Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Antimalarial Drug Discovery: From Quinine to the Most Recent Promising Clinical Drug Candidates

Author(s): Camille Tisnerat, Alexandra Dassonville-Klimpt, Fabien Gosselet and Pascal Sonnet*

Volume 29, Issue 19, 2022

Published on: 05 January, 2022

Page: [3326 - 3365] Pages: 40

DOI: 10.2174/0929867328666210803152419

Price: $65

Abstract

Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.

Keywords: Malaria, Plasmodium, clinical trials, drug development, drug discovery, medicines, mode of action.

[1]
World Malaria Report 2020: 20 years of global progress and challenges;World Health Organization: Geneva; , 2020.
[2]
Noedl, H.; Se, Y.; Schaecher, K.; Smith, B.L.; Socheat, D.; Fukuda, M.M. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med., 2008, 359(24), 2619-2620.
[http://dx.doi.org/10.1056/NEJMc0805011] [PMID: 19064625]
[3]
Blasco, B.; Leroy, D.; Fidock, D.A. Antimalarial drug resistance: Linking Plasmodium falciparum parasite biology to the clinic. Nat. Med., 2017, 23(8), 917-928.
[http://dx.doi.org/10.1038/nm.4381] [PMID: 28777791]
[4]
Haldar, K.; Bhattacharjee, S.; Safeukui, I. Drug resistance in Plasmodium. Nat. Rev. Microbiol., 2018, 16(3), 156-170.
[http://dx.doi.org/10.1038/nrmicro.2017.161] [PMID: 29355852]
[5]
World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy; Global Malaria Program, 2019.
[6]
Burrows, J.N.; van Huijsduijnen, R.H.; Möhrle, J.J.; Oeuvray, C.; Wells, T.N.C. Designing the next generation of medicines for malaria control and eradication. Malar. J., 2013, 12(187), 187.
[http://dx.doi.org/10.1186/1475-2875-12-187] [PMID: 23742293]
[7]
Burrows, J.N.; Duparc, S.; Gutteridge, W.E.; Hooft van Huijsduijnen, R.; Kaszubska, W.; Macintyre, F.; Mazzuri, S.; Möhrle, J.J.; Wells, T.N.C. New developments in anti-malarial target candidate and product profiles. Malar. J., 2017, 16(1), 26.
[http://dx.doi.org/10.1186/s12936-016-1675-x] [PMID: 28086874]
[8]
Ashley, E.A.; Phyo, A.P. Drugs in development for malaria. Drugs, 2018, 78(9), 861-879.
[http://dx.doi.org/10.1007/s40265-018-0911-9] [PMID: 29802605]
[9]
Huijsduijnen, H.R.; Wells, T.N. The antimalarial pipeline. Curr. Opin. Pharmacol., 2018, 42, 1-6.
[http://dx.doi.org/10.1016/j.coph.2018.05.006] [PMID: 29860174]
[10]
Okombo, J.; Chibale, K. Recent updates in the discovery and development of novel antimalarial drug candidates. MedChemComm, 2018, 9(3), 437-453.
[http://dx.doi.org/10.1039/C7MD00637C] [PMID: 30108934]
[11]
Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J., 2019, 18(1), 93.
[http://dx.doi.org/10.1186/s12936-019-2724-z] [PMID: 30902052]
[12]
MMV-supported projects | Medicines for Malaria Venture. Available from: https://www.mmv.org/research-development/mmv-supported-projects [Accessed Apr 18, 2021].
[13]
Harrison, N. In celebration of the jesuit’s powder: A history of malaria treatment. Lancet Infect. Dis., 2015, 15(10), 1143.
[http://dx.doi.org/10.1016/S1473-3099(15)00246-7]
[14]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10, 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[15]
Guidelines for the treatment of malaria. Global Malaria Programme, Third; World Health Organization, 2015.
[16]
da Silva, A.F.C.; Benchimol, J.L. Malaria and quinine resistance: A medical and scientific issue between Brazil and Germany (1907-19). Med. Hist., 2014, 58(1), 1-26.
[http://dx.doi.org/10.1017/mdh.2013.69] [PMID: 24331212]
[17]
Trenholme, C.M.; Williams, R.L.; Desjardins, R.E.; Frischer, H.; Carson, P.E.; Rieckmann, K.H.; Canfield, C.J. Mefloquine (WR 142,490) in the treatment of human malaria. Science, 1975, 190(4216), 792-794.
[http://dx.doi.org/10.1126/science.1105787] [PMID: 1105787]
[18]
Palmer, K.J.; Holliday, S.M.; Brogden, R.N. Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 1993, 45(3), 430-475.
[http://dx.doi.org/10.2165/00003495-199345030-00009] [PMID: 7682911]
[19]
Fletcher, A.; Shepherd, R. Use of (+)mefloquine for the treatment of malaria. EP0966285B1, 2002.
[20]
Boudreau, E.F.; Webster, H.K.; Pavanand, K.; Thosingha, L.; Type, I.I. Type II mefloquine resistance in Thailand. Lancet, 1982, 2(8311), 1335.
[http://dx.doi.org/10.1016/S0140-6736(82)91532-X] [PMID: 6128616]
[21]
Price, R.N.; Uhlemann, A.C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; Nosten, F.; Krishna, S. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet, 2004, 364(9432), 438-447.
[http://dx.doi.org/10.1016/S0140-6736(04)16767-6] [PMID: 15288742]
[22]
Cowman, A.F.; Galatis, D.; Thompson, J.K. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl. Acad. Sci. USA, 1994, 91(3), 1143-1147.
[http://dx.doi.org/10.1073/pnas.91.3.1143] [PMID: 8302844]
[23]
Wilson, C.M.; Volkman, S.K.; Thaithong, S.; Martin, R.K.; Kyle, D.E.; Milhous, W.K.; Wirth, D.F. Amplification of pfmdr 1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol. Biochem. Parasitol., 1993, 57(1), 151-160.
[http://dx.doi.org/10.1016/0166-6851(93)90252-S] [PMID: 8426608]
[24]
Sidhu, A.B.S.; Uhlemann, A.C.; Valderramos, S.G.; Valderramos, J.C.; Krishna, S.; Fidock, D.A. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis., 2006, 194(4), 528-535.
[http://dx.doi.org/10.1086/507115] [PMID: 16845638]
[25]
Sanchez, C.P.; Dave, A.; Stein, W.D.; Lanzer, M. Transporters as mediators of drug resistance in Plasmodium falciparum. Int. J. Parasitol., 2010, 40(10), 1109-1118.
[http://dx.doi.org/10.1016/j.ijpara.2010.04.001] [PMID: 20399785]
[26]
Wong, W.; Bai, X.C.; Sleebs, B.E.; Triglia, T.; Brown, A.; Thompson, J.K.; Jackson, K.E.; Hanssen, E.; Marapana, D.S.; Fernandez, I.S.; Ralph, S.A.; Cowman, A.F.; Scheres, S.H.W.; Baum, J. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol., 2017, 2(6), 17031.
[http://dx.doi.org/10.1038/nmicrobiol.2017.31] [PMID: 28288098]
[27]
Gunjan, S.; Singh, S.K.; Sharma, T.; Dwivedi, H.; Chauhan, B.S.; Imran Siddiqi, M.; Tripathi, R. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium. Apoptosis, 2016, 21(9), 955-964.
[http://dx.doi.org/10.1007/s10495-016-1265-y] [PMID: 27357656]
[28]
Kumar, A.; Ghosh, D.K.; Ali, J.; Ranjan, A. Characterization of lipid binding properties of Plasmodium falciparum acyl-coenzyme a binding proteins and their competitive inhibition by mefloquine. ACS Chem. Biol., 2019, 14(5), 901-915.
[http://dx.doi.org/10.1021/acschembio.9b00003] [PMID: 30986346]
[29]
Cui, L.; Su, X.Z. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther., 2009, 7(8), 999-1013.
[http://dx.doi.org/10.1586/eri.09.68] [PMID: 19803708]
[30]
Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol., 2013, 8(1), 133-137.
[http://dx.doi.org/10.1021/cb300454t] [PMID: 23043646]
[31]
Sisowath, C.; Strömberg, J.; Mårtensson, A.; Msellem, M.; Obondo, C.; Björkman, A.; Gil, J.P. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J. Infect. Dis., 2005, 191(6), 1014-1017.
[http://dx.doi.org/10.1086/427997] [PMID: 15717281]
[32]
O’Neill, P.M.; Ward, S.A.; Berry, N.G.; Jeyadevan, J.P.; Biagini, G.A.; Asadollaly, E.; Park, B.K.; Bray, P.G. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr. Top. Med. Chem., 2006, 6(5), 479-507.
[http://dx.doi.org/10.2174/156802606776743147] [PMID: 16719804]
[33]
Dhingra, S.K.; Small-Saunders, J.L.; Ménard, D.; Fidock, D.A. Plasmodium falciparum resistance to piperaquine driven by PfCRT. Lancet Infect. Dis., 2019, 19(11), 1168-1169.
[http://dx.doi.org/10.1016/S1473-3099(19)30543-2] [PMID: 31657776]
[34]
Witkowski, B.; Duru, V.; Khim, N.; Ross, L.S.; Saintpierre, B.; Beghain, J.; Chy, S.; Kim, S.; Ke, S.; Kloeung, N.; Eam, R.; Khean, C.; Ken, M.; Loch, K.; Bouillon, A.; Domergue, A.; Ma, L.; Bouchier, C.; Leang, R.; Huy, R.; Nuel, G.; Barale, J.C.; Legrand, E.; Ringwald, P.; Fidock, D.A.; Mercereau-Puijalon, O.; Ariey, F.; Ménard, D. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: A phenotype-genotype association study. Lancet Infect. Dis., 2017, 17(2), 174-183.
[http://dx.doi.org/10.1016/S1473-3099(16)30415-7] [PMID: 27818097]
[35]
Berliner, R.W.; Earle, D.P.; Taggart, J.V.; Zubrod, C.G.; Welch, W.J.; Conan, N.J.; Bauman, E.; Scudder, S.T.; Shannon, J.A. Studies on the chemotherapy of the human malarias. VI. The physiological disposition, antimalarial activity, and toxicity of several derivatives of 4-aminoquinolines. J. Clin. Invest., 1948, 27(3 Pt 2), 98-107.
[http://dx.doi.org/10.1172/JCI101980] [PMID: 16695643]
[36]
Davis, T.M.E.; Hung, T.Y.; Sim, I.K.; Karunajeewa, H.A.; Ilett, K.F. Piperaquine: A resurgent antimalarial drug. Drugs, 2005, 65(1), 75-87.
[http://dx.doi.org/10.2165/00003495-200565010-00004] [PMID: 15610051]
[37]
Baird, J.K. 8-aminoquinoline therapy for latent malaria. Clin. Microbiol. Rev., 2019, 32(4), e00011-e00019.
[http://dx.doi.org/10.1128/CMR.00011-19] [PMID: 31366609]
[38]
Pybus, B.S.; Sousa, J.C.; Jin, X.; Ferguson, J.A.; Christian, R.E.; Barnhart, R.; Vuong, C.; Sciotti, R.J.; Reichard, G.A.; Kozar, M.P.; Walker, L.A.; Ohrt, C.; Melendez, V. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine. Malar. J., 2012, 11, 259.
[http://dx.doi.org/10.1186/1475-2875-11-259] [PMID: 22856549]
[39]
Pybus, B.S.; Marcsisin, S.R.; Jin, X.; Deye, G.; Sousa, J.C.; Li, Q.; Caridha, D.; Zeng, Q.; Reichard, G.A.; Ockenhouse, C.; Bennett, J.; Walker, L.A.; Ohrt, C.; Melendez, V. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar. J., 2013, 12, 212.
[http://dx.doi.org/10.1186/1475-2875-12-212] [PMID: 23782898]
[40]
Marcsisin, S.R.; Reichard, G.; Pybus, B.S. Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: Current state of the art. Pharmacol. Ther., 2016, 161, 1-10.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.011] [PMID: 27016470]
[41]
Chen, V.; Daily, J.P. Tafenoquine: The new kid on the block. Curr. Opin. Infect. Dis., 2019, 32(5), 407-412.
[http://dx.doi.org/10.1097/QCO.0000000000000574] [PMID: 31305490]
[42]
Vennerstrom, J.L.; Nuzum, E.O.; Miller, R.E.; Dorn, A.; Gerena, L.; Dande, P.A.; Ellis, W.Y.; Ridley, R.G.; Milhous, W.K. 8-Aminoquinolines active against blood stage Plasmodium falciparum in vitro inhibit hematin polymerization. Antimicrob. Agents Chemother., 1999, 43(3), 598-602.
[http://dx.doi.org/10.1128/AAC.43.3.598] [PMID: 10049273]
[43]
Marcsisin, S.R.; Sousa, J.C.; Reichard, G.A.; Caridha, D.; Zeng, Q.; Roncal, N.; McNulty, R.; Careagabarja, J.; Sciotti, R.J.; Bennett, J.W.; Zottig, V.E.; Deye, G.; Li, Q.; Read, L.; Hickman, M.; Dhammika Nanayakkara, N.P.; Walker, L.A.; Smith, B.; Melendez, V.; Pybus, B.S. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: Implications for the 8-aminoquinoline class of anti-malarial compounds. Malar. J., 2014, 13, 2.
[http://dx.doi.org/10.1186/1475-2875-13-2] [PMID: 24386891]
[44]
St Jean, P.L.; Xue, Z.; Carter, N.; Koh, G.C.K.W.; Duparc, S.; Taylor, M.; Beaumont, C.; Llanos-Cuentas, A.; Rueangweerayut, R.; Krudsood, S.; Green, J.A.; Rubio, J.P. Tafenoquine treatment of Plasmodium vivax malaria: Suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial. Malar. J., 2016, 15, 97.
[http://dx.doi.org/10.1186/s12936-016-1145-5] [PMID: 26888075]
[45]
Milner, E.E.; Berman, J.; Caridha, D.; Dickson, S.P.; Hickman, M.; Lee, P.J.; Marcsisin, S.R.; Read, L.T.; Roncal, N.; Vesely, B.A.; Xie, L.H.; Zhang, J.; Zhang, P.; Li, Q. Cytochrome P450 2D-mediated metabolism is not necessary for tafenoquine and primaquine to eradicate the erythrocytic stages of Plasmodium berghei. Malar. J., 2016, 15(1), 588.
[http://dx.doi.org/10.1186/s12936-016-1632-8] [PMID: 27923405]
[46]
Schirmer, R.H.; Adler, H.; Pickhardt, M.; Mandelkow, E. “Lest we forget you--methylene blue....” Neurobiol. Aging, 2011, 32(12), 2325.e7-2325.e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.012] [PMID: 21316815]
[47]
Färber, P.M.; Arscott, L.D.; Williams, C.H., Jr; Becker, K.; Schirmer, R.H. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett., 1998, 422(3), 311-314.
[http://dx.doi.org/10.1016/S0014-5793(98)00031-3] [PMID: 9498806]
[48]
Lu, G.; Nagbanshi, M.; Goldau, N.; Mendes Jorge, M.; Meissner, P.; Jahn, A.; Mockenhaupt, F.P.; Müller, O. Efficacy and safety of methylene blue in the treatment of malaria: A systematic review. BMC Med., 2018, 16(1), 59.
[http://dx.doi.org/10.1186/s12916-018-1045-3] [PMID: 29690878]
[49]
Mendes Jorge, M.; Ouermi, L.; Meissner, P.; Compaoré, G.; Coulibaly, B.; Nebie, E.; Krisam, J.; Klose, C.; Kieser, M.; Jahn, A.; Lu, G.; D, Alessandro U.; Sié, A.; Mockenhaupt, F.P.; Müller, O. Safety and efficacy of artesunate-amodiaquine combined with either methylene blue or primaquine in children with falciparum malaria in Burkina Faso: A randomized controlled trial. PLoS One, 2019, 14(10), e0222993.
[http://dx.doi.org/10.1371/journal.pone.0222993] [PMID: 31600221]
[50]
Chang, C.; Lin-Hua, T.; Jantanavivat, C. Studies on a new antimalarial compound. Pyronaridine. Trans. R. Soc. Trop. Med. Hyg., 1992, 86(1), 7-10.
[http://dx.doi.org/10.1016/0035-9203(92)90414-8] [PMID: 1566313]
[51]
World Health Organization. The use of artesunate-pyronaridine for the treatment of uncomplicated malaria., 2019.
[52]
Croft, S.L.; Duparc, S.; Arbe-Barnes, S.J.; Craft, J.C.; Shin, C.S.; Fleckenstein, L.; Borghini-Fuhrer, I.; Rim, H.J. Review of pyronaridine anti-malarial properties and product characteristics. Malar. J., 2012, 11, 270.
[http://dx.doi.org/10.1186/1475-2875-11-270] [PMID: 22877082]
[53]
Bailly, C. Pyronaridine: An update of its pharmacological activities and mechanisms of action. Biopolymers, 2021, 112(4), e23398.
[http://dx.doi.org/10.1002/bip.23398] [PMID: 33280083]
[54]
Dahl, E.L.; Shock, J.L.; Shenai, B.R.; Gut, J.; DeRisi, J.L.; Rosenthal, P.J. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother., 2006, 50(9), 3124-3131.
[http://dx.doi.org/10.1128/AAC.00394-06] [PMID: 16940111]
[55]
Goodman, C.D.; Su, V.; McFadden, G.I. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol., 2007, 152(2), 181-191.
[http://dx.doi.org/10.1016/j.molbiopara.2007.01.005] [PMID: 17289168]
[56]
Gaillard, T.; Dormoi, J.; Madamet, M.; Pradines, B. Macrolides and associated antibiotics based on similar mechanism of action like lincosamides in malaria. Malar. J., 2016, 15, 85.
[http://dx.doi.org/10.1186/s12936-016-1114-z] [PMID: 26873741]
[57]
Briolant, S.; Alméras, L.; Fusai, T.; Rogier, C.; Pradines, B. Cyclines and Malaria. Médecine Trop. Rev. Corps Santé Colon., 2007, 67(1), 86-96.
[58]
Fry, M.; Pudney, M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem. Pharmacol., 1992, 43(7), 1545-1553.
[http://dx.doi.org/10.1016/0006-2952(92)90213-3] [PMID: 1314606]
[59]
Canfield, C.J.; Pudney, M.; Gutteridge, W.E. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp. Parasitol., 1995, 80(3), 373-381.
[http://dx.doi.org/10.1006/expr.1995.1049] [PMID: 7729473]
[60]
Crowther, A.F.; Levi, A.A. Proguanil, the isolation of a metabolite with high antimalarial activity. Br. J. Pharmacol. Chemother., 1953, 8(1), 93-97.
[http://dx.doi.org/10.1111/j.1476-5381.1953.tb00758.x] [PMID: 13066702]
[61]
Pudney, M.; Gutteridge, W.; Zeman, A.; Dickins, M.; Woolley, J.L. Atovaquone and proguanil hydrochloride: A review of nonclinical studies. J. Travel Med., 1999, 6(Suppl. 1), S8-S12.
[PMID: 23573546]
[62]
Srivastava, I.K.; Vaidya, A.B. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother., 1999, 43(6), 1334-1339.
[http://dx.doi.org/10.1128/AAC.43.6.1334] [PMID: 10348748]
[63]
Nzila, A. The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J. Antimicrob. Chemother., 2006, 57(6), 1043-1054.
[http://dx.doi.org/10.1093/jac/dkl104] [PMID: 16617066]
[64]
Tilley, L.; Straimer, J.; Gnädig, N.F.; Ralph, S.A.; Fidock, D.A. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol., 2016, 32(9), 682-696.
[http://dx.doi.org/10.1016/j.pt.2016.05.010] [PMID: 27289273]
[65]
Wang, J.; Zhang, C.J.; Chia, W.N.; Loh, C.C.Y.; Li, Z.; Lee, Y.M.; He, Y.; Yuan, L.X.; Lim, T.K.; Liu, M.; Liew, C.X.; Lee, Y.Q.; Zhang, J.; Lu, N.; Lim, C.T.; Hua, Z.C.; Liu, B.; Shen, H.M.; Tan, K.S.; Lin, Q. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun., 2015, 6, 10111.
[http://dx.doi.org/10.1038/ncomms10111] [PMID: 26694030]
[66]
Lu, F.; He, X.L.; Richard, C.; Cao, J. A brief history of artemisinin: Modes of action and mechanisms of resistance. Chin. J. Nat. Med., 2019, 17(5), 331-336.
[http://dx.doi.org/10.1016/S1875-5364(19)30038-X] [PMID: 31171267]
[67]
Eckstein-Ludwig, U.; Webb, R.J.; Van Goethem, I.D.A.; East, J.M.; Lee, A.G.; Kimura, M.; O’Neill, P.M.; Bray, P.G.; Ward, S.A.; Krishna, S. Artemisinins target the SERCA of Plasmodium falciparum. Nature, 2003, 424(6951), 957-961.
[http://dx.doi.org/10.1038/nature01813] [PMID: 12931192]
[68]
Mbengue, A.; Bhattacharjee, S.; Pandharkar, T.; Liu, H.; Estiu, G.; Stahelin, R.V.; Rizk, S.S.; Njimoh, D.L.; Ryan, Y.; Chotivanich, K.; Nguon, C.; Ghorbal, M.; Lopez-Rubio, J.J.; Pfrender, M.; Emrich, S.; Mohandas, N.; Dondorp, A.M.; Wiest, O.; Haldar, K. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature, 2015, 520(7549), 683-687.
[http://dx.doi.org/10.1038/nature14412] [PMID: 25874676]
[69]
Efferth, T.; Kaina, B. Toxicity of the antimalarial artemisinin and its dervatives. Crit. Rev. Toxicol., 2010, 40(5), 405-421.
[http://dx.doi.org/10.3109/10408441003610571] [PMID: 20158370]
[70]
Giannangelo, C.; Fowkes, F.J.I.; Simpson, J.A.; Charman, S.A.; Creek, D.J. Ozonide antimalarial activity in the context of artemisinin-resistant malaria. Trends Parasitol., 2019, 35(7), 529-543.
[http://dx.doi.org/10.1016/j.pt.2019.05.002] [PMID: 31176584]
[71]
Vennerstrom, J.L.; Arbe-Barnes, S.; Brun, R.; Charman, S.A.; Chiu, F.C.; Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Santo Tomas, J.; Scheurer, C.; Scorneaux, B.; Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W.N. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature, 2004, 430(7002), 900-904.
[http://dx.doi.org/10.1038/nature02779] [PMID: 15318224]
[72]
Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Chiu, F.C.K.; Charman, W.N.; Scorneaux, B.; Urwyler, H.; Santo Tomas, J.; Scheurer, C.; Snyder, C.; Dorn, A.; Wang, X.; Karle, J.M.; Tang, Y.; Wittlin, S.; Brun, R.; Vennerstrom, J.L. Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: Charting a workable structure-activity relationship using simple prototypes. J. Med. Chem., 2005, 48(15), 4953-4961.
[http://dx.doi.org/10.1021/jm049040u] [PMID: 16033274]
[73]
Kaiser, M.; Wittlin, S.; Nehrbass-Stuedli, A.; Dong, Y.; Wang, X.; Hemphill, A.; Matile, H.; Brun, R.; Vennerstrom, J.L. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob. Agents Chemother., 2007, 51(8), 2991-2993.
[http://dx.doi.org/10.1128/AAC.00225-07] [PMID: 17562801]
[74]
Dong, Y.; Wittlin, S.; Sriraghavan, K.; Chollet, J.; Charman, S.A.; Charman, W.N.; Scheurer, C.; Urwyler, H.; Santo Tomas, J.; Snyder, C.; Creek, D.J.; Morizzi, J.; Koltun, M.; Matile, H.; Wang, X.; Padmanilayam, M.; Tang, Y.; Dorn, A.; Brun, R.; Vennerstrom, J.L. The structure-activity relationship of the antimalarial ozonide arterolane (OZ277). J. Med. Chem., 2010, 53(1), 481-491.
[http://dx.doi.org/10.1021/jm901473s] [PMID: 19924861]
[75]
Valecha, N.; Looareesuwan, S.; Martensson, A.; Abdulla, S.M.; Krudsood, S.; Tangpukdee, N.; Mohanty, S.; Mishra, S.K.; Tyagi, P.K.; Sharma, S.K.; Moehrle, J.; Gautam, A.; Roy, A.; Paliwal, J.K.; Kothari, M.; Saha, N.; Dash, A.P.; Björkman, A. Arterolane, a new synthetic trioxolane for treatment of uncomplicated Plasmodium falciparum malaria: A phase II, multicenter, randomized, dose-finding clinical trial. Clin. Infect. Dis., 2010, 51(6), 684-691.
[http://dx.doi.org/10.1086/655831] [PMID: 20687837]
[76]
Patil, C.; Katare, S.; Baig, M.; Doifode, S. Fixed dose combination of arterolane and piperaquine: A newer prospect in antimalarial therapy. Ann. Med. Health Sci. Res., 2014, 4(4), 466-471.
[http://dx.doi.org/10.4103/2141-9248.139270] [PMID: 25221689]
[77]
Uhlemann, A.C.; Wittlin, S.; Matile, H.; Bustamante, L.Y.; Krishna, S. Mechanism of antimalarial action of the synthetic trioxolane RBX11160 (OZ277). Antimicrob. Agents Chemother., 2007, 51(2), 667-672.
[http://dx.doi.org/10.1128/AAC.01064-06] [PMID: 17145800]
[78]
Giannangelo, C.; Anderson, D.; Wang, X.; Vennerstrom, J.L.; Charman, S.A.; Creek, D.J. Ozonide antimalarials alkylate heme in the malaria parasite Plasmodium falciparum. ACS Infect. Dis., 2019, 5(12), 2076-2086.
[http://dx.doi.org/10.1021/acsinfecdis.9b00257] [PMID: 31622078]
[79]
Moore, B.R.; Laman, M.; Salman, S.; Batty, K.T.; Page-Sharp, M.; Hombhanje, F.; Manning, L.; Davis, T.M.E. Naphthoquine: An emerging candidate for artemisinin combination therapy. Drugs, 2016, 76(7), 789-804.
[http://dx.doi.org/10.1007/s40265-016-0572-5] [PMID: 27075024]
[80]
Chapter 8 - artemisinin–naphthoquine phosphate combination (ARCO). Guoqiao, L.; Ying, L.; Zelin, L.; Meiyi, Z., Eds.; Artemisinin-based and other antimalarials; Academic Press Artemisinin-based and other antimalarials; Academic Press , 2018; pp. 483-569.
[http://dx.doi.org/10.1016/B978-0-12-813133-6.00008-1]
[81]
Naing, C.; Whittaker, M.A.; Mak, J.W.; Aung, K. A systematic review of the efficacy of a single dose artemisinin-naphthoquine in treating uncomplicated malaria. Malar. J., 2015, 14, 392.
[http://dx.doi.org/10.1186/s12936-015-0919-5] [PMID: 26445424]
[82]
Hombhanje, F.W.; Huang, Q. Artemisinin-naphthoquine combination (ARCO®): An overview of the progress. Pharmaceuticals, 2010, 3(12), 3581-3593.
[http://dx.doi.org/10.3390/ph3123581]
[83]
Charman, S.A.; Arbe-Barnes, S.; Bathurst, I.C.; Brun, R.; Campbell, M.; Charman, W.N.; Chiu, F.C.K.; Chollet, J.; Craft, J.C.; Creek, D.J.; Dong, Y.; Matile, H.; Maurer, M.; Morizzi, J.; Nguyen, T.; Papastogiannidis, P.; Scheurer, C.; Shackleford, D.M.; Sriraghavan, K.; Stingelin, L.; Tang, Y.; Urwyler, H.; Wang, X.; White, K.L.; Wittlin, S.; Zhou, L.; Vennerstrom, J.L. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA, 2011, 108(11), 4400-4405.
[http://dx.doi.org/10.1073/pnas.1015762108] [PMID: 21300861]
[84]
Dong, Y.; Wang, X.; Kamaraj, S.; Bulbule, V.J.; Chiu, F.C.K.; Chollet, J.; Dhanasekaran, M.; Hein, C.D.; Papastogiannidis, P.; Morizzi, J.; Shackleford, D.M.; Barker, H.; Ryan, E.; Scheurer, C.; Tang, Y.; Zhao, Q.; Zhou, L.; White, K.L.; Urwyler, H.; Charman, W.N.; Matile, H.; Wittlin, S.; Charman, S.A.; Vennerstrom, J.L. Structure-activity relationship of the antimalarial ozonide artefenomel (OZ439). J. Med. Chem., 2017, 60(7), 2654-2668.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01586] [PMID: 28052200]
[85]
Moehrle, J.J.; Duparc, S.; Siethoff, C.; van Giersbergen, P.L.; Craft, J.C.; Arbe-Barnes, S.; Charman, S.A.; Gutierrez, M.; Wittlin, S.; Vennerstrom, J.L. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br. J. Clin. Pharmacol., 2013, 75(2), 524-537.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04368.x] [PMID: 22759078]
[86]
Phyo, A.P.; Jittamala, P.; Nosten, F.H.; Pukrittayakamee, S.; Imwong, M.; White, N.J.; Duparc, S.; Macintyre, F.; Baker, M.; Möhrle, J.J. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: An open-label phase 2 trial. Lancet Infect. Dis., 2016, 16(1), 61-69.
[http://dx.doi.org/10.1016/S1473-3099(15)00320-5] [PMID: 26448141]
[87]
McCarthy, J.S.; Baker, M.; O’Rourke, P.; Marquart, L.; Griffin, P.; Hooft van Huijsduijnen, R.; Möhrle, J.J. Efficacy of OZ439 (artefenomel) against early Plasmodium falciparum blood-stage malaria infection in healthy volunteers. J. Antimicrob. Chemother., 2016, 71(9), 2620-2627.
[http://dx.doi.org/10.1093/jac/dkw174] [PMID: 27272721]
[88]
Collins, K.A.; Abd-Rahman, A.N.; Marquart, L.; Ballard, E.; Gobeau, N.; Griffin, P.; Chalon, S.; Möhrle, J.J.; McCarthy, J.S. Antimalarial activity of artefenomel against asexual parasites and transmissible gametocytes during experimental blood-stage plasmodium vivax infection. J. Infect. Dis., 2020., jiaa287.
[89]
McCarthy, J.S.; Rückle, T.; Elliott, S.L.; Ballard, E.; Collins, K.A.; Marquart, L.; Griffin, P.; Chalon, S.; Möhrle, J.J. A single-dose combination study with the experimental antimalarials artefenomel and dsm265 to determine safety and antimalarial activity against blood-stage plasmodium falciparum in healthy volunteers. Antimicrob. Agents Chemother., 2019, 64(1), e01371-e19.
[http://dx.doi.org/10.1128/AAC.01371-19] [PMID: 31685476]
[90]
Macintyre, F.; Adoke, Y.; Tiono, A.B.; Duong, T.T.; Mombo-Ngoma, G.; Bouyou-Akotet, M.; Tinto, H.; Bassat, Q.; Issifou, S.; Adamy, M.; Demarest, H.; Duparc, S.; Leroy, D.; Laurijssens, B.E.; Biguenet, S.; Kibuuka, A.; Tshefu, A.K.; Smith, M.; Foster, C.; Leipoldt, I.; Kremsner, P.G.; Phuc, B.Q.; Ouedraogo, A.; Ramharter, M. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med., 2017, 15(1), 181.
[http://dx.doi.org/10.1186/s12916-017-0940-3] [PMID: 28988541]
[91]
De, D.; Krogstad, F.M.; Cogswell, F.B.; Krogstad, D.J. Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg., 1996, 55(6), 579-583.
[http://dx.doi.org/10.4269/ajtmh.1996.55.579] [PMID: 9025680]
[92]
De, D.; Krogstad, F.M.; Byers, L.D.; Krogstad, D.J. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J. Med. Chem., 1998, 41(25), 4918-4926.
[http://dx.doi.org/10.1021/jm980146x] [PMID: 9836608]
[93]
Mzayek, F.; Deng, H.; Mather, F.J.; Wasilevich, E.C.; Liu, H.; Hadi, C.M.; Chansolme, D.H.; Murphy, H.A.; Melek, B.H.; Tenaglia, A.N.; Mushatt, D.M.; Dreisbach, A.W.; Lertora, J.J.; Krogstad, D.J. Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS Clin. Trials, 2007, 2(1), e6.
[http://dx.doi.org/10.1371/journal.pctr.0020006] [PMID: 17213921]
[94]
Ramanathan-Girish, S.; Catz, P.; Creek, M.R.; Wu, B.; Thomas, D.; Krogstad, D.J.; De, D.; Mirsalis, J.C.; Green, C.E. Pharmacokinetics of the antimalarial drug, AQ-13, in rats and cynomolgus macaques. Int. J. Toxicol., 2004, 23(3), 179-189.
[http://dx.doi.org/10.1080/10915810490471352] [PMID: 15204721]
[95]
Koita, O.A.; Sangaré, L.; Miller, H.D.; Sissako, A.; Coulibaly, M.; Thompson, T.A.; Fongoro, S.; Diarra, Y.; Ba, M.; Maiga, A.; Diallo, B.; Mushatt, D.M.; Mather, F.J.; Shaffer, J.G.; Anwar, A.H.; Krogstad, D.J. AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: A randomised, phase 2, non-inferiority clinical trial. Lancet Infect. Dis., 2017, 17(12), 1266-1275.
[http://dx.doi.org/10.1016/S1473-3099(17)30365-1] [PMID: 28916443]
[96]
Biot, C.; Glorian, G.; Maciejewski, L.A.; Brocard, J.S. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue. J. Med. Chem., 1997, 40(23), 3715-3718.
[http://dx.doi.org/10.1021/jm970401y] [PMID: 9371235]
[97]
Delhaes, L.; Abessolo, H.; Biot, C.; Berry, L.; Delcourt, P.; Maciejewski, L.; Brocard, J.; Camus, D.; Dive, D. In vitro and in vivo antimalarial activity of ferrochloroquine, a ferrocenyl analogue of chloroquine against chloroquine-resistant malaria parasites. Parasitol. Res., 2001, 87(3), 239-244.
[http://dx.doi.org/10.1007/s004360000317] [PMID: 11293573]
[98]
Daher, W.; Pelinski, L.; Klieber, S.; Sadoun, F.; Meunier, V.; Bourrié, M.; Biot, C.; Guillou, F.; Fabre, G.; Brocard, J.; Fraisse, L.; Maffrand, J.P.; Khalife, J.; Dive, D. In vitro metabolism of ferroquine (SSR97193) in animal and human hepatic models and antimalarial activity of major metabolites on Plasmodium falciparum. Drug Metab. Dispos., 2006, 34(4), 667-682.
[http://dx.doi.org/10.1124/dmd.104.003202] [PMID: 16415117]
[99]
Biot, C.; Delhaes, L.; N’Diaye, C.M.; Maciejewski, L.A.; Camus, D.; Dive, D.; Brocard, J.S. Synthesis and antimalarial activity in vitro of potential metabolites of ferrochloroquine and related compounds. Bioorg. Med. Chem., 1999, 7(12), 2843-2847.
[http://dx.doi.org/10.1016/S0968-0896(99)00224-2] [PMID: 10658588]
[100]
Supan, C.; Mombo-Ngoma, G.; Dal-Bianco, M.P.; Ospina Salazar, C.L.; Issifou, S.; Mazuir, F.; Filali-Ansary, A.; Biot, C.; Ter-Minassian, D.; Ramharter, M.; Kremsner, P.G.; Lell, B. Pharmacokinetics of ferroquine, a novel 4-aminoquinoline, in asymptomatic carriers of Plasmodium falciparum infections. Antimicrob. Agents Chemother., 2012, 56(6), 3165-3173.
[http://dx.doi.org/10.1128/AAC.05359-11] [PMID: 22430976]
[101]
Mairet-Khedim, M.; Nardella, F.; Khim, N.; Kim, S.; Kloeung, N.; Ke, S.; Kauy, C.; Eam, R.; Khean, C.; Pellet, A.; Leboulleux, D.; Leang, R.; Ringwald, P.; Barale, J.C.; Leroy, D.; Menard, D.; Witkowski, B. In vitro activity of ferroquine against artemisinin-based combination therapy (ACT)-resistant Plasmodium falciparum isolates from Cambodia. J. Antimicrob. Chemother., 2019, 74(11), 3240-3244.
[http://dx.doi.org/10.1093/jac/dkz340] [PMID: 31518407]
[102]
Daher, W.; Biot, C.; Fandeur, T.; Jouin, H.; Pelinski, L.; Viscogliosi, E.; Fraisse, L.; Pradines, B.; Brocard, J.; Khalife, J.; Dive, D. Assessment of Plasmodium falciparum resistance to ferroquine (SSR97193) in field isolates and in W2 strain under pressure. Malar. J., 2006, 5, 11.
[http://dx.doi.org/10.1186/1475-2875-5-11] [PMID: 16464254]
[103]
Mombo-Ngoma, G.; Supan, C.; Dal-Bianco, M.P.; Missinou, M.A.; Matsiegui, P.B.; Ospina Salazar, C.L.; Issifou, S.; Ter-Minassian, D.; Ramharter, M.; Kombila, M.; Kremsner, P.G.; Lell, B. Phase I randomized dose-ascending placebo-controlled trials of ferroquine--a candidate anti-malarial drug-in adults with asymptomatic Plasmodium falciparum infection. Malar. J., 2011, 10, 53.
[http://dx.doi.org/10.1186/1475-2875-10-53] [PMID: 21362162]
[104]
McCarthy, J.S.; Rückle, T.; Djeriou, E.; Cantalloube, C.; Ter-Minassian, D.; Baker, M.; O’Rourke, P.; Griffin, P.; Marquart, L.; Hooft van Huijsduijnen, R.; Möhrle, J.J. A Phase II pilot trial to evaluate safety and efficacy of ferroquine against early Plasmodium falciparum in an induced blood-stage malaria infection study. Malar. J., 2016, 15, 469.
[http://dx.doi.org/10.1186/s12936-016-1511-3] [PMID: 27624471]
[105]
Held, J.; Supan, C.; Salazar, C.L.O.; Tinto, H.; Bonkian, L.N.; Nahum, A.; Moulero, B.; Sié, A.; Coulibaly, B.; Sirima, S.B.; Siribie, M.; Otsyula, N.; Otieno, L.; Abdallah, A.M.; Kimutai, R.; Bouyou-Akotet, M.; Kombila, M.; Koiwai, K.; Cantalloube, C.; Din-Bell, C.; Djeriou, E.; Waitumbi, J.; Mordmüller, B.; Ter-Minassian, D.; Lell, B.; Kremsner, P.G. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: A phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis., 2015, 15(12), 1409-1419.
[http://dx.doi.org/10.1016/S1473-3099(15)00079-1] [PMID: 26342427]
[106]
Chavain, N.; Vezin, H.; Dive, D.; Touati, N.; Paul, J.F.; Buisine, E.; Biot, C. Investigation of the redox behavior of ferroquine, a new antimalarial. Mol. Pharm., 2008, 5(5), 710-716.
[http://dx.doi.org/10.1021/mp800007x] [PMID: 18563912]
[107]
Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrián, F.; Matzen, J.T.; Anderson, P.; Nam, T.G.; Gray, N.S.; Chatterjee, A.; Janes, J.; Yan, S.F.; Trager, R.; Caldwell, J.S.; Schultz, P.G.; Zhou, Y.; Winzeler, E.A. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9059-9064.
[http://dx.doi.org/10.1073/pnas.0802982105] [PMID: 18579783]
[108]
Wu, T.; Nagle, A.; Kuhen, K.; Gagaring, K.; Borboa, R.; Francek, C.; Chen, Z.; Plouffe, D.; Goh, A.; Lakshminarayana, S.B.; Wu, J.; Ang, H.Q.; Zeng, P.; Kang, M.L.; Tan, W.; Tan, M.; Ye, N.; Lin, X.; Caldwell, C.; Ek, J.; Skolnik, S.; Liu, F.; Wang, J.; Chang, J.; Li, C.; Hollenbeck, T.; Tuntland, T.; Isbell, J.; Fischli, C.; Brun, R.; Rottmann, M.; Dartois, V.; Keller, T.; Diagana, T.; Winzeler, E.; Glynne, R.; Tully, D.C.; Chatterjee, A.K. Imidazolopiperazines: Hit to lead optimization of new antimalarial agents. J. Med. Chem., 2011, 54(14), 5116-5130.
[http://dx.doi.org/10.1021/jm2003359] [PMID: 21644570]
[109]
Nagle, A.; Wu, T.; Kuhen, K.; Gagaring, K.; Borboa, R.; Francek, C.; Chen, Z.; Plouffe, D.; Lin, X.; Caldwell, C.; Ek, J.; Skolnik, S.; Liu, F.; Wang, J.; Chang, J.; Li, C.; Liu, B.; Hollenbeck, T.; Tuntland, T.; Isbell, J.; Chuan, T.; Alper, P.B.; Fischli, C.; Brun, R.; Lakshminarayana, S.B.; Rottmann, M.; Diagana, T.T.; Winzeler, E.A.; Glynne, R.; Tully, D.C.; Chatterjee, A.K. Imidazolopiperazines: Lead optimization of the second-generation antimalarial agents. J. Med. Chem., 2012, 55(9), 4244-4273.
[http://dx.doi.org/10.1021/jm300041e] [PMID: 22524250]
[110]
Kuhen, K.L.; Chatterjee, A.K.; Rottmann, M.; Gagaring, K.; Borboa, R.; Buenviaje, J.; Chen, Z.; Francek, C.; Wu, T.; Nagle, A.; Barnes, S.W.; Plouffe, D.; Lee, M.C.; Fidock, D.A.; Graumans, W.; van de Vegte-Bolmer, M.; van Gemert, G.J.; Wirjanata, G.; Sebayang, B.; Marfurt, J.; Russell, B.; Suwanarusk, R.; Price, R.N.; Nosten, F.; Tungtaeng, A.; Gettayacamin, M.; Sattabongkot, J.; Taylor, J.; Walker, J.R.; Tully, D.; Patra, K.P.; Flannery, E.L.; Vinetz, J.M.; Renia, L.; Sauerwein, R.W.; Winzeler, E.A.; Glynne, R.J.; Diagana, T.T. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob. Agents Chemother., 2014, 58(9), 5060-5067.
[http://dx.doi.org/10.1128/AAC.02727-13] [PMID: 24913172]
[111]
Leong, F.J.; Zhao, R.; Zeng, S.; Magnusson, B.; Diagana, T.T.; Pertel, P. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel Imidazolopiperazine KAF156 to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob. Agents Chemother., 2014, 58(11), 6437-6443.
[http://dx.doi.org/10.1128/AAC.03478-14] [PMID: 25136017]
[112]
Leong, F.J.; Jain, J.P.; Feng, Y.; Goswami, B.; Stein, D.S. A phase 1 evaluation of the pharmacokinetic/pharmacodynamic interaction of the anti-malarial agents KAF156 and piperaquine. Malar. J., 2018, 17(1), 7.
[http://dx.doi.org/10.1186/s12936-017-2162-8] [PMID: 29304859]
[113]
White, N.J.; Duong, T.T.; Uthaisin, C.; Nosten, F.; Phyo, A.P.; Hanboonkunupakarn, B.; Pukrittayakamee, S.; Jittamala, P.; Chuthasmit, K.; Cheung, M.S.; Feng, Y.; Li, R.; Magnusson, B.; Sultan, M.; Wieser, D.; Xun, X.; Zhao, R.; Diagana, T.T.; Pertel, P.; Leong, F.J. Antimalarial activity of kaf156 in falciparum and vivax malaria. N. Engl. J. Med., 2016, 375(12), 1152-1160.
[http://dx.doi.org/10.1056/NEJMoa1602250] [PMID: 27653565]
[114]
Kublin, J.G.; Murphy, S.C.; Maenza, J.; Seilie, A.M.; Jain, J.P.; Berger, D.; Spera, D.; Zhao, R.; Soon, R.L.; Czartoski, J.L. Safety, pharmacokinetics, and causal prophylactic efficacy of kaf156 in a Plasmodium falciparum human infection study., 2021, 73(7), e2407-e2414.
[115]
Reddy, D. A triumph of partnerships., 2018. Available from: https://www.mmv.org/newsroom/news/2018-triumph-partnerships [Accessed Apr 16, 2021].
[116]
Lim, M.Y.X.; LaMonte, G.; Lee, M.C.S.; Reimer, C.; Tan, B.H.; Corey, V.; Tjahjadi, B.F.; Chua, A.; Nachon, M.; Wintjens, R.; Gedeck, P.; Malleret, B.; Renia, L.; Bonamy, G.M.C.; Ho, P.C.; Yeung, B.K.S.; Chow, E.D.; Lim, L.; Fidock, D.A.; Diagana, T.T.; Winzeler, E.A.; Bifani, P. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat. Microbiol., 2016, 1, 16166.
[http://dx.doi.org/10.1038/nmicrobiol.2016.166] [PMID: 27642791]
[117]
LaMonte, G.M.; Rocamora, F.; Marapana, D.S.; Gnädig, N.F.; Ottilie, S.; Luth, M.R.; Worgall, T.S.; Goldgof, G.M.; Mohunlal, R.; Santha Kumar, T.R.; Thompson, J.K.; Vigil, E.; Yang, J.; Hutson, D.; Johnson, T.; Huang, J.; Williams, R.M.; Zou, B.Y.; Cheung, A.L.; Kumar, P.; Egan, T.J.; Lee, M.C.S.; Siegel, D.; Cowman, A.F.; Fidock, D.A.; Winzeler, E.A. Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway. Nat. Commun., 2020, 11(1), 1780.
[http://dx.doi.org/10.1038/s41467-020-15440-4] [PMID: 32286267]
[118]
Rottmann, M.; McNamara, C.; Yeung, B.K.S.; Lee, M.C.S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; Cohen, S.B.; Spencer, K.R.; González-Páez, G.E.; Lakshminarayana, S.B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E.K.; Beck, H.P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T.H.; Fidock, D.A.; Winzeler, E.A.; Diagana, T.T. Spiroindolones, a potent compound class for the treatment of malaria. Science, 2010, 329(5996), 1175-1180.
[http://dx.doi.org/10.1126/science.1193225] [PMID: 20813948]
[119]
Yeung, B.K.S.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro β-carbolines (spiroindolones): A new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778]
[120]
van Pelt-Koops, J.C.; Pett, H.E.; Graumans, W.; van der Vegte-Bolmer, M.; van Gemert, G.J.; Rottmann, M.; Yeung, B.K.S.; Diagana, T.T.; Sauerwein, R.W. The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks Plasmodium falciparum transmission to anopheles mosquito vector. Antimicrob. Agents Chemother., 2012, 56(7), 3544-3548.
[http://dx.doi.org/10.1128/AAC.06377-11] [PMID: 22508309]
[121]
Leong, F.J.; Li, R.; Jain, J.P.; Lefèvre, G.; Magnusson, B.; Diagana, T.T.; Pertel, P. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial Spiroindolone KAE609 (Cipargamin) to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob. Agents Chemother., 2014, 58(10), 6209-6214.
[http://dx.doi.org/10.1128/AAC.03393-14] [PMID: 25114127]
[122]
Huskey, S-E.W.; Zhu, C.Q.; Fredenhagen, A.; Kühnöl, J.; Luneau, A.; Jian, Z.; Yang, Z.; Miao, Z.; Yang, F.; Jain, J.P.; Sunkara, G.; Mangold, J.B.; Stein, D.S. KAE609 (Cipargamin), a new spiroindolone agent for the treatment of malaria: Evaluation of the absorption, distribution, metabolism, and excretion of a single oral 300-mg dose of [14c]kae609 in healthy male subjects. Drug Metab. Dispos., 2016, 44(5), 672-682.
[http://dx.doi.org/10.1124/dmd.115.069187] [PMID: 26921387]
[123]
McCarthy, J.S.; Abd-Rahman, A.N.; Collins, K.A.; Marquart, L.; Griffin, P.; Kümmel, A.; Fuchs, A.; Winnips, C.; Mishra, V.; Csermak-Renner, K.; Jain, J.P.; Gandhi, P. Defining the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum. Antimicrob. Agents Chemother., 2021, 65(2), e01423-e20.
[http://dx.doi.org/10.1128/AAC.01423-20] [PMID: 33199389]
[124]
Stein, D.S.; Jain, J.P.; Kangas, M.; Lefèvre, G.; Machineni, S.; Griffin, P.; Lickliter, J. Open-label, single-dose, parallel-group study in healthy volunteers to determine the drug-drug interaction potential between KAE609 (cipargamin) and piperaquine. Antimicrob. Agents Chemother., 2015, 59(6), 3493-3500.
[http://dx.doi.org/10.1128/AAC.00340-15] [PMID: 25845867]
[125]
White, N.J.; Pukrittayakamee, S.; Phyo, A.P.; Rueangweerayut, R.; Nosten, F.; Jittamala, P.; Jeeyapant, A.; Jain, J.P.; Lefèvre, G.; Li, R.; Magnusson, B.; Diagana, T.T.; Leong, F.J. Spiroindolone KAE609 for falciparum and vivax malaria. N. Engl. J. Med., 2014, 371(5), 403-410.
[http://dx.doi.org/10.1056/NEJMoa1315860] [PMID: 25075833]
[126]
Hien, T.T.; White, N.J.; Thuy-Nhien, N.T.; Hoa, N.T.; Thuan, P.D.; Tarning, J.; Nosten, F.; Magnusson, B.; Jain, J.P.; Hamed, K. Estimation of the in vivo MIC of cipargamin in uncomplicated Plasmodium falciparum malaria. Antimicrob. Agents Chemother., 2017, 61(2), e01940-e16.
[http://dx.doi.org/10.1128/AAC.01940-16] [PMID: 27872070]
[127]
Spillman, N.J.; Allen, R.J.W.; McNamara, C.W.; Yeung, B.K.S.; Winzeler, E.A.; Diagana, T.T.; Kirk, K. Na(+) regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe, 2013, 13(2), 227-237.
[http://dx.doi.org/10.1016/j.chom.2012.12.006] [PMID: 23414762]
[128]
Guiguemde, W.A.; Shelat, A.A.; Bouck, D.; Duffy, S.; Crowther, G.J.; Davis, P.H.; Smithson, D.C.; Connelly, M.; Clark, J.; Zhu, F.; Jiménez-Díaz, M.B.; Martinez, M.S.; Wilson, E.B.; Tripathi, A.K.; Gut, J.; Sharlow, E.R.; Bathurst, I.; El Mazouni, F.; Fowble, J.W.; Forquer, I.; McGinley, P.L.; Castro, S.; Angulo-Barturen, I.; Ferrer, S.; Rosenthal, P.J.; Derisi, J.L.; Sullivan, D.J.; Lazo, J.S.; Roos, D.S.; Riscoe, M.K.; Phillips, M.A.; Rathod, P.K.; Van Voorhis, W.C.; Avery, V.M.; Guy, R.K. Chemical genetics of Plasmodium falciparum. Nature, 2010, 465(7296), 311-315.
[http://dx.doi.org/10.1038/nature09099] [PMID: 20485428]
[129]
Floyd, D.M.; Stein, P.; Wang, Z.; Liu, J.; Castro, S.; Clark, J.A.; Connelly, M.; Zhu, F.; Holbrook, G.; Matheny, A.; Sigal, M.S.; Min, J.; Dhinakaran, R.; Krishnan, S.; Bashyum, S.; Knapp, S.; Guy, R.K. Hit-to-lead studies for the antimalarial tetrahydroisoquinolone carboxanilides. J. Med. Chem., 2016, 59(17), 7950-7962.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00752] [PMID: 27505686]
[130]
Jiménez-Díaz, M.B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A.M.; Myrand-Lapierre, M.E.; O’Loughlin, K.G.; Shackleford, D.M.; Justino de Almeida, M.; Carrillo, A.K.; Clark, J.A.; Dennis, A.S.; Diep, J.; Deng, X.; Duffy, S.; Endsley, A.N.; Fedewa, G.; Guiguemde, W.A.; Gómez, M.G.; Holbrook, G.; Horst, J.; Kim, C.C.; Liu, J.; Lee, M.C.; Matheny, A.; Martínez, M.S.; Miller, G.; Rodríguez-Alejandre, A.; Sanz, L.; Sigal, M.; Spillman, N.J.; Stein, P.D.; Wang, Z.; Zhu, F.; Waterson, D.; Knapp, S.; Shelat, A.; Avery, V.M.; Fidock, D.A.; Gamo, F.J.; Charman, S.A.; Mirsalis, J.C.; Ma, H.; Ferrer, S.; Kirk, K.; Angulo-Barturen, I.; Kyle, D.E.; DeRisi, J.L.; Floyd, D.M.; Guy, R.K. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci. USA, 2014, 111(50), E5455-E5462.
[http://dx.doi.org/10.1073/pnas.1414221111] [PMID: 25453091]
[131]
Gaur, A.H.; McCarthy, J.S.; Panetta, J.C.; Dallas, R.H.; Woodford, J.; Tang, L.; Smith, A.M.; Stewart, T.B.; Branum, K.C.; Freeman, B.B., III; Patel, N.D.; John, E.; Chalon, S.; Ost, S.; Heine, R.N.; Richardson, J.L.; Christensen, R.; Flynn, P.M.; Van Gessel, Y.; Mitasev, B.; Möhrle, J.J.; Gusovsky, F.; Bebrevska, L.; Guy, R.K. Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor SJ733: A first-in-human and induced blood-stage malaria phase 1a/b trial. Lancet Infect. Dis., 2020, 20(8), 964-975.
[http://dx.doi.org/10.1016/S1473-3099(19)30611-5] [PMID: 32275867]
[132]
Gamo, F.J.; Sanz, L.M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.L.; Vanderwall, D.E.; Green, D.V.S.; Kumar, V.; Hasan, S.; Brown, J.R.; Peishoff, C.E.; Cardon, L.R.; Garcia-Bustos, J.F. Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465(7296), 305-310.
[http://dx.doi.org/10.1038/nature09107] [PMID: 20485427]
[133]
Younis, Y.; Douelle, F.; Feng, T.S.; González Cabrera, D.; Le Manach, C.; Nchinda, A.T.; Duffy, S.; White, K.L.; Shackleford, D.M.; Morizzi, J.; Mannila, J.; Katneni, K.; Bhamidipati, R.; Zabiulla, K.M.; Joseph, J.T.; Bashyam, S.; Waterson, D.; Witty, M.J.; Hardick, D.; Wittlin, S.; Avery, V.; Charman, S.A.; Chibale, K. 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J. Med. Chem., 2012, 55(7), 3479-3487.
[http://dx.doi.org/10.1021/jm3001373] [PMID: 22390538]
[134]
Paquet, T.; Le Manach, C.; Cabrera, D.G.; Younis, Y.; Henrich, P.P.; Abraham, T.S.; Lee, M.C.S.; Basak, R.; Ghidelli-Disse, S.; Lafuente-Monasterio, M.J.; Bantscheff, M.; Ruecker, A.; Blagborough, A.M.; Zakutansky, S.E.; Zeeman, A.M.; White, K.L.; Shackleford, D.M.; Mannila, J.; Morizzi, J.; Scheurer, C.; Angulo-Barturen, I.; Martínez, M.S.; Ferrer, S.; Sanz, L.M.; Gamo, F.J.; Reader, J.; Botha, M.; Dechering, K.J.; Sauerwein, R.W.; Tungtaeng, A.; Vanachayangkul, P.; Lim, C.S.; Burrows, J.; Witty, M.J.; Marsh, K.C.; Bodenreider, C.; Rochford, R.; Solapure, S.M.; Jiménez-Díaz, M.B.; Wittlin, S.; Charman, S.A.; Donini, C.; Campo, B.; Birkholtz, L.M.; Hanson, K.K.; Drewes, G.; Kocken, C.H.M.; Delves, M.J.; Leroy, D.; Fidock, D.A.; Waterson, D.; Street, L.J.; Chibale, K. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med., 2017, 9(387), eaad9735.
[http://dx.doi.org/10.1126/scitranslmed.aad9735] [PMID: 28446690]
[135]
McCarthy, J.S.; Donini, C.; Chalon, S.; Woodford, J.; Marquart, L.; Collins, K.A.; Rozenberg, F.D.; Fidock, D.A.; Cherkaoui-Rbati, M.H.; Gobeau, N.; Möhrle, J.J. A phase 1, placebo-controlled, randomized, single ascending dose study and a volunteer infection study to characterize the safety, pharmacokinetics, and antimalarial activity of the plasmodium phosphatidylinositol 4-kinase inhibitor mmv390048. Clin. Infect. Dis., 2020, 71(10), e657-e664.
[http://dx.doi.org/10.1093/cid/ciaa368] [PMID: 32239164]
[136]
Sinxadi, P.; Donini, C.; Johnstone, H.; Langdon, G.; Wiesner, L.; Allen, E.; Duparc, S.; Chalon, S.; McCarthy, J.S.; Lorch, U.; Chibale, K.; Möhrle, J.; Barnes, K.I. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel plasmodium phosphatidylinositol 4-kinase inhibitor mmv390048 in healthy volunteers. Antimicrob. Agents Chemother., 2020, 64(4), e01896-e19.
[http://dx.doi.org/10.1128/AAC.01896-19] [PMID: 31932368]
[137]
McNamara, C.W.; Lee, M.C.S.; Lim, C.S.; Lim, J.; Roland, J.; Simon, O.; Yeung, B.K.S.; Chatterjee, A.K.; McCormack, S.L.; Manary, M.J. Targeting plasmodium phosphatidylinositol 4-kinase to eliminate malaria. Nature, 2013, 504(7479), 248-253.
[http://dx.doi.org/10.1038/nature12782] [PMID: 24284631]
[138]
Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239.
[http://dx.doi.org/10.2174/187152610791163336] [PMID: 20334617]
[139]
Phillips, M.A.; Gujjar, R.; Malmquist, N.A.; White, J.; El Mazouni, F.; Baldwin, J.; Rathod, P.K. Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J. Med. Chem., 2008, 51(12), 3649-3653.
[http://dx.doi.org/10.1021/jm8001026] [PMID: 18522386]
[140]
Coteron, J.M.; Marco, M.; Esquivias, J.; Deng, X.; White, K.L.; White, J.; Koltun, M.; El Mazouni, F.; Kokkonda, S.; Katneni, K.; Bhamidipati, R.; Shackleford, D.M.; Angulo-Barturen, I.; Ferrer, S.B.; Jiménez-Díaz, M.B.; Gamo, F.J.; Goldsmith, E.J.; Charman, W.N.; Bathurst, I.; Floyd, D.; Matthews, D.; Burrows, J.N.; Rathod, P.K.; Charman, S.A.; Phillips, M.A. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J. Med. Chem., 2011, 54(15), 5540-5561.
[http://dx.doi.org/10.1021/jm200592f] [PMID: 21696174]
[141]
Phillips, M.A.; Lotharius, J.; Marsh, K.; White, J.; Dayan, A.; White, K.L.; Njoroge, J.W.; El Mazouni, F.; Lao, Y.; Kokkonda, S.; Tomchick, D.R.; Deng, X.; Laird, T.; Bhatia, S.N.; March, S.; Ng, C.L.; Fidock, D.A.; Wittlin, S.; Lafuente-Monasterio, M.; Benito, F.J.; Alonso, L.M.; Martinez, M.S.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Haselden, J.N.; Louttit, J.; Cui, Y.; Sridhar, A.; Zeeman, A.M.; Kocken, C.; Sauerwein, R.; Dechering, K.; Avery, V.M.; Duffy, S.; Delves, M.; Sinden, R.; Ruecker, A.; Wickham, K.S.; Rochford, R.; Gahagen, J.; Iyer, L.; Riccio, E.; Mirsalis, J.; Bathhurst, I.; Rueckle, T.; Ding, X.; Campo, B.; Leroy, D.; Rogers, M.J.; Rathod, P.K.; Burrows, J.N.; Charman, S.A. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med., 2015, 7(296), 296ra111.
[http://dx.doi.org/10.1126/scitranslmed.aaa6645] [PMID: 26180101]
[142]
McCarthy, J.S.; Lotharius, J.; Rückle, T.; Chalon, S.; Phillips, M.A.; Elliott, S.; Sekuloski, S.; Griffin, P.; Ng, C.L.; Fidock, D.A.; Marquart, L.; Williams, N.S.; Gobeau, N.; Bebrevska, L.; Rosario, M.; Marsh, K.; Möhrle, J.J. Safety, tolerability, pharmacokinetics, and activity of the novel long-acting antimalarial DSM265: A two-part first-in-human phase 1a/1b randomised study. Lancet Infect. Dis., 2017, 17(6), 626-635.
[http://dx.doi.org/10.1016/S1473-3099(17)30171-8] [PMID: 28363636]
[143]
Llanos-Cuentas, A.; Casapia, M.; Chuquiyauri, R.; Hinojosa, J.C.; Kerr, N.; Rosario, M.; Toovey, S.; Arch, R.H.; Phillips, M.A.; Rozenberg, F.D.; Bath, J.; Ng, C.L.; Cowell, A.N.; Winzeler, E.A.; Fidock, D.A.; Baker, M.; Möhrle, J.J.; Hooft van Huijsduijnen, R.; Gobeau, N.; Araeipour, N.; Andenmatten, N.; Rückle, T.; Duparc, S. Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: A proof-of-concept, open-label, phase 2a study. Lancet Infect. Dis., 2018, 18(8), 874-883.
[http://dx.doi.org/10.1016/S1473-3099(18)30309-8] [PMID: 29909069]
[144]
Sulyok, M.; Rückle, T.; Roth, A.; Mürbeth, R.E.; Chalon, S.; Kerr, N.; Samec, S.S.; Gobeau, N.; Calle, C.L.; Ibáñez, J.; Sulyok, Z.; Held, J.; Gebru, T.; Granados, P.; Brückner, S.; Nguetse, C.; Mengue, J.; Lalremruata, A.; Sim, B.K.L.; Hoffman, S.L.; Möhrle, J.J.; Kremsner, P.G.; Mordmüller, B. DSM265 for Plasmodium falciparum chemoprophylaxis: A randomised, double blinded, phase 1 trial with controlled human malaria infection. Lancet Infect. Dis., 2017, 17(6), 636-644.
[http://dx.doi.org/10.1016/S1473-3099(17)30139-1] [PMID: 28363637]
[145]
Murphy, S.C.; Duke, E.R.; Shipman, K.J.; Jensen, R.L.; Fong, Y.; Ferguson, S.; Janes, H.E.; Gillespie, K.; Seilie, A.M.; Hanron, A.E.; Rinn, L.; Fishbaugher, M.; VonGoedert, T.; Fritzen, E.; Kappe, S.H.; Chang, M.; Sousa, J.C.; Marcsisin, S.R.; Chalon, S.; Duparc, S.; Kerr, N.; Möhrle, J.J.; Andenmatten, N.; Rueckle, T.; Kublin, J.G. A randomized trial evaluating the prophylactic activity of DSM265 against preerythrocytic Plasmodium falciparum infection during controlled human malarial infection by mosquito bites and direct venous inoculation. J. Infect. Dis., 2018, 217(5), 693-702.
[http://dx.doi.org/10.1093/infdis/jix613] [PMID: 29216395]
[146]
Haynes, R.K.; Fugmann, B.; Stetter, J.; Rieckmann, K.; Heilmann, H.D.; Chan, H.W.; Cheung, M.K.; Lam, W.L.; Wong, H.N.; Croft, S.L.; Vivas, L.; Rattray, L.; Stewart, L.; Peters, W.; Robinson, B.L.; Edstein, M.D.; Kotecka, B.; Kyle, D.E.; Beckermann, B.; Gerisch, M.; Radtke, M.; Schmuck, G.; Steinke, W.; Wollborn, U.; Schmeer, K.; Römer, A. Artemisone-a highly active antimalarial drug of the artemisinin class. Angew. Chem. Int. Ed. Engl., 2006, 45(13), 2082-2088.
[http://dx.doi.org/10.1002/anie.200503071] [PMID: 16444785]
[147]
Vivas, L.; Rattray, L.; Stewart, L.B.; Robinson, B.L.; Fugmann, B.; Haynes, R.K.; Peters, W.; Croft, S.L. Antimalarial efficacy and drug interactions of the novel semi-synthetic endoperoxide artemisone in vitro and in vivo. J. Antimicrob. Chemother., 2007, 59(4), 658-665.
[http://dx.doi.org/10.1093/jac/dkl563] [PMID: 17337512]
[148]
Waknine-Grinberg, J.H.; Hunt, N.; Bentura-Marciano, A.; McQuillan, J.A.; Chan, H.W.; Chan, W.C.; Barenholz, Y.; Haynes, R.K.; Golenser, J. Artemisone effective against murine cerebral malaria. Malar. J., 2010, 9, 227.
[http://dx.doi.org/10.1186/1475-2875-9-227] [PMID: 20691118]
[149]
Golenser, J.; Salaymeh, N.; Higazi, A.A.; Alyan, M.; Daif, M.; Dzikowski, R.; Domb, A.J. Treatment of experimental cerebral malaria by slow release of artemisone from injectable pasty formulation. Front. Pharmacol., 2020, 11, 846.
[http://dx.doi.org/10.3389/fphar.2020.00846] [PMID: 32595499]
[150]
Zech, J.; Salaymeh, N.; Hunt, N.H.; Mäder, K.; Golenser, J. Efficient treatment of experimental cerebral malaria by an artemisone-smedds system: Impact of application route and dosing frequency. Antimicrob. Agents Chemother., 2021, 65(4), e02106-e02120.
[http://dx.doi.org/10.1128/AAC.02106-20] [PMID: 33558284]
[151]
Nagelschmitz, J.; Voith, B.; Wensing, G.; Roemer, A.; Fugmann, B.; Haynes, R.K.; Kotecka, B.M.; Rieckmann, K.H.; Edstein, M.D. First assessment in humans of the safety, tolerability, pharmacokinetics, and ex vivo pharmacodynamic antimalarial activity of the new artemisinin derivative artemisone. Antimicrob. Agents Chemother., 2008, 52(9), 3085-3091.
[http://dx.doi.org/10.1128/AAC.01585-07] [PMID: 18559649]
[152]
Krudsood, S.; Wilairatana, P.; Chalermrut, K.; Leowattana, W.; Voith, B.; Hampel, B.; Looareesuwan, S. Artemifone, a new anti-malarial artemisinin derivative: Open pilot trial to investigate the antiparasitic activity of bay 44-9585 in patients with uncomplicated p; Falciparum Malaria, 2005.
[153]
Saiwaew, S.; Sritabal, J.; Piaraksa, N.; Keayarsa, S.; Ruengweerayut, R.; Utaisin, C.; Sila, P.; Niramis, R.; Udomsangpetch, R.; Charunwatthana, P.; Pongponratn, E.; Pukrittayakamee, S.; Leitgeb, A.M.; Wahlgren, M.; Lee, S.J.; Day, N.P.; White, N.J.; Dondorp, A.M.; Chotivanich, K. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes. PLoS One, 2017, 12(3), e0172718.
[http://dx.doi.org/10.1371/journal.pone.0172718] [PMID: 28249043]
[154]
Leitgeb, A.M.; Charunwatthana, P.; Rueangveerayut, R.; Uthaisin, C.; Silamut, K.; Chotivanich, K.; Sila, P.; Moll, K.; Lee, S.J.; Lindgren, M.; Holmer, E.; Färnert, A.; Kiwuwa, M.S.; Kristensen, J.; Herder, C.; Tarning, J.; Wahlgren, M.; Dondorp, A.M. Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria. PLoS One, 2017, 12(12), e0188754.
[http://dx.doi.org/10.1371/journal.pone.0188754] [PMID: 29244851]
[155]
Serghides, L.; Patel, S.N.; Ayi, K.; Lu, Z.; Gowda, D.C.; Liles, W.C.; Kain, K.C. Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria. J. Infect. Dis., 2009, 199(10), 1536-1545.
[http://dx.doi.org/10.1086/598222] [PMID: 19392627]
[156]
Boggild, A.K.; Krudsood, S.; Patel, S.N.; Serghides, L.; Tangpukdee, N.; Katz, K.; Wilairatana, P.; Liles, W.C.; Looareesuwan, S.; Kain, K.C. Use of peroxisome proliferator-activated receptor gamma agonists as adjunctive treatment for Plasmodium falciparum malaria: A randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis., 2009, 49(6), 841-849.
[http://dx.doi.org/10.1086/605431] [PMID: 19673614]
[157]
Serghides, L.; McDonald, C.R.; Lu, Z.; Friedel, M.; Cui, C.; Ho, K.T.; Mount, H.T.J.; Sled, J.G.; Kain, K.C. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog., 2014, 10(3), e1003980.
[http://dx.doi.org/10.1371/journal.ppat.1003980] [PMID: 24603727]
[158]
Varo, R.; Crowley, V.M.; Sitoe, A.; Madrid, L.; Serghides, L.; Bila, R.; Mucavele, H.; Mayor, A.; Bassat, Q.; Kain, K.C. Safety and tolerability of adjunctive rosiglitazone treatment for children with uncomplicated malaria. Malar. J., 2017, 16(1), 215.
[http://dx.doi.org/10.1186/s12936-017-1858-0] [PMID: 28535809]
[159]
Jomaa, H.; Wiesner, J.; Sanderbrand, S.; Altincicek, B.; Weidemeyer, C.; Hintz, M.; Türbachova, I.; Eberl, M.; Zeidler, J.; Lichtenthaler, H.K.; Soldati, D.; Beck, E. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science, 1999, 285(5433), 1573-1576.
[http://dx.doi.org/10.1126/science.285.5433.1573] [PMID: 10477522]
[160]
Fernandes, J.F.; Lell, B.; Agnandji, S.T.; Obiang, R.M.; Bassat, Q.; Kremsner, P.G.; Mordmüller, B.; Grobusch, M.P. Fosmidomycin as an antimalarial drug: A meta-analysis of clinical trials. Future Microbiol., 2015, 10(8), 1375-1390.
[http://dx.doi.org/10.2217/FMB.15.60] [PMID: 26228767]
[161]
Rosenthal, P.J. Azithromycin for Malaria? Am. J. Trop. Med. Hyg., 2016, 95(1), 2-4.
[http://dx.doi.org/10.4269/ajtmh.16-0332] [PMID: 27215296]
[162]
van Eijk, A.M.; Terlouw, D.J. Azithromycin for treating uncomplicated malaria. Cochrane Database Syst. Rev., 2011, (2), CD006688.
[http://dx.doi.org/10.1002/14651858.CD006688.pub2] [PMID: 21328286]
[163]
Pathak, V.; Colah, R.; Ghosh, K. Tyrosine kinase inhibitors: New class of antimalarials on the horizon? Blood Cells Mol. Dis., 2015, 55(2), 119-126.
[http://dx.doi.org/10.1016/j.bcmd.2015.05.007] [PMID: 26142327]
[164]
Kesely, K.R.; Pantaleo, A.; Turrini, F.M.; Olupot-Olupot, P.; Low, P.S. Inhibition of an erythrocyte tyrosine kinase with imatinib prevents Plasmodium falciparum egress and terminates parasitemia. PLoS One, 2016, 11(10), e0164895.
[http://dx.doi.org/10.1371/journal.pone.0164895] [PMID: 27768734]
[165]
Hameed, P. S.; Solapure, S.; Patil, V.; Henrich, P.P.; Magistrado, P.A.; Bharath, S.; Murugan, K.; Viswanath, P.; Puttur, J.; Srivastava, A.; Bellale, E.; Panduga, V.; Shanbag, G.; Awasthy, D.; Landge, S.; Morayya, S.; Koushik, K.; Saralaya, R.; Raichurkar, A.; Rautela, N.; Roy Choudhury, N.; Ambady, A.; Nandishaiah, R.; Reddy, J.; Prabhakar, K.R.; Menasinakai, S.; Rudrapatna, S.; Chatterji, M.; Jiménez-Díaz, M.B.; Martínez, M.S.; Sanz, L.M.; Coburn-Flynn, O.; Fidock, D.A.; Lukens, A.K.; Wirth, D.F.; Bandodkar, B.; Mukherjee, K.; McLaughlin, R.E.; Waterson, D.; Rosenbrier-Ribeiro, L.; Hickling, K.; Balasubramanian, V.; Warner, P.; Hosagrahara, V.; Dudley, A.; Iyer, P.S.; Narayanan, S.; Kavanagh, S.; Sambandamurthy, V.K. Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate. Nat. Commun., 2015, 6, 6715.
[http://dx.doi.org/10.1038/ncomms7715] [PMID: 25823686]
[166]
Zydus Cadila latest update, news and press releases. Available from: https://zyduscadila.com/news [Accessed Apr 16, 2021].
[167]
Boss, C.; Aissaoui, H.; Amaral, N.; Bauer, A.; Bazire, S.; Binkert, C.; Brun, R.; Bürki, C.; Ciana, C.L.; Corminboeuf, O.; Delahaye, S.; Dollinger, C.; Fischli, C.; Fischli, W.; Flock, A.; Frantz, M.C.; Girault, M.; Grisostomi, C.; Friedli, A.; Heidmann, B.; Hinder, C.; Jacob, G.; Le Bihan, A.; Malrieu, S.; Mamzed, S.; Merot, A.; Meyer, S.; Peixoto, S.; Petit, N.; Siegrist, R.; Trollux, J.; Weller, T.; Wittlin, S. Discovery and characterization of ACT-451840: An antimalarial drug with a novel mechanism of action. ChemMedChem, 2016, 11(18), 1995-2014.
[http://dx.doi.org/10.1002/cmdc.201600298] [PMID: 27471138]
[168]
Bruderer, S.; Hurst, N.; de Kanter, R.; Miraval, T.; Pfeifer, T.; Donazzolo, Y.; Dingemanse, J. First-in-humans study of the safety, tolerability, and pharmacokinetics of ACT-451840, a new chemical entity with antimalarial activity. Antimicrob. Agents Chemother., 2015, 59(2), 935-942.
[http://dx.doi.org/10.1128/AAC.04125-14] [PMID: 25421475]
[169]
Le Bihan, A.; de Kanter, R.; Angulo-Barturen, I.; Binkert, C.; Boss, C.; Brun, R.; Brunner, R.; Buchmann, S.; Burrows, J.; Dechering, K.J.; Delves, M.; Ewerling, S.; Ferrer, S.; Fischli, C.; Gamo-Benito, F.J.; Gnädig, N.F.; Heidmann, B.; Jiménez-Díaz, M.B.; Leroy, D.; Martínez, M.S.; Meyer, S.; Moehrle, J.J.; Ng, C.L.; Noviyanti, R.; Ruecker, A.; Sanz, L.M.; Sauerwein, R.W.; Scheurer, C.; Schleiferboeck, S.; Sinden, R.; Snyder, C.; Straimer, J.; Wirjanata, G.; Marfurt, J.; Price, R.N.; Weller, T.; Fischli, W.; Fidock, D.A.; Clozel, M.; Wittlin, S. Characterization of novel antimalarial compound ACT-451840: Preclinical assessment of activity and dose-efficacy modeling. PLoS Med., 2016, 13(10), e1002138.
[http://dx.doi.org/10.1371/journal.pmed.1002138] [PMID: 27701420]
[170]
Ng, C.L.; Siciliano, G.; Lee, M.C.S.; de Almeida, M.J.; Corey, V.C.; Bopp, S.E.; Bertuccini, L.; Wittlin, S.; Kasdin, R.G.; Le Bihan, A.; Clozel, M.; Winzeler, E.A.; Alano, P.; Fidock, D.A. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs. Mol. Microbiol., 2016, 101(3), 381-393.
[http://dx.doi.org/10.1111/mmi.13397] [PMID: 27073104]
[171]
Krause, A.; Dingemanse, J.; Mathis, A.; Marquart, L.; Möhrle, J.J.; McCarthy, J.S. Pharmacokinetic/pharmaco-dynamic modelling of the antimalarial effect of Actelion-451840 in an induced blood stage malaria study in healthy subjects. Br. J. Clin. Pharmacol., 2016, 82(2), 412-421.
[http://dx.doi.org/10.1111/bcp.12962] [PMID: 27062080]
[172]
Singh, C.; Puri, S. K. Substituted 1,2,4-trioxanes as antimalarial agents and a process of producing the substituted 1,2,4-trioxanes. US6316493B1, 2001.
[173]
Shafiq, N.; Rajagopalan, S.; Kushwaha, H.N.; Mittal, N.; Chandurkar, N.; Bhalla, A.; Kaur, S.; Pandhi, P.; Puri, G.D.; Achuthan, S. Single ascending dose safety and pharmacokinetics of cdri-97/78: first-in-human study of a novel antimalarial drug. Malar. Res. Treat., 2014.
[174]
Gunjan, S.; Sharma, T.; Yadav, K.; Chauhan, B.S.; Singh, S.K.; Siddiqi, M.I.; Tripathi, R. Artemisinin derivatives and synthetic trioxane trigger apoptotic cell death in asexual stages of plasmodium. Front. Cell. Infect. Microbiol., 2018, 8, 256.
[http://dx.doi.org/10.3389/fcimb.2018.00256] [PMID: 30094226]
[175]
Baragaña, B.; Hallyburton, I.; Lee, M.C.S.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Luksch, T.; Martínez, M.S.; Luksch, T.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jiménez-Díaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522(7556), 315-320.
[http://dx.doi.org/10.1038/nature14451] [PMID: 26085270]
[176]
Baragaña, B.; Norcross, N.R.; Wilson, C.; Porzelle, A.; Hallyburton, I.; Grimaldi, R.; Osuna-Cabello, M.; Norval, S.; Riley, J.; Stojanovski, L.; Simeons, F.R.; Wyatt, P.G.; Delves, M.J.; Meister, S.; Duffy, S.; Avery, V.M.; Winzeler, E.A.; Sinden, R.E.; Wittlin, S.; Frearson, J.A.; Gray, D.W.; Fairlamb, A.H.; Waterson, D.; Campbell, S.F.; Willis, P.; Read, K.D.; Gilbert, I.H. Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy. J. Med. Chem., 2016, 59(21), 9672-9685.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00723] [PMID: 27631715]
[177]
Rottmann, M.; Jonat, B.; Gumpp, C.; Dhingra, S.K.; Giddins, M.J.; Yin, X.; Badolo, L.; Greco, B.; Fidock, D.A.; Oeuvray, C.; Spangenberg, T. Preclinical antimalarial combination study of m5717, a plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob. Agents Chemother., 2020, 64(4), e02181-e19.
[http://dx.doi.org/10.1128/AAC.02181-19] [PMID: 32041711]
[178]
Yuthavong, Y.; Tarnchompoo, B.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Charman, S.A.; McLennan, D.N.; White, K.L.; Vivas, L.; Bongard, E.; Thongphanchang, C.; Taweechai, S.; Vanichtanankul, J.; Rattanajak, R.; Arwon, U.; Fantauzzi, P.; Yuvaniyama, J.; Charman, W.N.; Matthews, D. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. USA, 2012, 109(42), 16823-16828.
[http://dx.doi.org/10.1073/pnas.1204556109] [PMID: 23035243]
[179]
Yuvaniyama, J.; Chitnumsub, P.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Sirawaraporn, W.; Taylor, P.; Walkinshaw, M.D.; Yuthavong, Y. Insights into antifolate resistance from malarial DHFR-TS structures. Nat. Struct. Biol., 2003, 10(5), 357-365.
[http://dx.doi.org/10.1038/nsb921] [PMID: 12704428]
[180]
Posayapisit, N.; Pengon, J.; Prommana, P.; Shoram, M.; Yuthavong, Y.; Uthaipibull, C.; Kamchonwongpaisan, S.; Jupatanakul, N. Transgenic pyrimethamine-resistant Plasmodium falciparum reveals transmission-blocking potency of P218, a novel antifolate candidate drug. Int. J. Parasitol., 2021, 51(8), 635-642.
[http://dx.doi.org/10.1016/j.ijpara.2020.12.002] [PMID: 33713651]
[181]
Chughlay, M.F.; Rossignol, E.; Donini, C.; El Gaaloul, M.; Lorch, U.; Coates, S.; Langdon, G.; Hammond, T.; Möhrle, J.; Chalon, S. First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection. Br. J. Clin. Pharmacol., 2020, 86(6), 1113-1124.
[http://dx.doi.org/10.1111/bcp.14219] [PMID: 31925817]
[182]
Chughlay, M.F.; El Gaaloul, M.; Donini, C.; Campo, B.; Berghmans, P-J.; Lucardie, A.; Marx, M.W.; Cherkaoui-Rbati, M.H.; Langdon, G.; Angulo-Barturen, I.; Viera, S.; Rosanas-Urgell, A.; Van Geertruyden, J.P.; Chalon, S. Chemoprotective antimalarial activity of p218 against Plasmodium falciparum: A randomized, placebo-controlled volunteer infection study. Am. J. Trop. Med. Hyg., 2021, 104(4), 1348-1358.
[http://dx.doi.org/10.4269/ajtmh.20-1165] [PMID: 33556040]
[183]
Pellet, A.; Leroy, D. Using biology to help guide the search for new molecules., 2018. Available from: https://www.mmv.org/newsroom/interviews/using-biology-help-guide-search-new-molecules [Accessed June 3, 2021].
[184]
Nanayakkara, N.P.D.; Ager, A.L., Jr; Bartlett, M.S.; Yardley, V.; Croft, S.L.; Khan, I.A.; McChesney, J.D.; Walker, L.A. Antiparasitic activities and toxicities of individual enantiomers of the 8-aminoquinoline 8-[(4-amino-1-methylbutyl)amino]-6-methoxy-4-methyl-5-[3,4-dichlorophenoxy]quinoline succinate. Antimicrob. Agents Chemother., 2008, 52(6), 2130-2137.
[http://dx.doi.org/10.1128/AAC.00645-07] [PMID: 18378716]
[185]
LaMontagne, M.P.; Blumbergs, P.; Strube, R.E. Antimalarials. 14. 5-(aryloxy)-4-methylprimaquine analogues. A highly effective series of blood and tissue schizonticidal agents. J. Med. Chem., 1982, 25(9), 1094-1097.
[http://dx.doi.org/10.1021/jm00351a017] [PMID: 7131488]
[186]
McChesney, J.; Nanayakkara, D. N.; Bartlett, M.; Ager, A. L. 8-Aminoquinolines. US6376511B2, 2002.
[187]
Delves, M.; Plouffe, D.; Scheurer, C.; Meister, S.; Wittlin, S.; Winzeler, E.A.; Sinden, R.E.; Leroy, D. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: A comparative study with human and rodent parasites. PLoS Med., 2012, 9(2), e1001169.
[http://dx.doi.org/10.1371/journal.pmed.1001169] [PMID: 22363211]
[188]
Hamerly, T.; Tweedell, R.E.; Hritzo, B.; Nyasembe, V.O.; Tekwani, B.L.; Nanayakkara, N.P.D.; Walker, L.A.; Dinglasan, R.R. NPC1161B, an 8-aminoquinoline analog, is metabolized in the mosquito and inhibits Plasmodium falciparum oocyst maturation. Front. Pharmacol., 2019, 10, 1265.
[http://dx.doi.org/10.3389/fphar.2019.01265] [PMID: 31708786]
[189]
Birrell, G.W.; Chavchich, M.; Ager, A.L.; Shieh, H.M.; Heffernan, G.D.; Zhao, W.; Krasucki, P.E.; Saionz, K.W.; Terpinski, J.; Schiehser, G.A.; Jacobus, L.R.; Shanks, G.D.; Jacobus, D.P.; Edstein, M.D. JPC-2997, a new aminomethylphenol with high in vitro and in vivo antimalarial activities against blood stages of Plasmodium. Antimicrob. Agents Chemother., 2015, 59(1), 170-177.
[http://dx.doi.org/10.1128/AAC.03762-14] [PMID: 25331702]
[190]
Powles, M.A.; Allocco, J.; Yeung, L.; Nare, B.; Liberator, P.; Schmatz, D. MK-4815, a potential new oral agent for treatment of malaria. Antimicrob. Agents Chemother., 2012, 56(5), 2414-2419.
[http://dx.doi.org/10.1128/AAC.05326-11] [PMID: 22314528]
[191]
Chavchich, M.; Birrell, G.W.; Ager, A.L.; MacKenzie, D.O.; Heffernan, G.D.; Schiehser, G.A.; Jacobus, L.R.; Shanks, G.D.; Jacobus, D.P.; Edstein, M.D. Lead selection of a new aminomethylphenol, JPC-3210, for malaria treatment and prevention. Antimicrob. Agents Chemother., 2016, 60(5), 3115-3118.
[http://dx.doi.org/10.1128/AAC.03066-15] [PMID: 26856849]
[192]
Birrell, G.W.; Heffernan, G.D.; Schiehser, G.A.; Anderson, J.; Ager, A.L.; Morales, P.; MacKenzie, D.; van Breda, K.; Chavchich, M.; Jacobus, L.R.; Shanks, G.D.; Jacobus, D.P.; Edstein, M.D. Characterization of the preclinical pharmacology of the new 2-aminomethylphenol, jpc-3210, for malaria treatment and prevention. Antimicrob. Agents Chemother., 2018, 62(4), e01335-e17.
[http://dx.doi.org/10.1128/AAC.01335-17] [PMID: 29311093]
[193]
McCallum, F.J.; Birrell, G.W.; Chavchich, M.; Harris, I.; Obaldia, N., III; Van Breda, K.; Heffernan, G.D.; Jacobus, D.P.; Shanks, D.; Edstein, M.D. In vivo efficacy and pharmacokinetics of the 2-aminomethylphenol antimalarial JPC-3210 in the Aotus monkey-human malaria model. Antimicrob. Agents Chemother., 2020, 64(3), e01538-e19.
[http://dx.doi.org/10.1128/AAC.01538-19] [PMID: 31843994]
[194]
Birrell, G.W.; Challis, M.P.; De Paoli, A.; Anderson, D.; Devine, S.M.; Heffernan, G.D.; Jacobus, D.P.; Edstein, M.D.; Siddiqui, G.; Creek, D.J. Multi-omic characterization of the mode of action of a potent new antimalarial compound, jpc-3210, against Plasmodium falciparum. Mol. Cell. Proteomics, 2020, 19(2), 308-325.
[http://dx.doi.org/10.1074/mcp.RA119.001797] [PMID: 31836637]
[195]
Bell, C.A.; Hall, J.E.; Kyle, D.E.; Grogl, M.; Ohemeng, K.A.; Allen, M.A.; Tidwell, R.R. Structure-activity relationships of analogs of pentamidine against Plasmodium falciparum and Leishmania mexicana amazonensis. Antimicrob. Agents Chemother., 1990, 34(7), 1381-1386.
[http://dx.doi.org/10.1128/AAC.34.7.1381] [PMID: 2201254]
[196]
Jiang, S.; Prigge, S.T.; Wei, L.; Gao, Ye Hudson, T.H.; Gerena, L.; Dame, J.B.; Kyle, D.E. New class of small nonpeptidyl compounds blocks Plasmodium falciparum development in vitro by inhibiting plasmepsins. Antimicrob. Agents Chemother., 2001, 45(9), 2577-2584.
[http://dx.doi.org/10.1128/AAC.45.9.2577-2584.2001] [PMID: 11502532]
[197]
Leban, J.; Pegoraro, S.; Dormeyer, M.; Lanzer, M.; Aschenbrenner, A.; Kramer, B. Sulfonyl-phenyl-ureido benzamidines; a novel structural class of potent antimalarial agents. Bioorg. Med. Chem. Lett., 2004, 14(8), 1979-1982.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.083] [PMID: 15050641]
[198]
Pegoraro, S.; Duffey, M.; Otto, T.D.; Wang, Y.; Rösemann, R.; Baumgartner, R.; Fehler, S.K.; Lucantoni, L.; Avery, V.M.; Moreno-Sabater, A.; Mazier, D.; Vial, H.J.; Strobl, S.; Sanchez, C.P.; Lanzer, M. SC83288 is a clinical development candidate for the treatment of severe malaria. Nat. Commun., 2017, 8, 14193.
[http://dx.doi.org/10.1038/ncomms14193] [PMID: 28139658]
[199]
Duffey, M.; Sanchez, C.P.; Lanzer, M. Profiling of the anti-malarial drug candidate SC83288 against artemisinins in Plasmodium falciparum. Malar. J., 2018, 17(1), 121.
[http://dx.doi.org/10.1186/s12936-018-2279-4] [PMID: 29558913]
[200]
Nilsen, A.; LaCrue, A.N.; White, K.L.; Forquer, I.P.; Cross, R.M.; Marfurt, J.; Mather, M.W.; Delves, M.J.; Shackleford, D.M.; Saenz, F.E.; Morrisey, J.M.; Steuten, J.; Mutka, T.; Li, Y.; Wirjanata, G.; Ryan, E.; Duffy, S.; Kelly, J.X.; Sebayang, B.F.; Zeeman, A.M.; Noviyanti, R.; Sinden, R.E.; Kocken, C.H.M.; Price, R.N.; Avery, V.M.; Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Ferrer, S.; Herreros, E.; Sanz, L.M.; Gamo, F.J.; Bathurst, I.; Burrows, J.N.; Siegl, P.; Guy, R.K.; Winter, R.W.; Vaidya, A.B.; Charman, S.A.; Kyle, D.E.; Manetsch, R.; Riscoe, M.K. Quinolone-3-diarylethers: A new class of antimalarial drug. Sci. Transl. Med., 2013, 5(177), 177ra37.
[http://dx.doi.org/10.1126/scitranslmed.3005029] [PMID: 23515079]
[201]
Nilsen, A.; Miley, G.P.; Forquer, I.P.; Mather, M.W.; Katneni, K.; Li, Y.; Pou, S.; Pershing, A.M.; Stickles, A.M.; Ryan, E.; Kelly, J.X.; Doggett, J.S.; White, K.L.; Hinrichs, D.J.; Winter, R.W.; Charman, S.A.; Zakharov, L.N.; Bathurst, I.; Burrows, J.N.; Vaidya, A.B.; Riscoe, M.K. Discovery, synthesis, and optimization of antimalarial 4(1H)-quinolone-3-diarylethers. J. Med. Chem., 2014, 57(9), 3818-3834.
[http://dx.doi.org/10.1021/jm500147k] [PMID: 24720377]
[202]
Miley, G.P.; Pou, S.; Winter, R.; Nilsen, A.; Li, Y.; Kelly, J.X.; Stickles, A.M.; Mather, M.W.; Forquer, I.P.; Pershing, A.M.; White, K.; Shackleford, D.; Saunders, J.; Chen, G.; Ting, L.M.; Kim, K.; Zakharov, L.N.; Donini, C.; Burrows, J.N.; Vaidya, A.B.; Charman, S.A.; Riscoe, M.K. ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria. Antimicrob. Agents Chemother., 2015, 59(9), 5555-5560.
[http://dx.doi.org/10.1128/AAC.01183-15] [PMID: 26124159]
[203]
Frueh, L.; Li, Y.; Mather, M.W.; Li, Q.; Pou, S.; Nilsen, A.; Winter, R.W.; Forquer, I.P.; Pershing, A.M.; Xie, L.H.; Smilkstein, M.J.; Caridha, D.; Koop, D.R.; Campbell, R.F.; Sciotti, R.J.; Kreishman-Deitrick, M.; Kelly, J.X.; Vesely, B.; Vaidya, A.B.; Riscoe, M.K. Alkoxycarbonate ester prodrugs of preclinical drug candidate elq-300 for prophylaxis and treatment of malaria. ACS Infect. Dis., 2017, 3(10), 728-735.
[http://dx.doi.org/10.1021/acsinfecdis.7b00062] [PMID: 28927276]
[204]
Potharaju, S.; Mutyam, S.K.; Liu, M.; Green, C.; Frueh, L.; Nilsen, A.; Pou, S.; Winter, R.; Riscoe, M.K.; Shankar, G. Improving solubility and oral bioavailability of a novel antimalarial prodrug: Comparing spray-dried dispersions with self-emulsifying drug delivery systems. Pharm. Dev. Technol., 2020, 25(5), 625-639.
[http://dx.doi.org/10.1080/10837450.2020.1725893] [PMID: 32031478]
[205]
Smilkstein, M.J.; Pou, S.; Krollenbrock, A.; Bleyle, L.A.; Dodean, R.A.; Frueh, L.; Hinrichs, D.J.; Li, Y.; Martinson, T.; Munar, M.Y.; Winter, R.W.; Bruzual, I.; Whiteside, S.; Nilsen, A.; Koop, D.R.; Kelly, J.X.; Kappe, S.H.I.; Wilder, B.K.; Riscoe, M.K. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar. J., 2019, 18(1), 291.
[http://dx.doi.org/10.1186/s12936-019-2921-9] [PMID: 31455339]
[206]
Stickles, A.M.; Smilkstein, M.J.; Morrisey, J.M.; Li, Y.; Forquer, I.P.; Kelly, J.X.; Pou, S.; Winter, R.W.; Nilsen, A.; Vaidya, A.B.; Riscoe, M.K. Atovaquone and elq-300 combination therapy as a novel dual-site cytochrome bc1 inhibition strategy for malaria. Antimicrob. Agents Chemother., 2016, 60(8), 4853-4859.
[http://dx.doi.org/10.1128/AAC.00791-16] [PMID: 27270285]
[207]
O’Neill, P.M.; Amewu, R.K.; Charman, S.A.; Sabbani, S.; Gnädig, N.F.; Straimer, J.; Fidock, D.A.; Shore, E.R.; Roberts, N.L.; Wong, M.H.L.; Hong, W.D.; Pidathala, C.; Riley, C.; Murphy, B.; Aljayyoussi, G.; Gamo, F.J.; Sanz, L.; Rodrigues, J.; Cortes, C.G.; Herreros, E.; Angulo-Barturén, I.; Jiménez-Díaz, M.B.; Bazaga, S.F.; Martínez-Martínez, M.S.; Campo, B.; Sharma, R.; Ryan, E.; Shackleford, D.M.; Campbell, S.; Smith, D.A.; Wirjanata, G.; Noviyanti, R.; Price, R.N.; Marfurt, J.; Palmer, M.J.; Copple, I.M.; Mercer, A.E.; Ruecker, A.; Delves, M.J.; Sinden, R.E.; Siegl, P.; Davies, J.; Rochford, R.; Kocken, C.H.M.; Zeeman, A.M.; Nixon, G.L.; Biagini, G.A.; Ward, S.A. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat. Commun., 2017, 8, 15159.
[http://dx.doi.org/10.1038/ncomms15159] [PMID: 28537265]
[208]
O’Neill, P.M.; Amewu, R.K.; Nixon, G.L.; Bousejra ElGarah, F.; Mungthin, M.; Chadwick, J.; Shone, A.E.; Vivas, L.; Lander, H.; Barton, V.; Muangnoicharoen, S.; Bray, P.G.; Davies, J.; Park, B.K.; Wittlin, S.; Brun, R.; Preschel, M.; Zhang, K.; Ward, S.A. Identification of a 1,2,4,5-tetraoxane antimalarial drug-development candidate (RKA 182) with superior properties to the semisynthetic artemisinins. Angew. Chem. Int. Ed. Engl., 2010, 49(33), 5693-5697.
[http://dx.doi.org/10.1002/anie.201001026] [PMID: 20629058]
[209]
Kato, N.; Comer, E.; Sakata-Kato, T.; Sharma, A.; Sharma, M.; Maetani, M.; Bastien, J.; Brancucci, N.M.; Bittker, J.A.; Corey, V.; Clarke, D.; Derbyshire, E.R.; Dornan, G.L.; Duffy, S.; Eckley, S.; Itoe, M.A.; Koolen, K.M.; Lewis, T.A.; Lui, P.S.; Lukens, A.K.; Lund, E.; March, S.; Meibalan, E.; Meier, B.C.; McPhail, J.A.; Mitasev, B.; Moss, E.L.; Sayes, M.; Van Gessel, Y.; Wawer, M.J.; Yoshinaga, T.; Zeeman, A.M.; Avery, V.M.; Bhatia, S.N.; Burke, J.E.; Catteruccia, F.; Clardy, J.C.; Clemons, P.A.; Dechering, K.J.; Duvall, J.R.; Foley, M.A.; Gusovsky, F.; Kocken, C.H.; Marti, M.; Morningstar, M.L.; Munoz, B.; Neafsey, D.E.; Sharma, A.; Winzeler, E.A.; Wirth, D.F.; Scherer, C.A.; Schreiber, S.L. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538(7625), 344-349.
[http://dx.doi.org/10.1038/nature19804] [PMID: 27602946]
[210]
Spry, C.; Macuamule, C.; Lin, Z.; Virga, K.G.; Lee, R.E.; Strauss, E.; Saliba, K.J. Pantothenamides are potent, on-target inhibitors of Plasmodium falciparum growth when serum pantetheinase is inactivated. PLoS One, 2013, 8(2), e54974.
[http://dx.doi.org/10.1371/journal.pone.0054974] [PMID: 23405100]
[211]
Macuamule, C.J.; Tjhin, E.T.; Jana, C.E.; Barnard, L.; Koekemoer, L.; de Villiers, M.; Saliba, K.J.; Strauss, E. A pantetheinase-resistant pantothenamide with potent, on-target, and selective antiplasmodial activity. Antimicrob. Agents Chemother., 2015, 59(6), 3666-3668.
[http://dx.doi.org/10.1128/AAC.04970-14] [PMID: 25845876]
[212]
Schalkwijk, J.; Allman, E.L.; Jansen, P.A.M.; de Vries, L.E.; Verhoef, J.M.J.; Jackowski, S.; Botman, P.N.M.; Beuckens-Schortinghuis, C.A.; Koolen, K.M.J.; Bolscher, J.M.; Vos, M.W.; Miller, K.; Reeves, S.A.; Pett, H.; Trevitt, G.; Wittlin, S.; Scheurer, C.; Sax, S.; Fischli, C.; Angulo-Barturen, I.; Jiménez-Diaz, M.B.; Josling, G.; Kooij, T.W.A.; Bonnert, R.; Campo, B.; Blaauw, R.H.; Rutjes, F.P.J.T.; Sauerwein, R.W.; Llinás, M.; Hermkens, P.H.H.; Dechering, K.J. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci. Transl. Med., 2019, 11(510), eaas9917.
[http://dx.doi.org/10.1126/scitranslmed.aas9917] [PMID: 31534021]
[213]
Hermkens, P. H.; Schalkwijk, J.; Jansen, P. A. M.; Botman, P. P. Pantothenamide analogues. EP3215496B1, 2019.
[214]
Phillips, M.A.; White, K.L.; Kokkonda, S.; Deng, X.; White, J.; El Mazouni, F.; Marsh, K.; Tomchick, D.R.; Manjalanagara, K.; Rudra, K.R.; Wirjanata, G.; Noviyanti, R.; Price, R.N.; Marfurt, J.; Shackleford, D.M.; Chiu, F.C.; Campbell, M.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Martinez, M.S.; Lafuente-Monasterio, M.; Kaminsky, W.; Silue, K.; Zeeman, A.M.; Kocken, C.; Leroy, D.; Blasco, B.; Rossignol, E.; Rueckle, T.; Matthews, D.; Burrows, J.N.; Waterson, D.; Palmer, M.J.; Rathod, P.K.; Charman, S.A. A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect. Dis., 2016, 2(12), 945-957.
[http://dx.doi.org/10.1021/acsinfecdis.6b00144] [PMID: 27641613]
[215]
Winter, R.W.; Kelly, J.X.; Smilkstein, M.J.; Dodean, R.; Bagby, G.C.; Rathbun, R.K.; Levin, J.I.; Hinrichs, D.; Riscoe, M.K. Evaluation and lead optimization of anti-malarial acridones. Exp. Parasitol., 2006, 114(1), 47-56.
[http://dx.doi.org/10.1016/j.exppara.2006.03.014] [PMID: 16828746]
[216]
Kelly, J.X.; Smilkstein, M.J.; Brun, R.; Wittlin, S.; Cooper, R.A.; Lane, K.D.; Janowsky, A.; Johnson, R.A.; Dodean, R.A.; Winter, R.; Hinrichs, D.J.; Riscoe, M.K. Discovery of dual function acridones as a new antimalarial chemotype. Nature, 2009, 459(7244), 270-273.
[http://dx.doi.org/10.1038/nature07937] [PMID: 19357645]
[217]
Dodean, R.A.; Kancharla, P.; Li, Y.; Melendez, V.; Read, L.; Bane, C.E.; Vesely, B.; Kreishman-Deitrick, M.; Black, C.; Li, Q.; Sciotti, R.J.; Olmeda, R.; Luong, T.L.; Gaona, H.; Potter, B.; Sousa, J.; Marcsisin, S.; Caridha, D.; Xie, L.; Vuong, C.; Zeng, Q.; Zhang, J.; Zhang, P.; Lin, H.; Butler, K.; Roncal, N.; Gaynor-Ohnstad, L.; Leed, S.E.; Nolan, C.; Huezo, S.J.; Rasmussen, S.A.; Stephens, M.T.; Tan, J.C.; Cooper, R.A.; Smilkstein, M.J.; Pou, S.; Winter, R.W.; Riscoe, M.K.; Kelly, J.X. Discovery and structural optimization of acridones as broad-spectrum antimalarials. J. Med. Chem., 2019, 62(7), 3475-3502.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01961] [PMID: 30852885]
[218]
Kancharla, P.; Dodean, R.A.; Li, Y.; Pou, S.; Pybus, B.; Melendez, V.; Read, L.; Bane, C.E.; Vesely, B.; Kreishman-Deitrick, M.; Black, C.; Li, Q.; Sciotti, R.J.; Olmeda, R.; Luong, T.L.; Gaona, H.; Potter, B.; Sousa, J.; Marcsisin, S.; Caridha, D.; Xie, L.; Vuong, C.; Zeng, Q.; Zhang, J.; Zhang, P.; Lin, H.; Butler, K.; Roncal, N.; Gaynor-Ohnstad, L.; Leed, S.E.; Nolan, C.; Ceja, F.G.; Rasmussen, S.A.; Tumwebaze, P.K.; Rosenthal, P.J.; Mu, J.; Bayles, B.R.; Cooper, R.A.; Reynolds, K.A.; Smilkstein, M.J.; Riscoe, M.K.; Kelly, J.X. Lead optimization of second-generation acridones as broad-spectrum antimalarials. J. Med. Chem., 2020, 63(11), 6179-6202.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00539] [PMID: 32390431]
[219]
Krishnan, K.; Ziniel, P.; Li, H.; Huang, X.; Hupalo, D.; Gombakomba, N.; Guerrero, S.M.; Dotrang, T.; Lu, X.; Caridha, D.; Sternberg, A.R.; Hughes, E.; Sun, W.; Bargieri, D.Y.; Roepe, P.D.; Sciotti, R.J.; Wilkerson, M.D.; Dalgard, C.L.; Tawa, G.J.; Wang, A.Q.; Xu, X.; Zheng, W.; Sanderson, P.E.; Huang, W.; Williamson, K.C. Torin 2 derivative, ncats-sm3710, has potent multistage antimalarial activity through inhibition of P. falciparum phosphatidylinositol 4-kinase (pf pi4kiiiβ). ACS Pharmacol. Transl. Sci., 2020, 3(5), 948-964.
[http://dx.doi.org/10.1021/acsptsci.0c00078] [PMID: 33073193]
[220]
Hanson, K.K.; Ressurreição, A.S.; Buchholz, K.; Prudêncio, M.; Herman-Ornelas, J.D.; Rebelo, M.; Beatty, W.L.; Wirth, D.F.; Hänscheid, T.; Moreira, R.; Marti, M.; Mota, M.M. Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc. Natl. Acad. Sci. USA, 2013, 110(30), E2838-E2847.
[http://dx.doi.org/10.1073/pnas.1306097110] [PMID: 23836641]
[221]
Huang, Z.; Li, R.; Tang, T.; Ling, D.; Wang, M.; Xu, D.; Sun, M.; Zheng, L.; Zhu, F.; Min, H.; Boonhok, R.; Ding, Y.; Wen, Y.; Chen, Y.; Li, X.; Chen, Y.; Liu, T.; Han, J.; Miao, J.; Fang, Q.; Cao, Y.; Tang, Y.; Cui, J.; Xu, W.; Cui, L.; Zhu, J.; Wong, G.; Li, J.; Jiang, L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov., 2020, 6(1), 93.
[http://dx.doi.org/10.1038/s41421-020-00215-4] [PMID: 33311461]
[222]
Jiang, L.; Haung, Z. Novel high-efficiency antimalarial drug, quisinostat. WO/2017/143964, 2017.
[223]
Li, R.; Ling, D.; Tang, T.; Huang, Z.; Wang, M.; Mao, F.; Zhu, J.; Jiang, L.; Li, J.; Li, X. Repurposing of antitumor drug candidate quisinostat lead to novel spirocyclic antimalarial agents. Chin. Chem. Lett., 2020.
[http://dx.doi.org/10.1016/j.cclet.2020.12.023]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy