General Review Article

连接子在PSMA配体结构中的重要性

卷 29, 期 2, 2022

发表于: 04 August, 2021

页: [268 - 298] 页: 31

弟呕挨: 10.2174/0929867328666210804092200

价格: $65

摘要

癌症是现代世界的主要社会问题之一。今天,前列腺癌是男性癌症死亡的第二大原因。靶向药物递送广泛用于治疗和诊断前列腺癌。基于尿素配体的选择性结合前列腺特异性膜抗原的偶联物正在积极开发,以对抗这种疾病。连接子对这种偶联物的生物活性有显著影响。连接子执行大量功能,其修饰是创建最佳药理学特征的关键方法之一。本文旨在探讨和分析该类偶联物导联物引入和合成方法的主要方法,而不描述生物活性分子的影响,并建立对构效关系具有重要作用的关键修饰方法。为此,对当前的科学文献进行了回顾,包括正在开发的偶联物和已经进行临床试验的偶联物。发现最佳结构是含有载体分子(n(CH2)= 3-6)附近的脂肪族片段的连接子,然后是由2至4个氨基酸残基组成的多肽链。Phe-Phe二肽链的存在或带负电荷的基团的引入也具有积极作用。该领域正在进行的研究有助于建立每个连接子片段的准确效果,并且固相合成方法的发展使得实现这一目标变得更加容易。

关键词: 前列腺癌,靶向药物递送,接头,PSMA,接头结构,偶联物合成,间隔物。

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Barry, M.J. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N. Engl. J. Med., 2001, 344(18), 1373-1377.
[http://dx.doi.org/10.1056/NEJM200105033441806] [PMID: 11333995]
[3]
Silberstein, J.L.; Pal, S.K.; Lewis, B.; Sartor, O. Current clinical challenges in prostate cancer. Transl. Androl. Urol., 2013, 2(3), 122-136.
[PMID: 26816735]
[4]
Chekhonin, V.; Girkov, Y. Prostatic Specific Membrane Antigen and Its Role in Prostate Cancer Diagnosis, Quest. Med. Chem. (N.Y.), 2002, 48, 31-72.
[PMID: 12068496]
[5]
Siemann, D.W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vascular Disrupting Agents. Cancer Treat. Rev., 2011, 37(1), 63-74.
[http://dx.doi.org/10.1016/j.ctrv.2010.05.001] [PMID: 20570444]
[6]
Jiao, D.; Li, Y.; Yang, F.; Han, D.; Wu, J.; Shi, S.; Tian, F.; Guo, Z.; Xi, W.; Li, G.; Zhao, A.; Yang, A.G.; Qin, W.; Wang, H.; Wen, W. Expression of Prostate-Specific Membrane Antigen in Tumor-Associated Vasculature Predicts Poor Prognosis in Hepatocellular Carcinoma. Clin. Transl. Gastroenterol., 2019, 10(5), 1-7.
[http://dx.doi.org/10.14309/ctg.0000000000000041] [PMID: 31116141]
[7]
Chen, W.; Lee, Z.; Awadallah, A.; Zhou, L.; Xin, W. Peritumoral/vascular expression of PSMA as a diagnostic marker in hepatic lesions. Diagn. Pathol., 2020, 15(1), 92.
[http://dx.doi.org/10.1186/s13000-020-00982-4] [PMID: 32703222]
[8]
Wernicke, A.G.; Kim, S.; Liu, H.; Bander, N.H.; Pirog, E.C. Prostate-specific Membrane Antigen (PSMA) Expression in the Neovasculature of Gynecologic Malignancies: Implications for PSMA-targeted Therapy. Appl. Immunohistochem. Mol. Morphol., 2017, 25(4), 271-276.
[http://dx.doi.org/10.1097/PAI.0000000000000297] [PMID: 26862945]
[9]
Mahzouni, P.; Shavakhi, M. Prostate-Specific Membrane Antigen Expression in Neovasculature of Glioblastoma Multiforme. Adv. Biomed. Res., 2019, 8(1), 18.
[http://dx.doi.org/10.4103/abr.abr_209_18] [PMID: 30993088]
[10]
Queisser, A.; Hagedorn, S.A.; Braun, M.; Vogel, W.; Duensing, S.; Perner, S. Comparison of different prostatic markers in lymph node and distant metastases of prostate cancer. Mod. Pathol., 2015, 28(1), 138-145.
[http://dx.doi.org/10.1038/modpathol.2014.77] [PMID: 24925052]
[11]
Ahmadzadehfar, H.; Azgomi, K.; Hauser, S.; Wei, X.; Yordanova, A.; Gaertner, F.C.; Kürpig, S.; Strunk, H.; Essler, M. 68Ga-PSMA-11 PET as a Gatekeeper for the Treatment of Metastatic Prostate Cancer with 223Ra: Proof of Concept. J. Nucl. Med., 2017, 58(3), 438-444.
[http://dx.doi.org/10.2967/jnumed.116.178533] [PMID: 27660148]
[12]
Choy, C.J.; Ling, X.; Geruntho, J.J.; Beyer, S.K.; Latoche, J.D.; Langton-Webster, B.; Anderson, C.J.; Berkman, C.E. 177Lu-Labeled Phosphoramidate-Based PSMA Inhibitors: The Effect of an Albumin Binder on Biodistribution and Therapeutic Efficacy in Prostate Tumor-Bearing Mice. Theranostics, 2017, 7(7), 1928-1939.
[http://dx.doi.org/10.7150/thno.18719] [PMID: 28638478]
[13]
Novartis. Novartis announces positive result of phase III study with radioligand therapy 177Lu-PSMA-617 in patients with advanced prostate cancer. , https://s3-adacap-product.s3.eu-west-1.amazonaws.com/wp-content/uploads/2021/03/23132605/Novartis-Media-Release-VISION-FIR-Positive-SCENARIO-March-2021-vFINAL-v2.pdf
[14]
Meißner, S.; Janssen, J.C.; Prasad, V.; Brenner, W.; Diederichs, G.; Hamm, B.; Hofheinz, F.; Makowski, M.R. Potential of asphericity as a novel diagnostic parameter in the evaluation of patients with 68Ga-PSMA-HBED-CC PET-positive prostate cancer lesions. EJNMMI Res., 2017, 7(1), 85.
[http://dx.doi.org/10.1186/s13550-017-0333-9] [PMID: 29058157]
[15]
Fendler, W.P.; Ferdinandus, J.; Czernin, J.; Eiber, M.; Flavell, R.R.; Behr, S.C.; Wu, I.K.; Lawhn-Heath, C.; Pampaloni, M.H.; Reiter, R.E.; Rettig, M.B.; Gartmann, J.; Murthy, V.; Slavik, R.; Carroll, P.R.; Herrmann, K.; Calais, J.; Hope, T.A. Impact of 68Ga-PSMA-11 PET on the Management of Recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial. J. Nucl. Med., 2020, 61(12), 1793-1799.
[http://dx.doi.org/10.2967/jnumed.120.242180] [PMID: 32358094]
[16]
Calais, J.; Czernin, J.; Fendler, W.P.; Elashoff, D.; Nickols, N.G. Randomized Phase III Trial of 68Ga-PSMA-11 PET/CT Molecular Imaging for Prostate Cancer Salvage Radiotherapy Planning. BMC Cancer, 2019, 19(1), 18. [PSMA-SRT
[http://dx.doi.org/10.1186/s12885-018-5200-1] [PMID: 30616601]
[17]
FDA approves first psma-targeted pet imaging drug for men with prostate cancer. , https://www.fda.gov/news-events/press-announcements/fda-approves-first-psma-targeted-pet-imaging-drug-men-prostate-cancer
[18]
Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.; Klette, I.; Eiber, M.; Schwaiger, M.; Wester, H.J. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med., 2015, 56(8), 1169-1176.
[http://dx.doi.org/10.2967/jnumed.115.158550] [PMID: 26089548]
[19]
Bao, K.; Lee, J.H.; Kang, H.; Park, G.K.; El Fakhri, G.; Choi, H.S. PSMA-targeted contrast agents for intraoperative imaging of prostate cancer. Chem. Commun. (Camb.), 2017, 53(10), 1611-1614.
[http://dx.doi.org/10.1039/C6CC09781B] [PMID: 28085163]
[20]
Uspenskaya, A.A.; Machulkin, A.; Mazhuga, A.G.; Beloglazkina, E.K. Conjugates of Prostate-Specific Membrane Antigen Ligands with Antitumor Drugs. Pharm. Chem. J., 2019, 53(4), 288-297.
[http://dx.doi.org/10.1007/s11094-019-01994-1]
[21]
Bařinka, C.; Rojas, C.; Slusher, B.; Pomper, M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr. Med. Chem., 2012, 19(6), 856-870.
[http://dx.doi.org/10.2174/092986712799034888] [PMID: 22214450]
[22]
Pastorino, S.; Riondato, M.; Uccelli, L.; Giovacchini, G.; Giovannini, E.; Duce, V.; Ciarmiello, A. Toward the Discovery and Development of PSMA Targeted Inhibitors for Nuclear Medicine Applications. Curr. Radiopharm., 2020, 13(1), 63-79.
[http://dx.doi.org/10.2174/1874471012666190729151540] [PMID: 31362683]
[23]
Machulkin, A.E.; Ivanenkov, Y.A.; Aladinskaya, A.V.; Veselov, M.S.; Aladinskiy, V.A.; Beloglazkina, E.K.; Koteliansky, V.E.; Shakhbazyan, A.G.; Sandulenko, Y.B.; Majouga, A.G. Small-molecule PSMA ligands. Current state, SAR and perspectives. J. Drug Target., 2016, 24(8), 679-693.
[http://dx.doi.org/10.3109/1061186X.2016.1154564] [PMID: 26887438]
[24]
Ghosh, A.; Heston, W.D.W. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem., 2004, 91(3), 528-539.
[http://dx.doi.org/10.1002/jcb.10661] [PMID: 14755683]
[25]
Evans, J.C.; Malhotra, M.; Cryan, J.F.; O’Driscoll, C.M. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br. J. Pharmacol., 2016, 173(21), 3041-3079.
[http://dx.doi.org/10.1111/bph.13576] [PMID: 27526115]
[26]
Pinto, J.T.; Suffoletto, B.P.; Berzin, T.M.; Qiao, C.H.; Lin, S.; Tong, W.P.; May, F.; Mukherjee, B.; Heston, W.D.W. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin. Cancer Res., 1996, 2(9), 1445-1451.
[PMID: 9816319]
[27]
O’Keefe, D.S.; Bacich, D.J.; Huang, S.S.; Heston, W.D.W. A Perspective on the Evolving Story of PSMA Biology, PSMA-Based Imaging, and Endoradiotherapeutic Strategies. J. Nucl. Med., 2018, 59(7), 1007-1013.
[http://dx.doi.org/10.2967/jnumed.117.203877] [PMID: 29674422]
[28]
Jackson, P.F.; Cole, D.C.; Slusher, B.S.; Stetz, S.L.; Ross, L.E.; Donzanti, B.A.; Trainor, D.A. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated α-linked acidic dipeptidase. J. Med. Chem., 1996, 39(2), 619-622.
[http://dx.doi.org/10.1021/jm950801q] [PMID: 8558536]
[29]
Kozela, E.; Wrobel, M.; Kos, T.; Wojcikowski, J.; Daniel, W.A.; Wozniak, K.M.; Slusher, B.S.; Popik, P. 2-MPPA, a selective glutamate carboxypeptidase II inhibitor, attenuates morphine tolerance but not dependence in C57/Bl mice. Psychopharmacology (Berl.), 2005, 183(3), 275-284.
[http://dx.doi.org/10.1007/s00213-005-0182-5] [PMID: 16220328]
[30]
Kozikowski, A.P.; Nan, F.; Conti, P.; Zhang, J.; Ramadan, E.; Bzdega, T.; Wroblewska, B.; Neale, J.H.; Pshenichkin, S.; Wroblewski, J.T. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J. Med. Chem., 2001, 44(3), 298-301. [1
[http://dx.doi.org/10.1021/jm000406m] [PMID: 11462970]
[31]
Barinka, C.; Byun, Y.; Dusich, C.L.; Banerjee, S.R.; Chen, Y.; Castanares, M.; Kozikowski, A.P.; Mease, R.C.; Pomper, M.G.; Lubkowski, J. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J. Med. Chem., 2008, 51(24), 7737-7743.
[http://dx.doi.org/10.1021/jm800765e] [PMID: 19053759]
[32]
Kularatne, S.A.; Zhou, Z.; Yang, J.; Post, C.B.; Low, P.S. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted (99m)Tc-radioimaging agents. Mol. Pharm., 2009, 6(3), 790-800.
[http://dx.doi.org/10.1021/mp9000712] [PMID: 19361232]
[33]
Hillier, S.M.; Maresca, K.P.; Femia, F.J.; Marquis, J.C.; Foss, C.A.; Nguyen, N.; Zimmerman, C.N.; Barrett, J.A.; Eckelman, W.C.; Pomper, M.G.; Joyal, J.L.; Babich, J.W. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res., 2009, 69(17), 6932-6940.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1682] [PMID: 19706750]
[34]
Tykvart, J.; Schimer, J.; Bařinková, J.; Pachl, P.; Poštová-Slavětínská, L.; Majer, P.; Konvalinka, J.; Šácha, P. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery. Bioorg. Med. Chem., 2014, 22(15), 4099-4108.
[http://dx.doi.org/10.1016/j.bmc.2014.05.061] [PMID: 24954515]
[35]
Petrov, S.A.; Machulkin, A.E.; Uspenskaya, A.A.; Zyk, N.Y.; Nimenko, E.A.; Garanina, A.S.; Petrov, R.A.; Polshakov, V.I.; Grishin, Y.K.; Roznyatovsky, V.A.; Zyk, N.V.; Majouga, A.G.; Beloglazkina, E.K. Polypeptide-based molecular platform and its docetaxel/sulfo-cy5-containing conjugate for targeted delivery to prostate specific membrane antigen. Molecules, 2020, 25(24), 5784.
[http://dx.doi.org/10.3390/molecules25245784] [PMID: 33302417]
[36]
Banerjee, S.R.; Pullambhatla, M.; Shallal, H.; Lisok, A.; Mease, R.C.; Pomper, M.G. A modular strategy to prepare multivalent inhibitors of prostate-specific membrane antigen (PSMA). Oncotarget, 2011, 2(12), 1244-1253.
[http://dx.doi.org/10.18632/oncotarget.415] [PMID: 22207391]
[37]
Shallal, H.M.; Minn, I.; Banerjee, S.R.; Lisok, A.; Mease, R.C.; Pomper, M.G. Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjug. Chem., 2014, 25(2), 393-405.
[http://dx.doi.org/10.1021/bc4005377] [PMID: 24410012]
[38]
Zhang, D.; Fourie-O’Donohue, A.; Dragovich, P.S.; Pillow, T.H.; Sadowsky, J.D.; Kozak, K.R.; Cass, R.T.; Liu, L.; Deng, Y.; Liu, Y.; Hop, C.E.C.A.; Khojasteh, S.C. Catalytic Cleavage of Disulfide Bonds in Small Molecules and Linkers of Antibody-Drug Conjugates. Drug Metab. Dispos., 2019, 47(10), 1156-1163.
[http://dx.doi.org/10.1124/dmd.118.086132] [PMID: 31085544]
[39]
Kularatne, S.A.; Venkatesh, C.; Santhapuram, H.K.R.; Wang, K.; Vaitilingam, B.; Henne, W.A.; Low, P.S. Synthesis and biological analysis of prostate-specific membrane antigen-targeted anticancer prodrugs. J. Med. Chem., 2010, 53(21), 7767-7777.
[http://dx.doi.org/10.1021/jm100729b] [PMID: 20936874]
[40]
Vlahov, I.R.; Wang, Y.; Kleindl, P.J.; Leamon, C.P. Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part II: Folic acid conjugates of tubulysins and their hydrazides. Bioorg. Med. Chem. Lett., 2008, 18(16), 4558-4561.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.041] [PMID: 18657420]
[41]
Henne, W.A.; Doorneweerd, D.D.; Hilgenbrink, A.R.; Kularatne, S.A.; Low, P.S. Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg. Med. Chem. Lett., 2006, 16(20), 5350-5355.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.076] [PMID: 16901694]
[42]
Pillow, T.H.; Sadowsky, J.D.; Zhang, D.; Yu, S.F.; Del Rosario, G.; Xu, K.; He, J.; Bhakta, S.; Ohri, R.; Kozak, K.R.; Ha, E.; Junutula, J.R.; Flygare, J.A. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem. Sci. (Camb.), 2017, 8(1), 366-370.
[http://dx.doi.org/10.1039/C6SC01831A] [PMID: 28451181]
[43]
Jain, A.K.; Gund, M.G.; Desai, D.C.; Borhade, N.; Senthilkumar, S.P.; Dhiman, M.; Mangu, N.K.; Mali, S.V.; Dubash, N.P.; Halder, S.; Satyam, A. Mutual prodrugs containing bio-cleavable and drug releasable disulfide linkers. Bioorg. Chem., 2013, 49, 40-48.
[http://dx.doi.org/10.1016/j.bioorg.2013.06.007] [PMID: 23886697]
[44]
Wang, Q.; Guan, J.; Wan, J.; Li, Z. Disulfide Based Prodrugs for Cancer Therapy. RSC Advances, 2020, 10(41), 24397-24409.
[http://dx.doi.org/10.1039/D0RA04155F]
[45]
Barrett, J.C.; Acar, H.; Mellas, M.J.; Tirrell, M.V. Peptides in immunoengineering.Peptide applications in biomedicine, biotechnology and bioengineering; Elsevier Ltd, 2018, pp. 287-326.
[http://dx.doi.org/10.1016/B978-0-08-100736-5.00011-9]
[46]
Ivanenkov, Y.A.; Machulkin, A.E.; Garanina, A.S.; Skvortsov, D.A.; Uspenskaya, A.A.; Deyneka, E.V.; Trofimenko, A.V.; Beloglazkina, E.K.; Zyk, N.V.; Koteliansky, V.E.; Bezrukov, D.S.; Aladinskaya, A.V.; Vorobyeva, N.S.; Puchinina, M.M.; Riabykh, G.K.; Sofronova, A.A.; Malyshev, A.S.; Majouga, A.G. Synthesis and biological evaluation of Doxorubicin-containing conjugate targeting PSMA. Bioorg. Med. Chem. Lett., 2019, 29(10), 1246-1255.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.040] [PMID: 30904185]
[47]
Kitson, S.L.; Quinn, D.J.; Moody, T.S.; Speed, D.; Watters, W.; Rozzell, D. Antibody-drug conjugates (ADCs) – biotherapeutic bullets. Chem. Today, 2013, 31(4), 30-36.
[48]
Ruan, H.; Hao, S.; Young, P.; Zhang, H. Targeting Cathepsin B for Cancer Therapies. Horiz. Cancer Res., 2015, 56, 23-40.
[PMID: 26623174]
[49]
Aggarwal, N.; Sloane, B.F.; Cathepsin, B. Cathepsin B: multiple roles in cancer. Proteomics Clin. Appl., 2014, 8(5-6), 427-437.
[http://dx.doi.org/10.1002/prca.201300105] [PMID: 24677670]
[50]
Dubowchik, G.M.; Firestone, R.A.; Padilla, L.; Willner, D.; Hofstead, S.J.; Mosure, K.; Knipe, J.O.; Lasch, S.J.; Trail, P.A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem., 2002, 13(4), 855-869.
[http://dx.doi.org/10.1021/bc025536j] [PMID: 12121142]
[51]
Wang, S.; Zhou, R.; Sun, F.; Li, R.; Wang, M.; Wu, M. The two novel DLL4-targeting antibody-drug conjugates MvM03 and MGD03 show potent anti-tumour activity in breast cancer xenograft models. Cancer Lett., 2017, 409, 125-136.
[http://dx.doi.org/10.1016/j.canlet.2017.09.004] [PMID: 28923397]
[52]
Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374.
[http://dx.doi.org/10.1039/C8CS00676H] [PMID: 31294429]
[53]
Doronina, S.O.; Toki, B.E.; Torgov, M.Y.; Mendelsohn, B.A.; Cerveny, C.G.; Chace, D.F.; DeBlanc, R.L.; Gearing, R.P.; Bovee, T.D.; Siegall, C.B.; Francisco, J.A.; Wahl, A.F.; Meyer, D.L.; Senter, P.D. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol., 2003, 21(7), 778-784.
[http://dx.doi.org/10.1038/nbt832] [PMID: 12778055]
[54]
Pal, A.; Albusairi, W.; Liu, F.; Tuhin, M.T.H.; Miller, M.; Liang, D.; Joo, H.; Amin, T.U.; Wilson, E.A.; Faridi, J.S.; Park, M.; Alhamadsheh, M.M. Hydrophilic Small Molecules That Harness Transthyretin To Enhance the Safety and Efficacy of Targeted Chemotherapeutic Agents. Mol. Pharm., 2019, 16(7), 3237-3252.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00432] [PMID: 31136717]
[55]
Mease, R.C.; Dusich, C.L.; Foss, C.A.; Ravert, H.T.; Dannals, R.F.; Seidel, J.; Prideaux, A.; Fox, J.J.; Sgouros, G.; Kozikowski, A.P.; Pomper, M.G.N.N. -[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin. Cancer Res., 2008, 14(10), 3036-3043.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1517] [PMID: 18483369]
[56]
Foss, C.A.; Mease, R.C.; Fan, H.; Wang, Y.; Ravert, H.T.; Dannals, R.F.; Olszewski, R.T.; Heston, W.D.; Kozikowski, A.P.; Pomper, M.G. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin. Cancer Res., 2005, 11(11), 4022-4028.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2690] [PMID: 15930336]
[57]
Rong, S.B.; Zhang, J.; Neale, J.H.; Wroblewski, J.T.; Wang, S.; Kozikowski, A.P. Molecular modeling of the interactions of glutamate carboxypeptidase II with its potent NAAG-based inhibitors. J. Med. Chem., 2002, 45(19), 4140-4152.
[http://dx.doi.org/10.1021/jm010561g] [PMID: 12213057]
[58]
Sanna, V.; Pintus, G.; Roggio, A.M.; Punzoni, S.; Posadino, A.M.; Arca, A.; Marceddu, S.; Bandiera, P.; Uzzau, S.; Sechi, M. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells. J. Med. Chem., 2011, 54(5), 1321-1332.
[http://dx.doi.org/10.1021/jm1013715] [PMID: 21306166]
[59]
Kwon, H.; Lim, H.; Ha, H.; Choi, D.; Son, S.H.; Nam, H.; Minn, I.; Byun, Y. Structure-activity relationship studies of prostate-specific membrane antigen (PSMA) inhibitors derived from α-amino acid with (S)- or (R)-configuration at P1′ region. Bioorg. Chem., 2020, 104104304
[http://dx.doi.org/10.1016/j.bioorg.2020.104304] [PMID: 33011530]
[60]
Kozikowski, A.P.; Zhang, J.; Nan, F.; Petukhov, P.A.; Grajkowska, E.; Wroblewski, J.T.; Yamamoto, T.; Bzdega, T.; Wroblewska, B.; Neale, J.H. Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents. J. Med. Chem., 2004, 47(7), 1729-1738.
[http://dx.doi.org/10.1021/jm0306226] [PMID: 15027864]
[61]
Chen, Y.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Pullambhatla, M.; Fox, J.J.; Castanares, M.; Lupold, S.E.; Babich, J.W.; Mease, R.C.; Pomper, M.G. Radiohalogenated prostate-specific membrane antigen (PSMA)-based ureas as imaging agents for prostate cancer. J. Med. Chem., 2008, 51(24), 7933-7943.
[http://dx.doi.org/10.1021/jm801055h] [PMID: 19053825]
[62]
Yang, X.; Mease, R.C.; Pullambhatla, M.; Lisok, A.; Chen, Y.; Foss, C.A.; Wang, Y.; Shallal, H.; Edelman, H.; Hoye, A.T.; Attardo, G.; Nimmagadda, S.; Pomper, M.G. [(18)F]fluorobenzoyllysinepentanedioic acid carbamates: new scaffolds for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA). J. Med. Chem., 2016, 59(1), 206-218.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01268] [PMID: 26629713]
[63]
Kommidi, H.; Guo, H.; Nurili, F.; Vedvyas, Y.; Jin, M.M.; McClure, T.D.; Ehdaie, B.; Sayman, H.B.; Akin, O.; Aras, O.; Ting, R. 18F-Positron emitting/trimethine cyanine-fluorescent contrast for image-guided prostate cancer management. J. Med. Chem., 2018, 61(9), 4256-4262.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00240] [PMID: 29676909]
[64]
Jayaprakash, S.; Wang, X.; Heston, W.D.; Kozikowski, A.P. Design and synthesis of a PSMA inhibitor-doxorubicin conjugate for targeted prostate cancer therapy. ChemMedChem, 2006, 1(3), 299-302.
[http://dx.doi.org/10.1002/cmdc.200500044] [PMID: 16892363]
[65]
Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem., 2012, 23(4), 688-697.
[http://dx.doi.org/10.1021/bc200279b] [PMID: 22369515]
[66]
Mesters, J.R.; Barinka, C.; Li, W.; Tsukamoto, T.; Majer, P.; Slusher, B.S.; Konvalinka, J.; Hilgenfeld, R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J., 2006, 25(6), 1375-1384.
[http://dx.doi.org/10.1038/sj.emboj.7600969] [PMID: 16467855]
[67]
Chen, Y.; Pullambhatla, M.; Banerjee, S.R.; Byun, Y.; Stathis, M.; Rojas, C.; Slusher, B.S.; Mease, R.C.; Pomper, M.G. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug. Chem., 2012, 23(12), 2377-2385.
[http://dx.doi.org/10.1021/bc3003919] [PMID: 23157641]
[68]
Ray Banerjee, S.; Pullambhatla, M.; Foss, C.A.; Falk, A.; Byun, Y.; Nimmagadda, S.; Mease, R.C.; Pomper, M.G. Effect of chelators on the pharmacokinetics of (99m)Tc-labeled imaging agents for the prostate-specific membrane antigen (PSMA). J. Med. Chem., 2013, 56(15), 6108-6121.
[http://dx.doi.org/10.1021/jm400823w] [PMID: 23799782]
[69]
Chen, Y.; Dhara, S.; Banerjee, S.R.; Byun, Y.; Pullambhatla, M.; Mease, R.C.; Pomper, M.G. A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem. Biophys. Res. Commun., 2009, 390(3), 624-629.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.017] [PMID: 19818734]
[70]
Zhang, A.X.; Murelli, R.P.; Barinka, C.; Michel, J.; Cocleaza, A.; Jorgensen, W.L.; Lubkowski, J.; Spiegel, D.A. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc., 2010, 132(36), 12711-12716.
[http://dx.doi.org/10.1021/ja104591m] [PMID: 20726553]
[71]
Kularatne, S.A.; Zhou, Z.; Yang, J.; Post, C.B.; Low, P.S. Articles Design, Synthesis, and Preclinical Evaluation of Prostate-Specific Membrane Antigen Targeted Tc-Radioimaging Agents., 2009, 6(3), 790-800.
[72]
Nedrow-Byers, J.R.; Moore, A.L.; Ganguly, T.; Hopkins, M.R.; Fulton, M.D.; Benny, P.D.; Berkman, C.E. PSMA-targeted SPECT agents: mode of binding effect on in vitro performance. Prostate, 2013, 73(4), 355-362.
[http://dx.doi.org/10.1002/pros.22575] [PMID: 22911263]
[73]
Dannoon, S.; Ganguly, T.; Cahaya, H.; Geruntho, J.J.; Galliher, M.S.; Beyer, S.K.; Choy, C.J.; Hopkins, M.R.; Regan, M.; Blecha, J.E.; Skultetyova, L.; Drake, C.R.; Jivan, S.; Barinka, C.; Jones, E.F.; Berkman, C.E.; VanBrocklin, H.F. Structure-Activity Relationship of (18)F-Labeled Phosphoramidate Peptidomimetic Prostate-Specific Membrane Antigen (PSMA)-Targeted Inhibitor Analogues for PET Imaging of Prostate Cancer. J. Med. Chem., 2016, 59(12), 5684-5694.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01850] [PMID: 27228467]
[74]
Liu, T.; Nedrow-Byers, J.R.; Hopkins, M.R.; Berkman, C.E. Spacer length effects on in vitro imaging and surface accessibility of fluorescent inhibitors of prostate specific membrane antigen. Bioorg. Med. Chem. Lett., 2011, 21(23), 7013-7016.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.115] [PMID: 22018464]
[75]
Davis, M.I.; Bennett, M.J.; Thomas, L.M.; Bjorkman, P.J. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl. Acad. Sci. USA, 2005, 102(17), 5981-5986.
[http://dx.doi.org/10.1073/pnas.0502101102] [PMID: 15837926]
[76]
Harada, N.; Kimura, H.; Ono, M.; Saji, H. Preparation of asymmetric urea derivatives that target prostate-specific membrane antigen for SPECT imaging. J. Med. Chem., 2013, 56(20), 7890-7901.
[http://dx.doi.org/10.1021/jm400895s] [PMID: 24063417]
[77]
Green, M.A.; Hutchins, G.D.; Bahler, C.D.; Tann, M.; Mathias, C.J.; Territo, W.; Sims, J.; Polson, H.; Alexoff, D.; Eckelman, W.C.; Kung, H.F.; Fletcher, J.W. [68Ga]Ga-P16-093 as a PSMA-Targeted PET radiopharmaceutical for detection of cancer: initial evaluation and comparison with [68Ga]Ga-PSMA-11 in prostate cancer patients presenting with biochemical recurrence. Mol. Imaging Biol., 2020, 22(3), 752-763.
[http://dx.doi.org/10.1007/s11307-019-01421-7] [PMID: 31429050]
[78]
Zha, Z.; Ploessl, K.; Choi, S.R.; Wu, Z.; Zhu, L.; Kung, H.F. Synthesis and evaluation of a novel urea-based 68Ga-complex for imaging PSMA binding in tumor. Nucl. Med. Biol., 2018, 59, 36-47.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.12.007] [PMID: 29459281]
[79]
Yao, X.; Zha, Z.; Ploessl, K.; Choi, S.R.; Zhao, R.; Alexoff, D.; Zhu, L.; Kung, H.F. Synthesis and evaluation of novel radioiodinated PSMA targeting ligands for potential radiotherapy of prostate cancer. Bioorg. Med. Chem., 2020, 28(5)115319
[http://dx.doi.org/10.1016/j.bmc.2020.115319] [PMID: 32001090]
[80]
Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med., 2015, 56(6), 914-920.
[http://dx.doi.org/10.2967/jnumed.114.147413] [PMID: 25883127]
[81]
Palomo, J.M. Solid-Phase Peptide Synthesis: An Overview Focused on the Preparation of Biologically Relevant Peptides. RSC Advances, 2014, 4(62), 32658-32672.
[http://dx.doi.org/10.1039/C4RA02458C]
[82]
Coin, I.; Beyermann, M.; Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc., 2007, 2(12), 3247-3256.
[http://dx.doi.org/10.1038/nprot.2007.454] [PMID: 18079725]
[83]
Wüstemann, T.; Bauder-Wüst, U.; Schäfer, M.; Eder, M.; Benesova, M.; Leotta, K.; Kratochwil, C.; Haberkorn, U.; Kopka, K.; Mier, W. Design of Internalizing PSMA-specific Glu-ureido-based Radiotherapeuticals. Theranostics, 2016, 6(8), 1085-1095.
[http://dx.doi.org/10.7150/thno.13448] [PMID: 27279903]
[84]
Kratochwil, C.; Giesel, F.L.; Stefanova, M.; Benešová, M.; Bronzel, M.; Afshar-Oromieh, A.; Mier, W.; Eder, M.; Kopka, K.; Haberkorn, U. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with 177Lu-Labeled PSMA-617. J. Nucl. Med., 2016, 57(8), 1170-1176.
[http://dx.doi.org/10.2967/jnumed.115.171397] [PMID: 26985056]
[85]
Deberle, L.M.; Tschan, V.J.; Borgna, F.; Sozzi-Guo, F.; Bernhardt, P.; Schibli, R.; Müller, C. Albumin-Binding PSMA Radioligands: Impact of Minimal Structural Changes on the Tissue Distribution Profile. Molecules, 2020, 25(11), 1-12.
[http://dx.doi.org/10.3390/molecules25112542] [PMID: 32486054]
[86]
Deberle, L.M.; Benešová, M.; Umbricht, C.A.; Borgna, F.; Büchler, M.; Zhernosekov, K.; Schibli, R.; Müller, C. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics, 2020, 10(4), 1678-1693.
[http://dx.doi.org/10.7150/thno.40482] [PMID: 32042329]
[87]
Giesel, F.L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N.; Duensing, S.; Schäfer, M.; Neels, O.C.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(4), 678-688.
[http://dx.doi.org/10.1007/s00259-016-3573-4] [PMID: 27889802]
[88]
Huang, S.S.; Wang, X.; Zhang, Y.; Doke, A.; DiFilippo, F.P.; Heston, W.D. Improving the biodistribution of PSMA-targeting tracers with a highly negatively charged linker. Prostate, 2014, 74(7), 702-713.
[http://dx.doi.org/10.1002/pros.22789] [PMID: 24615708]
[89]
Cramer, H.; Okicki, J.R.; Rho, T.; Wang, X.; Silverman, R.H.; Heston, W.D.W. 2-5A ligands--a new concept for the treatment of prostate cancer. Nucleosides Nucleotides Nucleic Acids, 2007, 26(10-12), 1471-1477.
[http://dx.doi.org/10.1080/15257770701542652] [PMID: 18066809]
[90]
Yoshitake, S.; Yamada, Y.; Ishikawa, E.; Masseyeff, R. Conjugation of glucose oxidase from Aspergillus niger and rabbit antibodies using N-hydroxysuccinimide ester of N-(4-carboxycyclohexylmethyl)-maleimide. Eur. J. Biochem., 1979, 101(2), 395-399.
[http://dx.doi.org/10.1111/j.1432-1033.1979.tb19731.x] [PMID: 574817]
[91]
Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev., 2015, 44(15), 5495-5551.
[http://dx.doi.org/10.1039/C5CS00048C] [PMID: 26000775]
[92]
Hillier, S.M.; Kern, A.M.; Maresca, K.P.; Marquis, J.C.; Eckelman, W.C.; Joyal, J.L.; Babich, J.W. 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J. Nucl. Med., 2011, 52(7), 1087-1093.
[http://dx.doi.org/10.2967/jnumed.110.086751] [PMID: 21680691]
[93]
Chen, Y.; Pullambhatla, M.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R.C.; Pomper, M.G. 2-(3-1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res., 2011, 17(24), 7645-7653.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1357] [PMID: 22042970]
[94]
Banerjee, S.R.; Pullambhatla, M.; Foss, C.A.; Nimmagadda, S.; Ferdani, R.; Anderson, C.J.; Mease, R.C.; Pomper, M.G. 64Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J. Med. Chem., 2014, 57(6), 2657-2669.
[http://dx.doi.org/10.1021/jm401921j] [PMID: 24533799]
[95]
Malik, N.; Machulla, H.J.; Solbach, C.; Winter, G.; Reske, S.N.; Zlatopolskiy, B. Radiosynthesis of a new PSMA targeting ligand ([18F]FPy-DUPA-Pep). Appl. Radiat. Isot., 2011, 69(7), 1014-1018.
[http://dx.doi.org/10.1016/j.apradiso.2011.03.041] [PMID: 21498081]
[96]
Sengupta, S.; Krishnan, M.A.; Pandit, A.; Dudhe, P.; Sharma, R.; Chelvam, V. Tyrosine-based asymmetric urea ligand for prostate carcinoma: Tuning biological efficacy through in silico studies. Bioorg. Chem., 2019, 91103154
[http://dx.doi.org/10.1016/j.bioorg.2019.103154] [PMID: 31404798]
[97]
Sengupta, S.; Krishnan, M.A.; Dudhe, P.; Reddy, R.B.; Giri, B.; Chattopadhyay, S.; Chelvam, V. Novel solid-phase strategy for the synthesis of ligand-targeted fluorescent-labelled chelating peptide conjugates as a theranostic tool for cancer. Beilstein J. Org. Chem., 2018, 14, 2665-2679.
[http://dx.doi.org/10.3762/bjoc.14.244] [PMID: 30410628]
[98]
Philip stewart lowvankatesh chelvamyoungsoon kim. Psma binding ligand-linker conjugates and methods for using. WO2011106639A1,. 2011.
[99]
Baur, B.; Solbach, C.; Andreolli, E.; Winter, G.; Machulla, H.J.; Reske, S.N. Synthesis, Radiolabelling and in vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A’'-DTPA-DUPA-Pep. Pharmaceuticals (Basel), 2014, 7(5), 517-529.
[http://dx.doi.org/10.3390/ph7050517] [PMID: 24787458]
[100]
Machulkin, A. E.; Uspenskaya, A. A.; Ber, A. P.; Petrov, S. A.; Saltykova, I. V.; Ivanenkov, Y. A.; Skvortsov, D. A.; Erofeev, A. S.; Gorelkin, P. V.; Beloglazkinaa, E. K.; Belov, E. Y. Peptide agent comprising a urea derivative based psma-binding ligand, a method for preparing the same, and 298 Current Medicinal Chemistry, 2022, Vol. 29, No. 2 Uspenskaya et al. use for producing a conjugate with a drug and diagnostic agent. RU2697519C1,. 2019.
[101]
Okamoto, S.; Thieme, A.; Allmann, J.; D’Alessandria, C.; Maurer, T.; Retz, M.; Tauber, R.; Heck, M.M.; Wester, H-J.; Tamaki, N.; Fendler, W.P.; Herrmann, K.; Pfob, C.H.; Scheidhauer, K.; Schwaiger, M.; Ziegler, S.; Eiber, M. Radiation dosimetry for 177Lu-PSMA I&T in metastatic castration-resistant prostate cancer: absorbed dose in normal organs and tumor lesions. J. Nucl. Med., 2017, 58(3), 445-450.
[http://dx.doi.org/10.2967/jnumed.116.178483] [PMID: 27660138]
[102]
Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Wester, H. J. Preclinical evaluation and first patient application of Tc ‐ PSMA ‐ I & S for SPECT imaging and radioguided surgery in prostate cancer. 2017, 58(2), 235-242..
[103]
Wirtz, M. Development of Biomarkers for Molecular Imaging and Endoradiotherapy of Prostate Cancer; Technischen Universität München, 2015.
[104]
Wirtz, M.; Schmidt, A.; Schottelius, M.; Robu, S.; Günther, T.; Schwaiger, M.; Wester, H.J. Synthesis and in vitro and in vivo evaluation of urea-based PSMA inhibitors with increased lipophilicity. EJNMMI Res., 2018, 8(1), 84.
[http://dx.doi.org/10.1186/s13550-018-0440-2] [PMID: 30136051]
[105]
Schmidt, A. Structural Modifications of PSMA Ligands to Optimize Their Pharmacokinetics; Technischen Universität München, 2017.
[106]
Schottelius, M.; Wurzer, A.; Wissmiller, K.; Beck, R.; Koch, M.; Gorpas, D.; Notni, J.; Buckle, T.; van Oosterom, M.N.; Steiger, K.; Ntziachristos, V.; Schwaiger, M.; van Leeuwen, F.W.B.; Wester, H.J. Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. J. Nucl. Med., 2019, 60(1), 71-78.
[http://dx.doi.org/10.2967/jnumed.118.212720] [PMID: 30237214]
[107]
Uspenskaya, A.; Machulkin, A.E.; Nimenko, E.A.; Shafikov, R.R.; Stanislav, P.; Skvortsov, D.A.; Beloglazkinaa, E.K.; Majouga, A.G. Influence of the Dipeptide Linker Configuration on the Activity of PSMA Ligands., 2020, 30(6), 756-759.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy