Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Formulation Optimization and In Vitro Characterization of Granisetronloaded Polylactic-co-glycolic Acid Microspheres Prepared by a Dropping-in-liquid Emulsification Technique

Author(s): Atef Mohammed Qasem Ahmed, Li-Qing Chen, Huan-Huan Du, Wei Sun and Qing-Ri Cao*

Volume 19, Issue 6, 2022

Published on: 06 January, 2022

Page: [721 - 729] Pages: 9

DOI: 10.2174/1567201818666210729111646

Price: $65

Abstract

Purpose: Traditional dosage forms of granisetron (GRN) decrease patient compliance associated with repeated drug administration because of the short half-life of the drug.

Methods: In this study, novel GRN-loaded Polylactic-co-glycolic Acid (PLGA) sustained-release microspheres were prepared for the first time via a dropping-in-liquid emulsification technique. The effects of various factors, such as pH of the outer phase, Tween 80, Polyvinyl Alcohol (PVA) concentrations, and hardening process, on the Encapsulation Efficiency (EE), Drug Loading (DL), and particle size of microspheres were extensively studied. The physicochemical properties, including drug release, surface morphology, crystallinity, thermal changes, and molecular interactions, were also studied.

Results: GRN has a pH-dependent solubility and it exhibits a remarkably high solubility under acidic condition. The EE of the alkaline medium (pH 8) was higher than that of the acidic medium (pH 4.0). EE and DL decreased in the presence of Tween 80 in the outer phase, whereas EE significantly increased during hardening. The particle size of microspheres was not affected by PVA and Tween 80 concentrations, but it was influenced by PVA volume and hardening. X-ray diffraction and differential scanning calorimetry results showed that the physical state of the drug changed from a crystalline form to an amorphous form, thereby confirming that the drug was encapsulated into the PLGA matrix. Fourier transform-infrared spectroscopy confirmed that some molecular interactions occurred between the drug and the polymer. GRN-loaded PLGA microspheres showed sustained release profiles of over 90% on week 3.

Conclusion: GRN-loaded PLGA microspheres with sustained-release were successfully prepared, and they exhibited a relatively high EE without Tween 80 as an emulsifier and with the hardening process.

Keywords: Granisetron, polylactic-co-glycolic acid, microspheres, dropping-in-liquid emulsification, sustained release, characterization.

« Previous
Graphical Abstract

[1]
Raftopoulos, H.; Boccia, R.; Cooper, W.; O’Boyle, E.; Gralla, R.J. Slow-release granisetron (APF530) versus palonosetron for chemotherapy-induced nausea/vomiting: analysis by American Society of Clinical Oncology emetogenicity criteria. Future Oncol., 2015, 11(18), 2541-2551.
[http://dx.doi.org/10.2217/fon.15.185] [PMID: 26289588]
[2]
Boccia, R.; O’Boyle, E.; Cooper, W. Randomized phase III trial of APF530 versus palonosetron in the prevention of chemotherapy-induced nausea and vomiting in a subset of patients with breast cancer receiving moderately or highly emetogenic chemotherapy. BMC Cancer, 2016, 16, 166.
[http://dx.doi.org/10.1186/s12885-016-2186-4] [PMID: 26921245]
[3]
Zhu, M.; Zhou, C.; Huang, B.; Ruan, L.; Liang, R. Granisetron plus dexamethasone for prevention of postoperative nausea and vomiting in patients undergoing laparoscopic surgery: A meta-analysis. J. Int. Med. Res., 2017, 45(3), 904-911.
[http://dx.doi.org/10.1177/0300060517703276] [PMID: 28436248]
[4]
El-Nassan, H.B.; ElMeshad, A.N.; Wadie, W.; Sayed, R.H. Synthesis, characterization and biocompatibility of N-palmitoyl L-alanine-based organogels as sustained implants of granisetron and evaluation of thier antiemetic effect. Pharm. Res., 2018, 35(8), 149.
[http://dx.doi.org/10.1007/s11095-018-2433-2] [PMID: 29845459]
[5]
Doh, H.J.; Jung, Y.; Balakrishnan, P.; Cho, H.J.; Kim, D.D. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids Surf. B Biointerfaces, 2013, 101, 475-480.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.019] [PMID: 23010057]
[6]
Ahmed, S.; El-Setouhy, D.A.; El-Latif Badawi, A.A.; El-Nabarawi, M.A. Provesicular granisetron hydrochloride buccal formulations: in vitro evaluation and preliminary investigation of in vivo performance. Eur. J. Pharmaceut. Sci., 2014, 60, 10-23.
[http://dx.doi.org/10.1016/j.ejps.2014.04.013]
[7]
Salunkhe, N.H.; Jadhav, N.R.; Mali, K.K.; Dias, R.J.; Ghorpade, V.S.; Yadav, A.V. Mucoadhesive microsphere based suppository containing granisetron hydrochloride for management of emesis in chemotherapy. J. Pharm. Investig., 2014, 44, 253-263.
[http://dx.doi.org/10.1007/s40005-014-0123-6]
[8]
Abdelmonem, R.; El Nabarawi, M.; Attia, A. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats. Drug Deliv., 2018, 25(1), 70-77.
[http://dx.doi.org/10.1080/10717544.2017.1413447] [PMID: 29228824]
[9]
Spartinou, A.; Nyktari, V.; Papaioannou, A. Granisetron: a review of pharmacokinetics and clinical experience in chemotherapy induced - nausea and vomiting. Expert Opin. Drug Metab. Toxicol., 2017, 13(12), 1289-1297.
[http://dx.doi.org/10.1080/17425255.2017.1396317] [PMID: 29057666]
[10]
Ibrahim, H.K.; Abdel Malak, N.S.; Abdel Halim, S.A. Formulation of convenient, easily scalable, and efficient granisetron HCl intranasal droppable gels. Mol. Pharm., 2015, 12(6), 2019-2025.
[http://dx.doi.org/10.1021/mp500825n] [PMID: 25936630]
[11]
Ottoboni, T.; Gelder, M.S.; O’Boyle, E. Biochronomer™ technology and the development of APF530, a sustained release formulation of granisetron. J. Exp. Pharmacol., 2014, 6, 15-21.
[http://dx.doi.org/10.2147/JEP.S68880] [PMID: 27186139]
[12]
Freitas, S.; Merkle, H.P.; Gander, B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release, 2005, 102, 313-332.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.015]
[13]
Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm., 2015, 496(2), 173-190.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.057] [PMID: 26522982]
[14]
Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front. Pharmacol., 2016, 7, 185.
[http://dx.doi.org/10.3389/fphar.2016.00185] [PMID: 27445821]
[15]
Han, F.Y.; Thurecht, K.J.; Lam, A.L.; Whittaker, A.K.; Smith, M.T. Novel polymeric bioerodable microparticles for prolonged-release intrathecal delivery of analgesic agents for relief of intractable cancer-related pain. J. Pharm. Sci., 2015, 104(7), 2334-2344.
[http://dx.doi.org/10.1002/jps.24497] [PMID: 25990226]
[16]
Xia, Y.; Yuan, M.; Chen, M.; Li, J.; Ci, T.; Ke, X. Liquid jet breakup: A new method for the preparation of poly lactic-co-glycolic acid microspheres. Eur. J. Pharmaceut. Biopharmaceut., 2019, 137, 140-147.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.021]
[17]
Cao, Q.R.; Piao, Y.N.; Choi, J.S.; Liu, Y.; Yang, M.; Cui, J.H. Design, in vitro release characterization and pharmacokinetics of novel controlled release pellets containing levodropropizine. Pharm. Dev. Technol., 2014, 19(3), 296-303.
[http://dx.doi.org/10.3109/10837450.2013.778871] [PMID: 23509871]
[18]
Cao, Q.R.; Choi, J.S.; Liu, Y.; Xu, W.J.; Yang, M.; Lee, B.J.; Cui, J.H. A formulation approach for development of HPMC-based sustained release tablets for tolterodine tartrate with a low release variation. Drug Dev. Ind. Pharm., 2013, 39(11), 1720-1730.
[http://dx.doi.org/10.3109/03639045.2012.730528] [PMID: 23062115]
[19]
Yang, F.; Chen, D.; Guo, Z.F.; Zhang, Y.M.; Liu, Y.; Askin, S.; Craig, D.Q.; Zhao, M. The application of novel nano-thermal and imaging techniques for monitoring drug microstructure and distribution within PLGA microspheres. Int. J. Pharm., 2017, 522(1-2), 34-49.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.056] [PMID: 28235626]
[20]
Shi, L.L.; Lu, J.; Cao, Y.; Liu, J.Y.; Zhang, X.X.; Zhang, H.; Cui, J.H.; Cao, Q.R. Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel. Drug Dev. Ind. Pharm., 2017, 43(5), 839-846.
[http://dx.doi.org/10.1080/03639045.2016.1220571] [PMID: 27487431]
[21]
Patel, R.; Patel, M.; Suthar, A. Spray drying technology: an overview. Indian J. Sci. Technol., 2009, 2, 44-47.
[http://dx.doi.org/10.17485/ijst/2009/v2i10.3]
[22]
Kulkarni, A.; Rao, P. Synthesis of polymeric nanomaterials for biomedical applications. In: Nanomaterials in Tissue Engineering; Elsevier, 2013; pp. 27-63.
[http://dx.doi.org/10.1533/9780857097231.1.27]
[23]
Shi, L.L.; Cao, Y.; Zhu, X.Y.; Cui, J.H.; Cao, Q.R. Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model. Int. J. Pharm., 2015, 478(1), 60-69.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.017] [PMID: 25448568]
[24]
Shi, L.L.; Xie, H.; Lu, J.; Cao, Y.; Liu, J.Y.; Zhang, X.X.; Zhang, H.; Cui, J.H.; Cao, Q.R. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol. Pharm., 2016, 13(8), 2667-2676.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00226] [PMID: 27379550]
[25]
Busatto, C.; Pesoa, J.; Helbling, I.; Luna, J.; Estenoz, D. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. Int. J. Pharm., 2018, 536(1), 360-369.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.006] [PMID: 29217474]
[26]
Wang, J.; Helder, L.; Shao, J.; Jansen, J.A.; Yang, M.; Yang, F. Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: Effect of polymer end groups. Int. J. Pharm., 2019, 564, 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.023] [PMID: 30978487]
[27]
Kefayat, A.; Vaezifar, S. Biodegradable PLGA implants containing doxorubicin-loaded chitosan nanoparticles for treatment of breast tumor-bearing mice. Int. J. Biol. Macromol., 2019, 136, 48-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.055] [PMID: 31195043]
[28]
García-Díaz, M.; Foged, C.; Nielsen, H.M. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids. Int. J. Pharm., 2015, 482(1-2), 84-91.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.047] [PMID: 25445991]
[29]
Anwer, M.K.; Mohammad, M.; Ezzeldin, E.; Fatima, F.; Alalaiwe, A.; Iqbal, M. Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats. Int. J. Nanomedicine, 2019, 14, 1587-1595.
[http://dx.doi.org/10.2147/IJN.S195048] [PMID: 30880967]
[30]
Vora, L. Zero order controlled release delivery of cholecalciferol from injectable biodegradable microsphere: In-vitro characterization and in-vivo pharmacokinetic studies. Eur. J. Pharmaceut. Sci., 2017, 107, 78-86.
[http://dx.doi.org/10.1016/j.ejps.2017.06.027]
[31]
Zhang, C.; Wang, A.; Wang, H.; Yan, M.; Liang, R.; He, X.; Fu, F.; Mu, H.; Sun, K. Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term therapy of chronic hepatitis-B: Preparation and in vitro and in vivo evaluation. Int. J. Pharm., 2019, 560, 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.052] [PMID: 30711615]
[32]
Park, K.; Skidmore, S.; Hadar, J.; Garner, J.; Park, H.; Otte, A.; Soh, B.K.; Yoon, G.; Yu, D.; Yun, Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J. Control. Release, 2019, 304, 125-134.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.003]
[33]
Ramazani, F.; Chen, W.; van Nostrum, C.F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W.E.; Kok, R.J. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int. J. Pharm., 2016, 499(1-2), 358-367.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.020] [PMID: 26795193]
[34]
Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm., 2008, 364(2), 298-327.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.042] [PMID: 18621492]
[35]
Berchane, N.S.; Jebrail, F.F.; Andrews, M.J. Optimization of PLG microspheres for tailored drug release. Int. J. Pharm., 2010, 383(1-2), 81-88.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.010] [PMID: 19748560]
[36]
Lin, X.; Wang, J.; Xu, Y.; Tang, X.; Chen, J.; Zhang, Y.; Zhang, Y.; Yang, Z. Tracking the effect of microspheres size on the drug release from a microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot in vitro and in vivo. Drug Dev. Ind. Pharm., 2016, 42(9), 1455-1465.
[http://dx.doi.org/10.3109/03639045.2016.1143952] [PMID: 26790718]
[37]
Chen, W.; Palazzo, A.; Hennink, W.E.; Kok, R.J. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm., 2017, 14(2), 459-467.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00896] [PMID: 27973854]
[38]
Mensah, R.A.; Kirton, S.B.; Cook, M.T.; Styliari, I.D.; Hutter, V.; Chau, D.Y.S. Optimising poly(lactic-co-glycolic acid) microparticle fabrication using a Taguchi orthogonal array design-of-experiment approach. Plos One, 2019, 14, e0222858.
[http://dx.doi.org/10.1371/journal.pone.0222858]
[39]
Pavan, K.; Arthanareeswari, M.; Ravikiran, A.; Kamaraj, P.Ch.P.; Rajendar, B. An approach to determine crystalline content of Granisetron in transdermal patches using X-ray diffraction technique. Int. J. Drug Deliv., 2012, 4, 492.
[40]
Cho, H.J.; Balakrishnan, P.; Shim, W.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethylcellulose for intranasal delivery. Int. J. Pharm., 2010, 400(1-2), 59-65.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.030] [PMID: 20801202]
[41]
Gaspar, M.C.; Pais, A.A.C.C.; Sousa, J.J.S.; Brillaut, J.; Olivier, J-C. Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int. J. Pharm., 2019, 556, 117-124.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.005] [PMID: 30528632]
[42]
Bhatere, D.; Rathore, D.; Dahima, R. Formulation development of mouth dissolving tablets of a poorly water soluble drug using sublimation technique. Bullet. Pharmaceut. Res., 2012, 2, 5-9.
[43]
Nath, S.D.; Son, S.; Sadiasa, A.; Min, Y.K.; Lee, B.T. Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. Int. J. Pharm., 2013, 443(1-2), 87-94.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.037] [PMID: 23291448]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy