Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

RYR1-Related Rhabdomyolysis: A Spectrum of Hypermetabolic States Due to Ryanodine Receptor Dysfunction

Author(s): Nick Kruijt*, Luuk Van den Bersselaar, Marc Snoeck, Kees Kramers, Sheila Riazi, Coen Bongers, Susan Treves, Heinz Jungbluth and Nicol Voermans

Volume 28, Issue 1, 2022

Published on: 03 August, 2021

Page: [2 - 14] Pages: 13

DOI: 10.2174/1381612827666210804095300

Price: $65

Abstract

Variants in the ryanodine receptor-1 gene (RYR1) have been associated with a wide range of neuromuscular conditions, including various congenital myopathies and malignant hyperthermia (MH). More recently, a number of RYR1 variants, mostly MH-associated, have been demonstrated to contribute to rhabdomyolysis events not directly related to anesthesia in otherwise healthy individuals. This review focuses on RYR1-related rhabdomyolysis in the context of several clinical presentations (i.e., exertional rhabdomyolysis, exertional heat illnesses and MH), and conditions involving a similar hypermetabolic state, in which RYR1 variants may be present (i.e., neuroleptic malignant syndrome and serotonin syndrome). The variety of triggers that can evoke rhabdomyolysis, on their own or in combination, as well as the number of potentially associated complications, illustrates that this is a condition relevant to several medical disciplines. External triggers include but are not limited to strenuous physical exercise, especially if unaccustomed or performed under challenging environmental conditions (e.g., high ambient temperature or humidity), alcohol/illicit drugs, prescription medication (in particular statins, other anti-lipid agents, antipsychotics and antidepressants) infection, or heat. Amongst all patients presenting with rhabdomyolysis, genetic susceptibility is present in a proportion, with RYR1 being one of the most common genetic causes. Clinical clues for a genetic susceptibility include recurrent rhabdomyolysis, creatine kinase (CK) levels above 50 times the upper limit of normal, hyperCKemia lasting for 8 weeks or longer, drug/medication doses insufficient to explain the rhabdomyolysis event, and positive family history. For the treatment or prevention of RYR1-related rhabdomyolysis, the RYR1 antagonist dantrolene can be administered, both in the acute phase or prophylactically in patients with a history of muscle cramps and/or recurrent rhabdomyolysis events. Aside from dantrolene, several other drugs are being investigated for their potential therapeutic use in RYR1-related disorders. These findings offer further therapeutic perspectives for humans, suggesting an important area for future research.

Keywords: RYR1, Rhabdomyolysis, neuromuscular disorders, exertional rhabdomyolysis, exertional heat illness, malignant hyperthermia

[1]
Snoeck M, van Engelen BG, Küsters B, et al. RYR1-related myopathies: a wide spectrum of phenotypes throughout life. Eur J Neurol 2015; 22(7): 1094-112.
[http://dx.doi.org/10.1111/ene.12713] [PMID: 25960145]
[2]
Jurkat-Rott K, McCarthy T, Lehmann-Horn F. Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve 2000; 23(1): 4-17.
[http://dx.doi.org/10.1002/(SICI)1097-4598(200001)23:1<4:AID-MUS3>3.0.CO;2-D] [PMID: 10590402]
[3]
Snoeck M, Treves S, Molenaar JP, Kamsteeg EJ, Jungbluth H, Voermans NC. “Human stress syndrome” and the expanding spectrum of RYR1-related myopathies. Cell Biochem Biophys 2016; 74(1): 85-7.
[http://dx.doi.org/10.1007/s12013-015-0704-7] [PMID: 26972305]
[4]
Davis M, Brown R, Dickson A, et al. Malignant hyperthermia associated with exercise-induced rhabdomyolysis or congenital abnormalities and a novel RYR1 mutation in New Zealand and Australian pedigrees. Br J Anaesth 2002; 88(4): 508-15.
[http://dx.doi.org/10.1093/bja/88.4.508] [PMID: 12066726]
[5]
Tobin JR, Jason DR, Challa VR, Nelson TE, Sambuughin N. Malignant hyperthermia and apparent heat stroke. JAMA 2001; 286(2): 168-9.
[http://dx.doi.org/10.1001/jama.286.2.168] [PMID: 11448278]
[6]
Wappler F, Fiege M, Steinfath M, et al. Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis. Anesthesiology 2001; 94(1): 95-100.
[http://dx.doi.org/10.1097/00000542-200101000-00019] [PMID: 11135728]
[7]
Potts LE, Longwell JJ, Bedocs P, et al. Improving awareness of nonanesthesia-related malignant hyperthermia presentations: a tale of two brothers. A A Case Rep 2014; 3(2): 23-6.
[http://dx.doi.org/10.1213/XAA.0000000000000043] [PMID: 25611019]
[8]
Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord 2013; 23(7): 540-8.
[http://dx.doi.org/10.1016/j.nmd.2013.03.008] [PMID: 23628358]
[9]
Voermans NC, Snoeck M, Jungbluth H. RYR1-related rhabdomyolysis: A common but probably underdiagnosed manifestation of skeletal muscle ryanodine receptor dysfunction. Rev Neurol 2016; 172(10): 546-58.
[http://dx.doi.org/10.1016/j.neurol.2016.07.018] [PMID: 27663056]
[10]
EMHG European Malignant Hyperthermia Group: Diagnostic MH mutations 2021.
[11]
Hodgson Trailer RYR-1 foundation 2021 Available at: https://www.ryr1.org/
[12]
Giannoglou GD, Chatzizisis YS, Misirli G. The syndrome of rhabdomyolysis: Pathophysiology and diagnosis. Eur J Intern Med 2007; 18(2): 90-100.
[http://dx.doi.org/10.1016/j.ejim.2006.09.020] [PMID: 17338959]
[13]
Cervellin G, Comelli I, Lippi G. Rhabdomyolysis: historical background, clinical, diagnostic and therapeutic features. Clin Chem Lab Med 2010; 48(6): 749-56.
[http://dx.doi.org/10.1515/CCLM.2010.151] [PMID: 20298139]
[14]
Stahl K, Rastelli E, Schoser B. A systematic review on the definition of rhabdomyolysis. J Neurol 2020; 267(4): 877-82.
[http://dx.doi.org/10.1007/s00415-019-09185-4] [PMID: 30617905]
[15]
Brewster LM, Mairuhu G, Sturk A, van Montfrans GA. Distribution of creatine kinase in the general population: implications for statin therapy. Am Heart J 2007; 154(4): 655-61.
[http://dx.doi.org/10.1016/j.ahj.2007.06.008] [PMID: 17892987]
[16]
George MD, McGill NK, Baker JF. Creatine kinase in the U.S. population: Impact of demographics, comorbidities, and body composition on the normal range. Medicine 2016; 95(33)e4344
[http://dx.doi.org/10.1097/MD.0000000000004344] [PMID: 27537560]
[17]
Kruijt N, van den Bersselaar LR, Kamsteeg EJ, et al. The etiology of rhabdomyolysis: an interaction between genetic susceptibility and external triggers. Eur J Neurol 2021; 28(2): 647-59.
[http://dx.doi.org/10.1111/ene.14553] [PMID: 32978841]
[18]
Graves EJ, Gillum BS. Detailed diagnoses and procedures, National Hospital Discharge Survey, 1995. Vital Health Stat 13 1997; (130): 1-146.
[PMID: 9429338]
[19]
Islander G, Rydenfelt K, Ranklev E, Bodelsson M. Male preponderance of patients testing positive for malignant hyperthermia susceptibility. Acta Anaesthesiol Scand 2007; 51(5): 614-20.
[http://dx.doi.org/10.1111/j.1399-6576.2007.01293.x] [PMID: 17430325]
[20]
Ibarra Moreno CA, Hu S, Kraeva N, et al. An assessment of penetrance and clinical expression of malignant hyperthermia in individuals carrying diagnostic ryanodine receptor 1 gene mutations. Anesthesiology 2019; 131(5): 983-91.
[http://dx.doi.org/10.1097/ALN.0000000000002813] [PMID: 31206373]
[21]
Larach MG, Brandom BW, Allen GC, Gronert GA, Lehman EB. Cardiac arrests and deaths associated with malignant hyperthermia in north america from 1987 to 2006: a report from the north american malignant hyperthermia registry of the malignant hyperthermia association of the United States. Anesthesiology 2008; 108(4): 603-11.
[http://dx.doi.org/10.1097/ALN.0b013e318167aee2] [PMID: 18362591]
[22]
Butala B, Brandom B. Muscular body build and male sex are independently associated with malignant hyperthermia susceptibility. Can J Anaesth 2017; 64(4): 396-401.
[http://dx.doi.org/10.1007/s12630-017-0815-2] [PMID: 28063098]
[23]
Herráez García J, Torracchi Carrasco AM, Antolí-Royo AC, de la Fuente Blanco R, Santos Jiménez MT. [Rhabdomyolysis A descriptive study of 449 patients] Med Clin (Barc) 2012; 139(6)238-42. [Rhabdomyolysis. A descriptive study of 449 patients].
[PMID: 21939988]
[24]
Linares LA, Golomb BA, Jaojoco JA, Sikand H, Phillips PS. The modern spectrum of rhabdomyolysis: drug toxicity revealed by creatine kinase screening. Curr Drug Saf 2009; 4(3): 181-7.
[http://dx.doi.org/10.2174/157488609789007010] [PMID: 19534642]
[25]
Melli G, Chaudhry V, Cornblath DR. Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine 2005; 84(6): 377-85.
[http://dx.doi.org/10.1097/01.md.0000188565.48918.41] [PMID: 16267412]
[26]
Minard D. Prevention of heat casualties in Marine Corps recruits. Period of 1955-60, with comparative incidence rates and climatic heat stresses in other training categories. Mil Med 1961; 126: 261-72.
[http://dx.doi.org/10.1093/milmed/126.4.261] [PMID: 13771031]
[27]
Chavez LO, Leon M, Einav S, Varon J. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care 2016; 20(1): 135.
[http://dx.doi.org/10.1186/s13054-016-1314-5] [PMID: 27301374]
[28]
Chen CY, Lin YR, Zhao LL, et al. Clinical spectrum of rhabdomyolysis presented to pediatric emergency department. BMC Pediatr 2013; 13: 134.
[http://dx.doi.org/10.1186/1471-2431-13-134] [PMID: 24004920]
[29]
Mannix R, Tan ML, Wright R, Baskin M. Acute pediatric rhabdomyolysis: causes and rates of renal failure. Pediatrics 2006; 118(5): 2119-25.
[http://dx.doi.org/10.1542/peds.2006-1352] [PMID: 17079586]
[30]
Scalco RS, Gardiner AR, Pitceathly RD, et al. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10: 51.
[http://dx.doi.org/10.1186/s13023-015-0264-3] [PMID: 25929793]
[31]
Nance JR, Mammen AL. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015; 51(6): 793-810.
[http://dx.doi.org/10.1002/mus.24606] [PMID: 25678154]
[32]
Torres PA, Helmstetter JA, Kaye AM, Kaye AD. Rhabdomyolysis: pathogenesis, diagnosis, and treatment. Ochsner J 2015; 15(1): 58-69.
[PMID: 25829882]
[33]
Hopkins PM. Is there a link between malignant hyperthermia and exertional heat illness? Br J Sports Med 2007; 41(5): 283-4.
[http://dx.doi.org/10.1136/bjsm.2006.032516] [PMID: 17261558]
[34]
Poussel M, Guerci P, Kaminsky P, et al. Exertional heat stroke and susceptibility to malignant hyperthermia in an athlete: evidence for a link? J Athl Train 2015; 50(11): 1212-4.
[http://dx.doi.org/10.4085/1062-6050-50.12.01] [PMID: 26565425]
[35]
Sagui E, Montigon C, Abriat A, et al. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One 2015; 10(8)e0135496
[http://dx.doi.org/10.1371/journal.pone.0135496] [PMID: 26258863]
[36]
Koskelo P, Kekki M, Wager O. Kinetic behaviour of 131-I-labelled myoglobin in human beings. Clin Chim Acta 1967; 17(3): 339-47.
[http://dx.doi.org/10.1016/0009-8981(67)90207-0] [PMID: 6051630]
[37]
Lilleker JB, Keh YS, Roncaroli F, Sharma R, Roberts M. Metabolic myopathies: a practical approach. Pract Neurol 2018; 18(1): 14-26.
[http://dx.doi.org/10.1136/practneurol-2017-001708] [PMID: 29223996]
[38]
Voermans NC. Exercise-induced rhabdomyolysis: diagnostic guidelines and RYR1-related cases. 13th ICNMD conference Nice.
[39]
Scalco RS, Snoeck M, Quinlivan R, et al. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy? BMJ Open Sport Exerc Med 2016; 2(1)e000151
[http://dx.doi.org/10.1136/bmjsem-2016-000151] [PMID: 27900193]
[40]
Fernandes PM, Davenport RJ. How to do it: investigate exertional rhabdomyolysis (or not). Pract Neurol 2019; 19(1): 43-8.
[http://dx.doi.org/10.1136/practneurol-2018-002008] [PMID: 30305378]
[41]
Heytens K, De Bleecker J, Verbrugghe W, Baets J, Heytens L. Exertional rhabdomyolysis and heat stroke: Beware of volatile anesthetic sedation. World J Crit Care Med 2017; 6(1): 21-7.
[http://dx.doi.org/10.5492/wjccm.v6.i1.21] [PMID: 28224104]
[42]
Fujii J, Otsu K, Zorzato F, et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 1991; 253(5018): 448-51.
[http://dx.doi.org/10.1126/science.1862346] [PMID: 1862346]
[43]
Valberg SJ, Mickelson JR, Gallant EM, MacLeay JM, Lentz L, de la Corte F. Exertional rhabdomyolysis in quarter horses and thoroughbreds: one syndrome, multiple aetiologies. Equine Vet J Suppl 1999; 30(530): 533-8.
[http://dx.doi.org/10.1111/j.2042-3306.1999.tb05279.x] [PMID: 10659313]
[44]
Isgren CM, Upjohn MM, Fernandez-Fuente M, et al. Epidemiology of exertional rhabdomyolysis susceptibility in standardbred horses reveals associated risk factors and underlying enhanced performance. PLoS One 2010; 5(7)e11594
[http://dx.doi.org/10.1371/journal.pone.0011594] [PMID: 20644724]
[45]
Update: Exertional rhabdomyolysis, active component, U.S. Armed Forces, 2014-2018. MSMR 2019; 26(4): 21-5.
[PMID: 31026174]
[46]
Luetmer MT, Boettcher BJ, Franco JM, Reisner JH, Cheville AL, Finnoff JT. Exertional rhabdomyolysis: a retrospective population-based study. Med Sci Sports Exerc 2020; 52(3): 608-15.
[http://dx.doi.org/10.1249/MSS.0000000000002178] [PMID: 31652234]
[47]
Knapik JJ, Epstein Y. Exertional heat stroke: Pathophysiology, epidemiology, diagnosis, treatment, and prevention. J Spec Oper Med 2019; 19(2): 108-16.
[PMID: 31201762]
[48]
Andersen JJ. The State of Running 2020.Available from:. https://runrepeat.com/state-of-running
[49]
Brandom BW, Muldoon SM. Unexpected MH deaths without exposure to inhalation anesthetics in pediatric patients. Paediatr Anaesth 2013; 23(9): 851-4.
[http://dx.doi.org/10.1111/pan.12224] [PMID: 23848295]
[50]
Eichner ER. Exertional maladies: lessons and questions from recurring events. Curr Sports Med Rep 2012; 11(1): 3-4.
[http://dx.doi.org/10.1249/JSR.0b013e318241dd06] [PMID: 22236816]
[51]
Eichner ER. Football team rhabdomyolysis: The pain beats the gain and the coach is to blame. Curr Sports Med Rep 2018; 17(5): 142-3.
[http://dx.doi.org/10.1249/JSR.0000000000000484] [PMID: 29738317]
[52]
Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg 2009; 109(4): 1065-9.
[http://dx.doi.org/10.1213/ane.0b013e3181a9d8d9] [PMID: 19617585]
[53]
Gardner L, Miller DM, Daly C, et al. Investigating the genetic susceptibility to exertional heat illness. J Med Genet 2020; 57(8): 531-41.
[http://dx.doi.org/10.1136/jmedgenet-2019-106461] [PMID: 32054689]
[54]
Roux-Buisson N, Monnier N, Sagui E, et al. Identification of variants of the ryanodine receptor type 1 in patients with exertional heat stroke and positive response to the malignant hyperthermia in vitro contracture test. Br J Anaesth 2016; 116(4): 566-8.
[http://dx.doi.org/10.1093/bja/aew047] [PMID: 26994242]
[55]
Fiszer D, Shaw MA, Fisher NA, et al. Next-generation sequencing of RYR1 and CACNA1S in malignant hyperthermia and exertional heat illness. Anesthesiology 2015; 122(5): 1033-46.
[http://dx.doi.org/10.1097/ALN.0000000000000610] [PMID: 25658027]
[56]
Epstein Y, Yanovich R. Heatstroke. N Engl J Med 2019; 380(25): 2449-59.
[http://dx.doi.org/10.1056/NEJMra1810762] [PMID: 31216400]
[57]
Lawton EM, Pearce H, Gabb GM. Review article: Environmental heatstroke and long-term clinical neurological outcomes: A literature review of case reports and case series 2000-2016. Emerg Med Australas 2019; 31(2): 163-73.
[http://dx.doi.org/10.1111/1742-6723.12990] [PMID: 29851280]
[58]
Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci 2004; 328(2): 84-7.
[http://dx.doi.org/10.1097/00000441-200408000-00003] [PMID: 15311166]
[59]
Divine JG, Daggy MW, Dixon EE, LeBlanc DP, Okragly RA, Hasselfeld KA. Case series of exertional heat stroke in runners during early spring: 2014 to 2016 Cincinnati Flying Pig Marathon. Curr Sports Med Rep 2018; 17(5): 151-8.
[http://dx.doi.org/10.1249/JSR.0000000000000485] [PMID: 29738320]
[60]
Belval LN, Casa DJ, Adams WM, et al. Consensus statement- prehospital care of exertional heat stroke. Prehosp Emerg Care 2018; 22(3): 392-7.
[http://dx.doi.org/10.1080/10903127.2017.1392666] [PMID: 29336710]
[61]
Casa DJ, DeMartini JK, Bergeron MF, et al. National athletic trainers’ association position statement: exertional heat illnesses. J Athl Train 2015; 50(9): 986-1000.
[http://dx.doi.org/10.4085/1062-6050-50.9.07] [PMID: 26381473]
[62]
Casa DJ, McDermott BP, Lee EC, Yeargin SW, Armstrong LE, Maresh CM. Cold water immersion: the gold standard for exertional heatstroke treatment. Exerc Sport Sci Rev 2007; 35(3): 141-9.
[http://dx.doi.org/10.1097/jes.0b013e3180a02bec] [PMID: 17620933]
[63]
Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med 2005; 352(11): 1112-20.
[http://dx.doi.org/10.1056/NEJMra041867] [PMID: 15784664]
[64]
Nisijima K, Shioda K, Iwamura T. Neuroleptic malignant syndrome and serotonin syndromeProg Brain Res. 2007; 162: pp. 81-104.
[http://dx.doi.org/10.1016/S0079-6123(06)62006-2] [PMID: 17645916]
[65]
Toru M, Matsuda O, Makiguchi K, Sugano K. Neuroleptic malignant syndrome-like state following a withdrawal of antiparkinsonian drugs. J Nerv Ment Dis 1981; 169(5): 324-7.
[http://dx.doi.org/10.1097/00005053-198105000-00011] [PMID: 6111584]
[66]
Kruijt N, van den Bersselaar LR, Wijma J, et al. HyperCKemia and rhabdomyolysis in the neuroleptic malignant and serotonin syndromes: A literature review. Neuromuscul Disord 2020; 30(12): 949-58.
[http://dx.doi.org/10.1016/j.nmd.2020.10.010] [PMID: 33250373]
[67]
Russell T, Riazi S, Kraeva N, Steel AC, Hawryluck LA. Ecstacy-induced delayed rhabdomyolysis and neuroleptic malignant syndrome in a patient with a novel variant in the ryanodine receptor type 1 gene. Anaesthesia 2012; 67(9): 1021-4.
[http://dx.doi.org/10.1111/j.1365-2044.2012.07226.x] [PMID: 22734812]
[68]
Reif A, Schneider MF, Hoyer A, et al. Neuroleptic malignant syndrome in Kufs’ disease. J Neurol Neurosurg Psychiatry 2003; 74(3): 385-7.
[http://dx.doi.org/10.1136/jnnp.74.3.385] [PMID: 12588937]
[69]
Knuiman GJ, Küsters B, Eshuis L, et al. The histopathological spectrum of malignant hyperthermia and rhabdomyolysis due to RYR1 mutations. J Neurol 2019; 266(4): 876-87.
[http://dx.doi.org/10.1007/s00415-019-09209-z] [PMID: 30788618]
[70]
Kraeva N, Sapa A, Dowling JJ, Riazi S. Malignant hyperthermia susceptibility in patients with exertional rhabdomyolysis: a retrospective cohort study and updated systematic review. Can J Anaesth 2017; 64(7): 736-43.
[http://dx.doi.org/10.1007/s12630-017-0865-5] [PMID: 28326467]
[71]
Levano S, Vukcevic M, Singer M, et al. Increasing the number of diagnostic mutations in malignant hyperthermia. Hum Mutat 2009; 30(4): 590-8.
[http://dx.doi.org/10.1002/humu.20878] [PMID: 19191329]
[72]
Robert F, Koenig M, Robert A, Boyer S, Cathébras P, Camdessanché JP. Acute camptocormia induced by olanzapine: a case report. J Med Case Reports 2010; 4: 192.
[http://dx.doi.org/10.1186/1752-1947-4-192] [PMID: 20579377]
[73]
Chelu MG, Goonasekera SA, Durham WJ, et al. Heat- and anesthesia-induced malignant hyperthermia in an RyR1 knock-in mouse. FASEB J 2006; 20(2): 329-30.
[http://dx.doi.org/10.1096/fj.05-4497fje] [PMID: 16284304]
[74]
Wang HJ, Lee CS, Yee RSZ, et al. Adaptive thermogenesis enhances the life-threatening response to heat in mice with an Ryr1 mutation. Nat Commun 2020; 11(1): 5099.
[http://dx.doi.org/10.1038/s41467-020-18865-z] [PMID: 33037202]
[75]
McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med 2013; 173(19): 1821-8.
[http://dx.doi.org/10.1001/jamainternmed.2013.9774] [PMID: 24000014]
[76]
Scharman EJ, Troutman WG. Prevention of kidney injury following rhabdomyolysis: a systematic review. Ann Pharmacother 2013; 47(1): 90-105.
[http://dx.doi.org/10.1345/aph.1R215] [PMID: 23324509]
[77]
Gronert GA. Dantrolene in malignant hyperthermia (MH)-susceptible patients with exaggerated exercise stress. Anesthesiology 2000; 93(3): 905.
[http://dx.doi.org/10.1097/00000542-200009000-00053] [PMID: 10969335]
[78]
Ngo V, Guerrero A, Lanum D, et al. Emergent treatment of neuroleptic malignant syndrome induced by antipsychotic monotherapy using dantrolene. Clin Pract Cases Emerg Med 2019; 3(1): 16-23.
[http://dx.doi.org/10.5811/cpcem.2018.11.39667] [PMID: 30775657]
[79]
Whyte CJ, Rosini JM. Dantrolene for Treatment of Suspected Neuroleptic Malignant Syndrome. J Emerg Nurs 2018; 44(2): 207-9.
[http://dx.doi.org/10.1016/j.jen.2017.11.008] [PMID: 29548378]
[80]
Kushnir A, Todd JJ, Witherspoon JW, et al. Intracellular calcium leak as a therapeutic target for RYR1-related myopathies. Acta Neuropathol 2020; 139(6): 1089-104.
[http://dx.doi.org/10.1007/s00401-020-02150-w] [PMID: 32236737]
[81]
Sanchis-Gomar F, Pareja-Galeano H, Gomez-Cabrera MC, et al. Allopurinol prevents cardiac and skeletal muscle damage in professional soccer players. Scand J Med Sci Sports 2015; 25(1): e110-5.
[http://dx.doi.org/10.1111/sms.12213] [PMID: 24690021]
[82]
Ferrando B, Gomez-Cabrera MC, Salvador-Pascual A, et al. Allopurinol partially prevents disuse muscle atrophy in mice and humans. Sci Rep 2018; 8(1): 3549.
[http://dx.doi.org/10.1038/s41598-018-21552-1] [PMID: 29476130]
[83]
Gois PHF, Canale D, Volpini RA, et al. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection. Free Radic Biol Med 2016; 101: 176-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.012] [PMID: 27769920]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy