J. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3617-3622.
[http://dx.doi.org/10.1073/pnas.0730423100] [PMID: 12655070]
[69]
Neumann, M.; Kwong, L.K.; Sampathu, D.M.; Trojanowski, J.Q.; Lee, V.M. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch. Neurol., 2007, 64(10), 1388-1394.
[http://dx.doi.org/10.1001/archneur.64.10.1388] [PMID: 17923623]
[70]
Menzies, F.M.; Cookson, M.R.; Taylor, R.W.; Turnbull, D.M.; Chrzanowska-Lightowlers, Z.M.; Dong, L.; Figlewicz, D.A.; Shaw, P.J. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain, 2002, 125(Pt 7), 1522-1533.
[http://dx.doi.org/10.1093/brain/awf167] [PMID: 12077002]
[71]
Yiangou, Y.; Facer, P.; Durrenberger, P.; Chessell, I.P.; Naylor, A.; Bountra, C.; Banati, R.R.; Anand, P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol., 2006, 6, 12.
[http://dx.doi.org/10.1186/1471-2377-6-12] [PMID: 16512913]
[72]
Demestre, M.; Parkin-Smith, G.; Petzold, A.; Pullen, A.H. The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J. Neuroimmunol., 2005, 159, 146-154.
[http://dx.doi.org/10.1016/j.jneuroim.2004.09.015]
[73]
Elliott, J.L. Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res. Mol. Brain Res., 2001, 95(1-2), 172-178.
[http://dx.doi.org/10.1016/S0169-328X(01)00242-X] [PMID: 11687290]
[74]
Léger, B.; Vergani, L.; Sorarù, G.; Hespel, P.; Derave, W.; Gobelet, C.; D’Ascenzio, C.; Angelini, C.; Russell, A.P. Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atrogin-1. FASEB J., 2006, 20(3), 583-585.
[http://dx.doi.org/10.1096/fj.05-5249fje] [PMID: 16507768]
[75]
Crugnola, V.; Lamperti, C.; Lucchini, V.; Ronchi, D.; Peverelli, L.; Prelle, A.; Sciacco, M.; Bordoni, A.; Fassone, E.; Fortunato, F.; Corti, S.; Silani, V.; Bresolin, N.; Di Mauro, S.; Comi, G.P.; Moggio, M. Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch. Neurol., 2010, 67(7), 849-854.
[http://dx.doi.org/10.1001/archneurol.2010.128] [PMID: 20625092]
[76]
Grosskreutz, J.; Van Den Bosch, L.; Keller, B.U. Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium, 2010, 47(2), 165-174.
[http://dx.doi.org/10.1016/j.ceca.2009.12.002] [PMID: 20116097]
[77]
Zhang, R.; Gascon, R.; Miller, R.G.; Gelinas, D.F.; Mass, J.; Hadlock, K.; Jin, X.; Reis, J.; Narvaez, A.; McGrath, M.S. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol., 2005, 159(1-2), 215-224.
[http://dx.doi.org/10.1016/j.jneuroim.2004.10.009] [PMID: 15652422]
[78]
Axelsen, P.H.; Komatsu, H.; Murray, I.V. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology (Bethesda), 2011, 26(1), 54-69.
[http://dx.doi.org/10.1152/physiol.00024.2010] [PMID: 21357903]
[79]
Butterfield, D.A. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic. Res., 2002, 36(12), 1307-1313.
[http://dx.doi.org/10.1080/1071576021000049890] [PMID: 12607822]
[80]
Aliev, G.; Priyadarshini, M.; Reddy, V.P.; Grieg, N.H.; Kaminsky, Y.; Cacabelos, R.; Ashraf, G.M.; Jabir, N.R.; Kamal, M.A.; Nikolenko, V.N.; Zamyatnin, A.A., Jr; Benberin, V.V.; Bachurin, S.O. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr. Med. Chem., 2014, 21(19), 2208-2217.
[http://dx.doi.org/10.2174/0929867321666131227161303] [PMID: 24372221]
[81]
Welch, K.D.; Davis, T.Z.; Van Eden, M.E.; Aust, S.D. Deleterious iron-mediated oxidation of biomolecules. Free Radic. Biol. Med., 2002, 32(7), 577-583.
[http://dx.doi.org/10.1016/S0891-5849(02)00760-8] [PMID: 11909692]
[82]
Smith, M.A.; Rottkamp, C.A.; Nunomura, A.; Raina, A.K.; Perry, G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta, 2000, 1502(1), 139-144.
[http://dx.doi.org/10.1016/S0925-4439(00)00040-5] [PMID: 10899439]
[83]
Tabner, B.J.; Turnbull, S.; El-Agnaf, O.; Allsop, D. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr. Top. Med. Chem., 2001, 1(6), 507-517.
[http://dx.doi.org/10.2174/1568026013394822] [PMID: 11895127]
[84]
Srikanth, V.; Maczurek, A.; Phan, T.; Steele, M.; Westcott, B.; Juskiw, D.; Münch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging, 2011, 32(5), 763-777.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.016] [PMID: 19464758]
[85]
Whitehouse, P.J.; Price, D.L.; Struble, R.G.; Clark, A.W.; Coyle, J.T.; Delon, M.R. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science, 1982, 215(4537), 1237-1239.
[http://dx.doi.org/10.1126/science.7058341] [PMID: 7058341]
[86]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[87]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[88]
Etminan, M.; Gill, S.S.; Samii, A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: A meta-analysis. Lancet Neurol., 2005, 4(6), 362-365.
[http://dx.doi.org/10.1016/S1474-4422(05)70097-1] [PMID: 15907740]
[89]
Singh, R.; Sharad, S.; Kapur, S. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J. Ind. Acad. Clin. Med., 2004, 5, 218-225.
[90]
Rao, A.V.; Balachandran, B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci., 2002, 5(5), 291-309.
[http://dx.doi.org/10.1080/1028415021000033767] [PMID: 12385592]
[91]
Ramassamy, C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol., 2006, 545(1), 51-64.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.025] [PMID: 16904103]
[92]
Joseph, J.A.; Shukitt-Hale, B.; Denisova, N.A.; Bielinski, D.; Martin, A.; McEwen, J.J.; Bickford, P.C. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci., 1999, 19(18), 8114-8121.
[http://dx.doi.org/10.1523/JNEUROSCI.19-18-08114.1999] [PMID: 10479711]
[93]
Lau, F.C.; Shukitt-Hale, B.; Joseph, J.A. The beneficial effects of fruit polyphenols on brain aging. Neurobiol. Aging, 2005, 26(Suppl. 1), 128-132.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.007] [PMID: 16194581]
[94]
Barberger-Gateau, P.; Raffaitin, C.; Letenneur, L.; Berr, C.; Tzourio, C.; Dartigues, J.F.; Alpérovitch, A. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology, 2007, 69(20), 1921-1930.
[http://dx.doi.org/10.1212/01.wnl.0000278116.37320.52] [PMID: 17998483]
[95]
Russo, A.; Palumbo, M.; Aliano, C.; Lempereur, L.; Scoto, G.; Renis, M. Red wine micronutrients as protective agents in Alzheimer-like induced insult. Life Sci., 2003, 72(21), 2369-2379.
[http://dx.doi.org/10.1016/S0024-3205(03)00123-1] [PMID: 12639702]
[96]
Nabavi, S.F.; Nabavi, S.M.; Setzer, W.N.; Nabavi, S.A.; Nabavi, S.A.; Ebrahimzadeh, M.A. Antioxidant and antihemolytic activity of lipid-soluble bioactive substances in avocado fruits. Fruits, 2013, 68, 185-193.
[http://dx.doi.org/10.1051/fruits/2013066]
[97]
Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Eslami, B.; Jafari, N. In vitro antioxidant and antihemolytic activities of hydroalcoholic extracts of Allium scabriscapum Boiss. & Ky. aerial parts and bulbs. Int. J. Food Prop., 2013, 16, 713-722.
[http://dx.doi.org/10.1080/10942912.2011.565902]
[98]
Nabavi, S.F.; Nabavi, S.M.; Mirzaei, M.; Moghaddam, A.H. Protective effect of quercetin against sodium fluoride induced oxidative stress in rat’s heart. Food Funct., 2012, 3(4), 437-441.
[http://dx.doi.org/10.1039/c2fo10264a] [PMID: 22314573]
[99]
Nabavi, S.M.; Nabavi, S.F.; Eslami, S.; Moghaddam, A.H. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem., 2012, 132, 931-935.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.070]
[100]
Masella, R.; Di Benedetto, R.; Varì, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem., 2005, 16(10), 577-586.
[http://dx.doi.org/10.1016/j.jnutbio.2005.05.013] [PMID: 16111877]
[101]
Stevenson, D.E.; Hurst, R.D. Polyphenolic phytochemicals-just antioxidants or much more? Cell. Mol. Life Sci., 2007, 64(22), 2900-2916.
[http://dx.doi.org/10.1007/s00018-007-7237-1] [PMID: 17726576]
[102]
Shirwaikar, A.; Shirwaikar, A.; Rajendran, K.; Punitha, I.S. In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. Pharm. Bull., 2006, 29(9), 1906-1910.
[http://dx.doi.org/10.1248/bpb.29.1906] [PMID: 16946507]
[103]
Iwasa, K.; Kamigauchi, M.; Ueki, M.; Taniguchi, M. Antibacterial activity and structure-activity relationships of berberine analogs. Eur. J. Med. Chem., 1996, 31, 469-478.
[http://dx.doi.org/10.1016/0223-5234(96)85167-1]
[104]
Sarma, B.K.; Pandey, V.B.; Mishra, G.D.; Singh, U.P. Antifungal activity of berberine iodide, a constituent of Fumaria indica. Folia Microbiologica, 1999, 44, 164-166.
[http://dx.doi.org/10.1007/BF02816235]
[105]
Hayashi, K.; Minoda, K.; Nagaoka, Y.; Hayashi, T.; Uesato, S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorg. Med. Chem. Lett., 2007, 17(6), 1562-1564.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.085] [PMID: 17239594]
[106]
Kuo, C.L.; Chi, C.W.; Liu, T.Y. The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett., 2004, 203(2), 127-137.
[http://dx.doi.org/10.1016/j.canlet.2003.09.002] [PMID: 14732220]
[107]
Katiyar, S.K.; Meeran, S.M.; Katiyar, N.; Akhtar, S. p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol. Carcinog., 2009, 48(1), 24-37.
[http://dx.doi.org/10.1002/mc.20453] [PMID: 18459128]
[108]
Sam, I.; Punitha, R.; Shirwaikar, A.; Shirwaikar, A. Antidiabetic activity of benzyl tetra isoquinoline alkaloid berberine in streptozotocin-nicotinamide induced type 2 diabetic rat. Diabetol. Croat., 2006, 34.
[109]
Siow, Y.L.; Sarna, L.K.O. Redox regulation in health and disease — therapeutic potential of berberine. Food Research International, 2011, 44, 2409-2417.
[110]
Shan, W.J.; Huang, L.; Zhou, Q.; Meng, F.C.; Li, X.S. Synthesis, biological evaluation of 9-N-substituted berberine derivatives as multi-functional agents of antioxidant, inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-β aggregation. Eur. J. Med. Chem., 2011, 46(12), 5885-5893.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.051] [PMID: 22019228]
[111]
Hur, J.M.; Hyun, M.S.; Lim, S.Y.; Lee, W.Y.; Kim, D. The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells. J. Cell. Biochem., 2009, 107(5), 955-964.
[http://dx.doi.org/10.1002/jcb.22198] [PMID: 19492307]
[112]
Sarna, L.K.; Wu, N.; Hwang, S.Y.; Siow, Y.L. O, K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can. J. Physiol. Pharmacol., 2010, 88(3), 369-378.
[http://dx.doi.org/10.1139/Y09-136] [PMID: 20393601]
[113]
Lee, D.U.; Kang, Y.J.; Park, M.K.; Lee, Y.S.; Seo, H.G.; Kim, T.S.; Kim, C.H.; Chang, K.C. Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci., 2003, 73(11), 1401-1412.
[http://dx.doi.org/10.1016/S0024-3205(03)00435-1] [PMID: 12850501]
[114]
Hwang, J.M.; Wang, C.J.; Chou, F.P.; Tseng, T.H.; Hsieh, Y.S.; Lin, W.L.; Chu, C.Y. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch. Toxicol., 2002, 76(11), 664-670.
[http://dx.doi.org/10.1007/s00204-002-0351-9] [PMID: 12415430]
[115]
Thirupurasundari, C.J.; Padmini, R.; Devaraj, S.N. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats. Chem. Biol. Interact., 2009, 177(3), 190-195.
[http://dx.doi.org/10.1016/j.cbi.2008.09.027] [PMID: 18951886]
[116]
Zhang, Q.; Piao, X.L.; Piao, X.S.; Lu, T.; Wang, D.; Kim, S.W. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem. Toxicol., 2011, 49(1), 61-69.
[http://dx.doi.org/10.1016/j.fct.2010.09.032] [PMID: 20932871]
[117]
Tan, Y.; Tang, Q.; Hu, B.R.; Xiang, J.Z. Antioxidant properties of berberine on cultured rabbit corpus cavernosum smooth muscle cells injured by hydrogen peroxide. Acta Pharmacol. Sin., 2007, 28(12), 1914-1918.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00705.x] [PMID: 18031604]
[118]
Liu, W.H.; Hei, Z.Q.; Nie, H.; Tang, F.T.; Huang, H.Q.; Li, X.J.; Deng, Y.H.; Chen, S.R.; Guo, F.F.; Huang, W.G.; Chen, F.Y.; Liu, P.Q. Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase. Chin. Med. J. (Engl.), 2008, 121(8), 706-712.
[http://dx.doi.org/10.1097/00029330-200804020-00009] [PMID: 18701023]
[119]
Hsu, W.H.; Hsieh, Y.S.; Kuo, H.C.; Teng, C.Y.; Huang, H.I.; Wang, C.J.; Yang, S.F.; Liou, Y.S.; Kuo, W.H. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch. Toxicol., 2007, 81(10), 719-728.
[http://dx.doi.org/10.1007/s00204-006-0169-y] [PMID: 17673978]
[120]
Hu, J.; Chai, Y.; Wang, Y.; Kheir, M.M.; Li, H.; Yuan, Z.; Wan, H.; Xing, D.; Lei, F.; Du, L. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia-reperfusion. Eur. J. Pharmacol., 2012, 674(2-3), 132-142.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.014] [PMID: 22119079]
[121]
Chen, Q.; Mo, R.; Wu, N.; Zou, X.; Shi, C.; Gong, J.; Li, J.; Fang, K.; Wang, D.; Yang, D.; Wang, K.; Chen, J. Berberine ameliorates diabetes-associated cognitive decline through modulation of aberrant inflammation response and insulin signaling pathway in dm rats. Front. Pharmacol., 2017, 8, 334.
[http://dx.doi.org/10.3389/fphar.2017.00334] [PMID: 28634451]
[122]
Chai, Y.S.; Hu, J.; Lei, F.; Wang, Y.G.; Yuan, Z.Y.; Lu, X.; Wang, X.P.; Du, F.; Zhang, D.; Xing, D.M.; Du, L.J. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt. Eur. J. Pharmacol., 2013, 708(1-3), 44-55.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.041] [PMID: 23499694]
[123]
Yoo, K.Y.; Hwang, I.K.; Lim, B.O.; Kang, T.C.; Kim, D.W.; Kim, S.M.; Lee, H.Y.; Kim, J.D.; Won, M.H. Berberry extract reduces neuronal damage and N-Methyl-D-aspartate receptor 1 immunoreactivity in the gerbil hippocampus after transient forebrain ischemia. Biol. Pharm. Bull., 2006, 29(4), 623-628.
[http://dx.doi.org/10.1248/bpb.29.623] [PMID: 16595891]
[124]
Hong, J.S.; Chu, Y.K.; Lee, H.; Ahn, B.H.; Park, J.H.; Kim, M.J.; Lee, S.; Ryoo, H.S.; Jang, J.H.; Lee, S.R.; Park, J.W. Effects of berberine on hippocampal neuronal damage and matrix metalloproteinase-9 activity following transient global cerebral ischemia. J. Neurosci. Res., 2012, 90(2), 489-497.
[http://dx.doi.org/10.1002/jnr.22756] [PMID: 22052603]
[125]
Kysenius, K.; Brunello, C.A.; Huttunen, H.J. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. PLoS One, 2014, 9(9), e107129.
[http://dx.doi.org/10.1371/journal.pone.0107129] [PMID: 25192195]
[126]
Lin, T.Y.; Lin, Y.W.; Lu, C.W.; Huang, S.K.; Wang, S.J. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex. PLoS One, 2013, 8(6), e67215.
[http://dx.doi.org/10.1371/journal.pone.0067215] [PMID: 23840629]
[127]
Jiang, Y.; Wu, A.; Zhu, C.; Pi, R.; Chen, S.; Liu, Y.; Ma, L.; Zhu, D.; Chen, X. The protective effect of berberine against neuronal damage by inhibiting matrix metalloproteinase-9 and laminin degradation in experimental autoimmune encephalomyelitis. Neurol. Res., 2013, 35(4), 360-368.
[http://dx.doi.org/10.1179/1743132812Y.0000000156] [PMID: 23540404]
[128]
Sun, H.; Zhu, L.; Yang, H.; Qian, W.; Guo, L.; Zhou, S.; Gao, B.; Li, Z.; Zhou, Y.; Jiang, H.; Chen, K.; Zhen, X.; Liu, H. Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D(1), D(2) and serotonin 5-HT(1A) multi-action profile. Bioorg. Med. Chem., 2013, 21(4), 856-868.
[http://dx.doi.org/10.1016/j.bmc.2012.12.016] [PMID: 23332346]
[129]
Kessler, S.; Vlimant, M.; Guerin, P.M. The sugar meal of the African malaria mosquito Anopheles gambiae and how deterrent compounds interfere with it: A behavioural and neurophysiological study. J. Exp. Biol., 2013, 216(Pt 7), 1292-1306.
[http://dx.doi.org/10.1242/jeb.076588] [PMID: 23264482]
[130]
Kalalian-Moghaddam, H.; Baluchnejadmojarad, T.; Roghani, M.; Goshadrou, F.; Ronaghi, A. Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. Eur. J. Pharmacol., 2013, 698(1-3), 259-266.
[http://dx.doi.org/10.1016/j.ejphar.2012.10.020] [PMID: 23099256]
[131]
Arora, V.; Chopra, K. Possible involvement of oxido-nitrosative stress induced neuro-inflammatory cascade and monoaminergic pathway: underpinning the correlation between nociceptive and depressive behaviour in a rodent model. J. Affect. Disord., 2013, 151(3), 1041-1052.
[http://dx.doi.org/10.1016/j.jad.2013.08.032] [PMID: 24126118]
[132]
Ji, H.F.; Shen, L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. ScientificWorldJournal, 2012, 2012, 823201.
[http://dx.doi.org/10.1100/2012/823201] [PMID: 22262957]
[133]
Han, A.M.; Heo, H.; Kwon, Y.K. Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J. Med. Food, 2012, 15(4), 413-417.
[http://dx.doi.org/10.1089/jmf.2011.2029] [PMID: 22316297]
[134]
Lee, B.; Sur, B.; Shim, I.; Lee, H.; Hahm, D.H. Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats. Korean J. Physiol. Pharmacol., 2012, 16(2), 79-89.
[http://dx.doi.org/10.4196/kjpp.2012.16.2.79] [PMID: 22563252]
[135]
Zhang, Q.; Qian, Z.; Pan, L.; Li, H.; Zhu, H. Hypoxia-inducible factor 1 mediates the anti-apoptosis of berberine in neurons during hypoxia/ischemia. Acta Physiol. Hung., 2012, 99(3), 311-323.
[http://dx.doi.org/10.1556/APhysiol.99.2012.3.8] [PMID: 22982719]
[136]
Hsu, Y.Y.; Chen, C.S.; Wu, S.N.; Jong, Y.J.; Lo, Y.C. Berberine activates Nrf2 nuclear translocation and protects against oxidative damage via a phosphatidylinositol 3-kinase/Akt-dependent mechanism in NSC34 motor neuron-like cells. Eur. J. Pharm. Sci., 2012, 46(5), 415-425.
[http://dx.doi.org/10.1016/j.ejps.2012.03.004] [PMID: 22469516]
[137]
Hu, Y.; Ehli, E.A.; Hudziak, J.J.; Davies, G.E. Berberine and evodiamine influence serotonin transporter (5-HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenomics J., 2012, 12(5), 372-378.
[http://dx.doi.org/10.1038/tpj.2011.24] [PMID: 21647174]
[138]
Durairajan, S.S.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.016] [PMID: 22459600]
[139]
Bhutada, P.; Mundhada, Y.; Bansod, K.; Tawari, S.; Patil, S.; Dixit, P.; Umathe, S.; Mundhada, D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav. Brain Res., 2011, 220(1), 30-41.
[http://dx.doi.org/10.1016/j.bbr.2011.01.022] [PMID: 21262264]
[140]
Lee, T.; Heo, H.; Kim Kwon, Y. Effect of berberine on cell survival in the developing rat brain damaged by MK-801. Exp. Neurobiol., 2010, 19(3), 140-145.
[http://dx.doi.org/10.5607/en.2010.19.3.140] [PMID: 22110353]
[141]
Wu, C.; Yang, K.; Liu, Q.; Wakui, M.; Jin, G.Z.; Zhen, X.; Wu, J. Tetrahydroberberine blocks ATP-sensitive potassium channels in dopamine neurons acutely-dissociated from rat substantia nigra pars compacta. Neuropharmacology, 2010, 59(7-8), 567-572.
[http://dx.doi.org/10.1016/j.neuropharm.2010.08.018] [PMID: 20804776]
[142]
Zhang, J.; Yang, J.Q.; He, B.C.; Zhou, Q.X.; Yu, H.R.; Tang, Y.; Liu, B.Z. Berberine and total base from rhizoma coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med. J., 2009, 30(6), 760-766.
[PMID: 19526156]
[143]
Lacaille, F.; Everaerts, C.; Ferveur, J.F. Feminization and alteration of Drosophila taste neurons induce reciprocal effects on male avoidance behavior. Behav. Genet., 2009, 39(5), 554-563.
[http://dx.doi.org/10.1007/s10519-009-9286-8] [PMID: 19618260]
[144]
Cui, H.S.; Matsumoto, K.; Murakami, Y.; Hori, H.; Zhao, Q.; Obi, R. Berberine exerts neuroprotective actions against in vitro ischemia-induced neuronal cell damage in organotypic hippocampal slice cultures: involvement of B-cell lymphoma 2 phosphorylation suppression. Biol. Pharm. Bull., 2009, 32(1), 79-85.
[http://dx.doi.org/10.1248/bpb.32.79] [PMID: 19122285]
[145]
Zhou, X-Q.; Zeng, X-N.; Kong, H.; Sun, X-L. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci. Lett., 2008, 447(1), 31-36.
[http://dx.doi.org/10.1016/j.neulet.2008.09.064] [PMID: 18838103]
[146]
Yoo, K.Y.; Hwang, I.K.; Kim, J.D.; Kang, I.J.; Park, J.; Yi, J.S.; Kim, J.K.; Bae, Y.S.; Won, M.H. Antiinflammatory effect of the ethanol extract of Berberis koreana in a gerbil model of cerebral ischemia/reperfusion. Phytother. Res., 2008, 22(11), 1527-1532.
[http://dx.doi.org/10.1002/ptr.2527] [PMID: 18688884]
[147]
Chen, Y.; Wang, X.; Sun, H.; Xing, D.; Hu, J.; Wai, Z.; Du, L. Characterization of the transportation of berberine in Coptidis rhizoma extract through rat primary cultured cortical neurons. Biomed. Chromatogr., 2008, 22(1), 28-33.
[http://dx.doi.org/10.1002/bmc.889] [PMID: 17631668]
[148]
Peng, W.H.; Lo, K.L.; Lee, Y.H.; Hung, T.H.; Lin, Y.C. Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci., 2007, 81(11), 933-938.
[http://dx.doi.org/10.1016/j.lfs.2007.08.003] [PMID: 17804020]
[149]
Lee, B.; Yang, C.H.; Hahm, D.H.; Lee, H.J.; Choe, E.S.; Pyun, K.H.; Shim, I. Coptidis Rhizoma attenuates repeated nicotine-induced behavioural sensitization in the rat. J. Pharm. Pharmacol., 2007, 59(12), 1663-1669.
[http://dx.doi.org/10.1211/jpp.59.12.0008] [PMID: 18053328]
[150]
Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci., 2006, 7, 78.
[http://dx.doi.org/10.1186/1471-2202-7-78] [PMID: 17137520]
[151]
Wang, X.; Wang, R.; Xing, D.; Su, H.; Ma, C.; Ding, Y.; Du, L. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci., 2005, 77(24), 3058-3067.
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[152]
Wang, X.; Xing, D.; Wang, W.; Lei, F.; Su, H.; Du, L. The uptake and transport behavior of berberine in Coptidis Rhizoma extract through rat primary cultured cortical neurons. Neurosci. Lett., 2005, 379(2), 132-137.
[http://dx.doi.org/10.1016/j.neulet.2004.12.050] [PMID: 15823430]
[153]
Wang, F.; Zhao, G.; Cheng, L.; Zhou, H.Y.; Fu, L.Y.; Yao, W.X. Effects of berberine on potassium currents in acutely isolated CA1 pyramidal neurons of rat hippocampus. Brain Res., 2004, 999(1), 91-97.
[http://dx.doi.org/10.1016/j.brainres.2003.11.036] [PMID: 14746925]
[154]
Peng, W.H.; Wu, C.R.; Chen, C.S.; Chen, C.F.; Leu, Z.C.; Hsieh, M.T. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: interaction with drugs acting at 5-HT receptors. Life Sci., 2004, 75(20), 2451-2462.
[http://dx.doi.org/10.1016/j.lfs.2004.04.032] [PMID: 15350820]
[155]
Halbsguth, C.; Meissner, O.; Häberlein, H. Positive cooperation of protoberberine type 2 alkaloids from Corydalis cava on the GABA(A) binding site. Planta Med., 2003, 69(4), 305-309.
[http://dx.doi.org/10.1055/s-2003-38869] [PMID: 12709895]
[156]
Shigeta, K.; Ootaki, K.; Tatemoto, H.; Nakanishi, T.; Inada, A.; Muto, N. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by a Coptidis Rhizoma extract and protoberberine alkaloids. Biosci. Biotechnol. Biochem., 2002, 66(11), 2491-2494.
[http://dx.doi.org/10.1271/bbb.66.2491] [PMID: 12506995]
[157]
Ma, L.; Xiao, P.; Guo, B.; Wu, J.; Liang, F.; Dong, S. Cerebral protective effects of some compounds isolated from traditional Chinese herbs. Zhongguo Zhong Yao Za Zhi, 1999, 24 238-239. 256-inside back cover
[158]
Xu, C.Q. Research on the mechanism of neuronal apoptosis in Alzheimer’s disease and the effects of tetrohydroberberine on the apoptosis. Sheng Li Ke Xue Jin Zhan, 1999, 30(3), 224-226.
[PMID: 12532784]
[159]
Wu, J.; Jin, G.Z. Tetrahydroberberine inhibits acetylcholine-induced K+ current in acutely dissociated rat hippocampal CA1 pyramidal neurons. Neurosci. Lett., 1997, 222(2), 115-118.
[http://dx.doi.org/10.1016/S0304-3940(97)13356-0] [PMID: 9111742]
[160]
Wu, J.; Jin, G.Z. Tetrahydroberberine blocks membrane K+ channels underlying its inhibition of intracellular message-mediated outward currents in acutely dissociated CA1 neurons from rat hippocampus. Brain Res., 1997, 775(1-2), 214-218.
[http://dx.doi.org/10.1016/S0006-8993(97)00960-8] [PMID: 9439847]
[161]
Wang, L.M.; Zhang, X.X.; Jin, G.Z. Effects of tetrahydropro-toberberines on dopamine D2 receptors in ventral tegmental area of rat. Zhongguo Yao Li Xue Bao, 1997, 18(2), 143-146.
[PMID: 10072967]
[162]
Xu, S.X.; Yu, L.P.; Han, Y.R.; Chen, Y.; Jin, G.Z. Effects of tetrahydroprotoberberines on dopamine receptor subtypes in brain. Zhongguo Yao Li Xue Bao, 1989, 10(2), 104-110.
[PMID: 2530755]
[163]
Jiang, W.; Li, S.; Li, X. Therapeutic potential of berberine against neurodegenerative diseases. Sci. China Life Sci., 2015, 58(6), 564-569.
[http://dx.doi.org/10.1007/s11427-015-4829-0] [PMID: 25749423]
[164]
Abdel Moneim, A.E. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab. Brain Dis., 2015, 30(4), 935-942.
[http://dx.doi.org/10.1007/s11011-015-9652-6] [PMID: 25600690]
[165]
Lim, J.S.; Kim, H.; Choi, Y.; Kwon, H.; Shin, K.S.; Joung, I. Neuroprotective effects of berberine in neurodegeneration model rats induced by ibotenic acid. Anim. Cells Syst., 2008, 12, 203-209.
[http://dx.doi.org/10.1080/19768354.2008.9647174]
[166]
Hsu, Y-Y.; Tseng, Y-T.; Lo, Y-C. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol. Appl. Pharmacol., 2013, 272(3), 787-796.
[http://dx.doi.org/10.1016/j.taap.2013.08.008] [PMID: 23954465]
[167]
Campisi, A.; Acquaviva, R.; Mastrojeni, S.; Raciti, G.; Vanella, A.; De Pasquale, R.; Puglisi, S.; Iauk, L. Effect of berberine and Berberis aetnensis C. Presl. alkaloid extract on glutamate-evoked tissue transglutaminase up-regulation in astroglial cell cultures. Phytother. Res., 2011, 25(6), 816-820.
[http://dx.doi.org/10.1002/ptr.3340] [PMID: 21086546]
[168]
Sadeghnia, H.R.; Kolangikhah, M.; Asadpour, E.; Forouzanfar, F.; Hosseinzadeh, H. Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran. J. Basic Med. Sci., 2017, 20(5), 594-603.
[PMID: 28656094]
[169]
Chang, C-F.; Lee, Y-C.; Lee, K-H.; Lin, H-C.; Chen, C-L.; Shen, C.J.; Huang, C.C. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J. Biomed. Sci., 2016, 23(1), 72.
[http://dx.doi.org/10.1186/s12929-016-0290-z] [PMID: 27769241]
[170]
Huang, M.; Jiang, X.; Liang, Y.; Liu, Q.; Chen, S.; Guo, Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp. Gerontol., 2017, 91, 25-33.
[http://dx.doi.org/10.1016/j.exger.2017.02.004] [PMID: 28223223]
[171]
Kahale, V.; Mhaiskar, A.; Shelat, P.; Pooja, R.; Gaikwad, N.; Mundhada, D. To determine the Effect of Berberine on 6-OHDA induced memory impairment in Parkinson’s disease in rodents. Pharma Innovation, 2014, 3, 101.
[172]
Kim, M.; Cho, K-H.; Shin, M-S.; Lee, J-M.; Cho, H-S.; Kim, C-J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878.
[http://dx.doi.org/10.3892/ijmm.2014.1656] [PMID: 24535622]
[173]
Ghotbi Ravandi, S.; Shabani, M.; Bashiri, H.; Saeedi Goraghani, M.; Khodamoradi, M.; Nozari, M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci. Lett., 2019, 706, 151-157.
[http://dx.doi.org/10.1016/j.neulet.2019.05.029] [PMID: 31103726]
[174]
Peng, W-H.; Hsieh, M-T.; Wu, C-R. Effect of long-term administration of berberine on scopolamine-induced amnesia in rats. Jpn. J. Pharmacol., 1997, 74(3), 261-266.
[http://dx.doi.org/10.1016/S0021-5198(19)31384-8] [PMID: 9268086]
[175]
Vaziri, Z.; Abbassian, H.; Sheibani, V.; Haghani, M.; Nazeri, M.; Aghaei, I.; Shabani, M. The therapeutic potential of Berberine chloride hydrate against harmaline-induced motor impairments in a rat model of tremor. Neurosci. Lett., 2015, 590, 84-90.
[http://dx.doi.org/10.1016/j.neulet.2015.01.078] [PMID: 25643620]
[176]
Maleki, S.N.; Aboutaleb, N.; Souri, F. Berberine confers neuroprotection in coping with focal cerebral ischemia by targeting inflammatory cytokines. J. Chem. Neuroanat., 2018, 87, 54-59.
[http://dx.doi.org/10.1016/j.jchemneu.2017.04.008] [PMID: 28495517]
[177]
Cai, Z.; Wang, C.; Yang, W. Role of berberine in Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2016, 12, 2509-2520.
[http://dx.doi.org/10.2147/NDT.S114846] [PMID: 27757035]
[178]
Pirillo, A.; Catapano, A.L. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis, 2015, 243(2), 449-461.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032] [PMID: 26520899]
[179]
Yu, QT L. P.; Bi, ZM.; Luo, J.; Gao, Xiao D. Two new saponins from the aerial part of Astragalus membranaceus var. mongholicus. Chin. Chem. Lett., 2007, 18 554-556. (2007) 18(5):554-556
[http://dx.doi.org/10.1016/j.cclet.2007.03.025]
[180]
Zhang, C.; Li, C.; Chen, S.; Li, Z.; Jia, X.; Wang, K.; Bao, J.; Liang, Y.; Wang, X.; Chen, M.; Li, P.; Su, H.; Wan, J.B.; Lee, S.M.Y.; Liu, K.; He, C. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol., 2017, 11, 1-11.
[http://dx.doi.org/10.1016/j.redox.2016.10.019] [PMID: 27835779]
[181]
Negahdar, F.; Mehdizadeh, M.; Joghataei, M.T.; Roghani, M.; Mehraeen, F.; Poorghayoomi, E. Berberine chloride pretreatment exhibits neuroprotective effect against 6-hydroxydopamine-induced neuronal insult in rat. Iran. J. Pharm. Res., 2015, 14(4), 1145-1152.
[PMID: 26664381]
[182]
Ye, M.; Fu, S.; Pi, R.; He, F. Neuropharmacological and pharmacokinetic properties of berberine: A review of recent research. J. Pharm. Pharmacol., 2009, 61(7), 831-837.
[http://dx.doi.org/10.1211/jpp.61.07.0001] [PMID: 19589224]
[183]
Luscher, B.; Shen, Q.; Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry, 2011, 16(4), 383-406.
[http://dx.doi.org/10.1038/mp.2010.120] [PMID: 21079608]
[184]
Adeyemi, O.O.; Yemitan, O.K.; Taiwo, A.E. Neurosedative and muscle-relaxant activities of ethyl acetate extract of Baphia nitida AFZEL. J. Ethnopharmacol., 2006, 106(3), 312-316.
[http://dx.doi.org/10.1016/j.jep.2005.11.035] [PMID: 16516421]
[185]
Tansey, M.G.; McCoy, M.K.; Frank-Cannon, T.C. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol., 2007, 208(1), 1-25.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.004] [PMID: 17720159]
[186]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[187]
Block, M.L.; Hong, J-S. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol., 2005, 76(2), 77-98.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.004] [PMID: 16081203]
[188]
Lu, D.Y.; Tang, C.H.; Chen, Y.H.; Wei, I.H. Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J. Cell. Biochem., 2010, 110(3), 697-705.
[http://dx.doi.org/10.1002/jcb.22580] [PMID: 20512929]
[189]
Zhang, Z.; Li, X.; Li, F.; An, L. Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice. Int. Immunopharmacol., 2016, 38, 426-433.
[http://dx.doi.org/10.1016/j.intimp.2016.06.031] [PMID: 27376853]
[190]
Jia, L.; Liu, J.; Song, Z.; Pan, X.; Chen, L.; Cui, X.; Wang, M. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J. Pharm. Pharmacol., 2012, 64(10), 1510-1521.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01529.x] [PMID: 22943182]
[191]
Chen, C-C.; Hung, T-H.; Lee, C.Y.; Wang, L-F.; Wu, C-H.; Ke, C-H. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS One, 2014, 9.
[http://dx.doi.org/10.1371/journal.pone.0115694]
[192]
Demetzos, C. Pharmaceutical nanotechnology; Springer, 2016.
[http://dx.doi.org/10.1007/978-981-10-0791-0]
[193]
Mukherjee, A.; Bhattacharyya, S. Nanotechnology in medicine. Biotechnology business-concept to delivery; Springer, 2020, pp. 57-64.
[http://dx.doi.org/10.1007/978-3-030-36130-3_3]
[194]
Recent advances of nanotechnology in medicine and engineering.AIP Conference Proceedings; Nobile, L.; Nobile, S., 2016, p. 020058.
[195]
Wani, T.U.; Rashid, M.; Kumar, M.; Chaudhary, S.; Kumar, P.; Mishra, N. Targeting aspects of nanogels: An overview. Int. J. Pharmaceutical Sci. Nanotechnol, 2014, 7, 2612-2630.
[196]
Alam, M.S.; Garg, A.; Pottoo, F.H.; Saifullah, M.K.; Tareq, A.I.; Manzoor, O.; Mohsin, M.; Javed, M.N. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design. Int. J. Biol. Macromol., 2017, 104(Pt A), 758-767.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.129] [PMID: 28601649]
[197]
Rashid, M.; Wani, T.U.; Mishra, N.; Sofi, H.S.; Ashraf, R.; Sheikh, F.A. Development and characterization of drug-loaded self-solid nano-emulsified drug delivery system for treatment of diabetes.Material Science Research India; , 2018, 15, p. 01-11.
[198]
Pottoo, F.H.; Sharma, S.; Javed, M.N.; Barkat, M.A.; Harshita, M.S. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev., 2020, 52, 185-204.
[199]
Wani, T.U.; Raza, S.N.; Khan, N.A. Rosmarinic acid loaded chitosan nanoparticles for wound healing in rats. Int. J. Pharm. Sci. Res., 2008, 10(3), 1126-1135.
[200]
Grumezescu, A.M. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology; William Andrew, 2017.
[201]
Pottoo, F.H.; Javed, N.; Rahman, J.; Abu-Izneid, T.; Khan, F.A. Targeted delivery of miRNA based therapeuticals in the clinical management of glioblastoma multiforme. Semin. Cancer Biol., 2021, 69, 391-398.
[http://dx.doi.org/10.1016/j.semcancer.2020.04.001]
[202]
Wani, T.U.; Sofi, H.S.; Khan, N.A.; Sheikh, F.A. Experimental protocol for induction of transgene expression in neural stem cells through polymeric nanoparticles. 2019, 2125, 77-84.
[http://dx.doi.org/10.1007/7651_2019_256]
[203]
Rehman, S.; Nabi, B.; Pottoo, F.H.; Baboota, S.; Ali, J. Nanoparticle based gene therapy approach: A pioneering rebellion in the management of psychiatric disorders. Curr. Gene Ther., 2020, 20(3), 164-173.
[http://dx.doi.org/10.2174/1566523220666200607185903] [PMID: 32515310]
[204]
Nabi, B.; Rehman, S.; Pottoo, F.H.; Baboota, S.; Ali, J. Dissecting the therapeutic relevance of gene therapy in NeuroAIDS, an evolving epidemic. Curr. Gene Ther., 2020, 20(3), 174-183.
[http://dx.doi.org/10.2174/1566523220666200615151805] [PMID: 32538727]
[205]
Wani, T.U.; Mohi-Ud-Din, R.; Majeed, A.; Kawoosa, S.; Pottoo, F.H. Skin permeation of nanoparticles: mechanisms involved and critical factors governing topical drug delivery. Curr. Pharmaceut. Design., 2020, 26(36), 4601-4614.
[http://dx.doi.org/10.2174/1381612826666200701204010]
[206]
Wani, T.U.; Raza, S.N.; Khan, N.A. Nanoparticle opsonization: forces involved and protection by long chain polymers. Polym. Bull., 2019, 77, 3865-3889.
[http://dx.doi.org/10.1007/s00289-019-02924-7]
[207]
Harshita; Barkat, M.A.; Rizwanullah, M.; Beg, S.; Pottoo, F.H.; Siddiqui, S.; Ahmad, F.J. Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech, 2019, 20(2), 87.
[http://dx.doi.org/10.1208/s12249-019-1304-4] [PMID: 30675689]
[208]
Barkat, M.A.; Beg, S.; Pottoo, F.H.; Ahmad, F.J. Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges. Nanomedicine (Lond.), 2019, 14(10), 1323-1341.
[http://dx.doi.org/10.2217/nnm-2018-0313] [PMID: 31124758]
[209]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[210]
Kabanov, A.V.; Batrakova, E.V. Polymer nanomaterials for drug delivery across the blood brain barrier.Neuroimmune pharmacology; Springer, 2017, pp. 847-868.
[http://dx.doi.org/10.1007/978-3-319-44022-4_50]
[211]
Pardridge, W.M. The blood-brain barrier: bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[212]
Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[213]
Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Teleanu, R.I. Neuronanomedicine: An up-to-date overview. Pharmaceutics, 2019, 11(3), 101.
[http://dx.doi.org/10.3390/pharmaceutics11030101] [PMID: 30813646]
[214]
Li, X.; Tsibouklis, J.; Weng, T.; Zhang, B.; Yin, G.; Feng, G.; Cui, Y.; Savina, I.N.; Mikhalovska, L.I.; Sandeman, S.R.; Howel, C.A.; Mikhalovsky, S.V. Nano carriers for drug transport across the blood-brain barrier. J. Drug Target., 2017, 25(1), 17-28.
[http://dx.doi.org/10.1080/1061186X.2016.1184272] [PMID: 27126681]
[215]
Sarkar, A.; Fatima, I.; Jamal, Q.M.S.; Sayeed, U.; Khan, M.K.A.; Akhtar, S.; Kamal, M.A.; Farooqui, A.; Siddiqui, M.H. Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr. Drug Metab., 2017, 18(2), 129-137.
[http://dx.doi.org/10.2174/1389200218666170113125132] [PMID: 28088890]
[216]
Jain, S.; Mishra, V.; Singh, P.; Dubey, P.K.; Saraf, D.K.; Vyas, S.P. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm., 2003, 261(1-2), 43-55.
[http://dx.doi.org/10.1016/S0378-5173(03)00269-2] [PMID: 12878394]
[217]
Ko, Y.T.; Bhattacharya, R.; Bickel, U. Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J. Control. Release, 2009, 133(3), 230-237.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.013] [PMID: 19013203]
[218]
Qu, M.; Lin, Q.; He, S.; Wang, L.; Fu, Y.; Zhang, Z.; Zhang, L. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J. Control. Release, 2018, 277, 173-182.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.019] [PMID: 29588159]
[219]
Wang, Z-Y.; Sreenivasmurthy, S.G.; Song, J-X.; Liu, J-Y.; Li, M. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases. Drug Discov. Today, 2019, 24(2), 595-605.
[http://dx.doi.org/10.1016/j.drudis.2018.11.001] [PMID: 30414950]
[220]
Turjeman, K.; Bavli, Y.; Kizelsztein, P.; Schilt, Y.; Allon, N.; Katzir, T.B. Nano-drugs based on nano sterically stabilized liposomes for the treatment of inflammatory neurodegenerative diseases. PLoS One, 2015, 10.
[http://dx.doi.org/10.1371/journal.pone.0130442]
[221]
Hickman, D.T.; López-Deber, M.P.; Ndao, D.M.; Silva, A.B.; Nand, D.; Pihlgren, M.; Giriens, V.; Madani, R.; St-Pierre, A.; Karastaneva, H.; Nagel-Steger, L.; Willbold, D.; Riesner, D.; Nicolau, C.; Baldus, M.; Pfeifer, A.; Muhs, A. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J. Biol. Chem., 2011, 286(16), 13966-13976.
[http://dx.doi.org/10.1074/jbc.M110.186338] [PMID: 21343310]
[222]
Muhs, A.; Hickman, D.T.; Pihlgren, M.; Chuard, N.; Giriens, V.; Meerschman, C.; van der Auwera, I.; van Leuven, F.; Sugawara, M.; Weingertner, M.C.; Bechinger, B.; Greferath, R.; Kolonko, N.; Nagel-Steger, L.; Riesner, D.; Brady, R.O.; Pfeifer, A.; Nicolau, C. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc. Natl. Acad. Sci. USA, 2007, 104(23), 9810-9815.
[http://dx.doi.org/10.1073/pnas.0703137104] [PMID: 17517595]
[223]
Theunis, C.; Crespo-Biel, N.; Gafner, V.; Pihlgren, M.; Lopez-Deber, M.P.; Reis, P. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau. P301L mice that model tauopathy. PLoS One, 2013, 8.
[224]
Dhawan, S.; Kapil, R.; Singh, B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J. Pharm. Pharmacol., 2011, 63(3), 342-351.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01225.x] [PMID: 21749381]
[225]
Sandhir, R.; Yadav, A.; Mehrotra, A.; Sunkaria, A.; Singh, A.; Sharma, S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med., 2014, 16(1), 106-118.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[226]
Picone, P.; Ditta, L.; Sabatino, M.; Militello, V.; San Biagio, P.; Cristaldi, L. Insulin nanogels: A new strategy for the treatment of alzheimer’s disease. 1st Biennial Conference BioMaH, 2016.
[227]
Masserini, M.; Re, F.; Sancini, G.; Forloni, G.; Salmona, M. Liposomes active in-vivo on neurodegenerative diseases; Google Patents, 2018.
[228]
Lohan, S.; Raza, K.; Mehta, S.K.; Bhatti, G.K.; Saini, S.; Singh, B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm., 2017, 530(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[229]
Zhuang, C-Y.; Li, N.; Wang, M.; Zhang, X-N.; Pan, W-S.; Peng, J-J.; Pan, Y.S.; Tang, X. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int. J. Pharm., 2010, 394(1-2), 179-185.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.005] [PMID: 20471464]
[230]
S.-m. ZHAN, D.-z. HOU, Q.-n. PING, and Y. XU. Preparation and entrapment efficiency determination of solid lipid nanoparticles loaded levodopa. Chinese Journal of Hospital Pharmacy, 2010, 14.
[231]
Zaporotskova, I.V.; Boroznina, N.P.; Parkhomenko, Y.N.; Kozhitov, L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater., 2016, 2, 95-105.
[http://dx.doi.org/10.1016/j.moem.2017.02.002]
[232]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[233]
Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of dendrimers on solubility of hydrophobic drug molecules. Front. Pharmacol., 2017, 8, 261.
[http://dx.doi.org/10.3389/fphar.2017.00261] [PMID: 28559844]
[234]
Gupta, L.; Sharma, A.K.; Gothwal, A.; Khan, M.S.; Khinchi, M.P.; Qayum, A.; Singh, S.K.; Gupta, U. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int. J. Pharm., 2017, 528(1-2), 88-99.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.073] [PMID: 28533175]
[235]
Rowland, R. Biomimicry step-by-step. Bioinspired. Biomimetic and Nanobiomaterials, 2017, 6, 102-112.
[http://dx.doi.org/10.1680/jbibn.16.00019]
[236]
Zhang, Z-L.; Zhang, S-H.; Zhang, Z-Y.; Guo, Y-X.; Zhou, L-L. Response surface methodology optimization of formulation using supercritical CO2 to prepare berberine liposome. J. Shenyang Pharm. Univ., 2012, 2.
[237]
Zhou, J-X.; Gu, K-L.; Hu, H-Y.; Qiao, M-X.; Chen, D-W.; Zhao, X-L. Optimization and preparation of berberine hydrochloride liposomes using Box-Behnken design methodology. J. Shenyang Pharm. Univ., 2014, 11.
[238]
Chapman, M.; Pascu, S. I. Nanomedicines design: Approaches towards the imaging and therapy of brain tumours. J. Nanomedic. Nanotechnol., 2012, 4, 006.
[239]
Mozafari, M. Nanoliposomes: Preparation and analysis. Liposomes; Springer, 2010, pp. 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2]
[240]
Sahibzada, M.U.K.; Sadiq, A.; Faidah, H.S.; Khurram, M.; Amin, M.U.; Haseeb, A.; Kakar, M. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des. Devel. Ther., 2018, 12, 303-312.
[http://dx.doi.org/10.2147/DDDT.S156123] [PMID: 29491706]
[241]
Chang, C-H.; Huang, W-Y.; Lai, C-H.; Hsu, Y-M.; Yao, Y-H.; Chen, T-Y.; Wu, J.Y.; Peng, S.F.; Lin, Y.H. Development of novel nanoparticles shelled with heparin for berberine delivery to treat Helicobacter pylori. Acta Biomater., 2011, 7(2), 593-603.
[http://dx.doi.org/10.1016/j.actbio.2010.08.028] [PMID: 20813208]
[242]
Manjunath, K.; Reddy, J.S.; Venkateswarlu, V. Solid lipid nanoparticles as drug delivery systems. Methods Find. Exp. Clin. Pharmacol., 2005, 27(2), 127-144.
[http://dx.doi.org/10.1358/mf.2005.27.2.876286] [PMID: 15834465]
[243]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[244]
Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[245]
Xue, M.; Yang, M.X.; Zhang, W.; Li, X.M.; Gao, D.H.; Ou, Z.M.; Li, Z.P.; Liu, S.H.; Li, X.J.; Yang, S.Y. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles. Int. J. Nanomedicine, 2013, 8, 4677-4687.
[http://dx.doi.org/10.2147/IJN.S51262] [PMID: 24353417]
[246]
Xue, M.; Zhang, L.; Yang, M.X.; Zhang, W.; Li, X.M.; Ou, Z.M.; Li, Z.P.; Liu, S.H.; Li, X.J.; Yang, S.Y. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int. J. Nanomedicine, 2015, 10, 5049-5057.
[http://dx.doi.org/10.2147/IJN.S84565] [PMID: 26346310]
[247]
Wang, L.; Li, H.; Wang, S.; Liu, R.; Wu, Z.; Wang, C.; Wang, Y.; Chen, M. Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech, 2014, 15(4), 834-844.
[http://dx.doi.org/10.1208/s12249-014-0112-0] [PMID: 24696391]
[248]
Lin, Y-H.; Lin, J-H.; Chou, S-C.; Chang, S-J.; Chung, C-C.; Chen, Y-S.; Chang, C.H. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: In vitro and in vivo study. Nanomedicine (Lond.), 2015, 10(1), 57-71.
[http://dx.doi.org/10.2217/nnm.14.76] [PMID: 25177920]
[249]
Yu, F.; Ao, M.; Zheng, X.; Li, N.; Xia, J.; Li, Y.; Li, D.; Hou, Z.; Qi, Z.; Chen, X.D. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug Deliv., 2017, 24(1), 825-833.
[http://dx.doi.org/10.1080/10717544.2017.1321062] [PMID: 28509588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy