Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Identification of Natural Compounds with Analgesic and Antiinflammatory Properties Using Machine Learning and Molecular Docking Studies

Author(s): Mohammad Firoz Khan*, Ridwan Bin Rashid and Mohammad A. Rashid*

Volume 19, Issue 3, 2022

Published on: 28 July, 2021

Page: [256 - 262] Pages: 7

DOI: 10.2174/1570180818666210728162055

Price: $65

Abstract

Background: Natural products have been a rich source of compounds for drug discovery. Usually, compounds obtained from natural sources have little or no side effects, thus searching for new lead compounds from traditionally used plant species is still a rational strategy.

Introduction: Natural products serve as a useful repository of compounds for new drugs; however, their use has been decreasing, in part because of technical barriers to screening natural products in highthroughput assays against molecular targets. To address this unmet demand, we have developed and validated a high throughput in silico machine learning screening method to identify potential compounds from natural sources.

Methods: In the current study, three machine learning approaches, including Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Machine (GBM) have been applied to develop the classification model. The model was generated using the cyclooxygenase-2 (COX-2) inhibitors reported in the ChEMBL database. The developed model was validated by evaluating the accuracy, sensitivity, specificity, Matthews correlation coefficient and Cohen’s kappa statistic of the test set. The molecular docking study was conducted on AutoDock vina and the results were analyzed in PyMOL.

Results: The accuracy of the model for SVM, RF and GBM was found to be 75.40 %, 74.97 % and 74.60 %, respectively, which indicates the good performance of the developed model. Further, the model has demonstrated good sensitivity (61.25 % - 68.60 %) and excellent specificity (77.72 %- 81.41 %). Application of the model on the NuBBE database, a repository of natural compounds, led us to identify a natural compound, enhydrin possessing analgesic and anti-inflammatory activities. The ML methods and the molecular docking study suggest that enhydrin likely demonstrates its analgesic and anti-inflammatory actions by inhibiting COX-2.

Conclusion: Our developed and validated in silico high throughput ML screening methods may assist in identifying drug-like compounds from natural sources.

Keywords: Natural products, inflammation, cyclooxygenase, machine learning, molecular docking, high throughput screening.

« Previous
Graphical Abstract

[1]
Materazzi, S.; Nassini, R.; Andrè, E.; Campi, B.; Amadesi, S.; Trevisani, M.; Bunnett, N.W.; Patacchini, R.; Geppetti, P. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 12045-12050.
[http://dx.doi.org/10.1073/pnas.0802354105] [PMID: 18687886]
[2]
Malarvizhi, M.; Sali, V.K.; Bhardwaj, M.; Mani, S.; Vasanthi, H.R. Inhibition of cyclooxygenase enzyme by bioflavonoids in horsegram seeds alleviates pain and inflammation. Comb. Chem. High Throughput Screen., 2020, 23(9), 931-938.
[http://dx.doi.org/10.2174/1386207323666200127114551] [PMID: 31985369]
[3]
Attiq, A.; Jalil, J.; Husain, K.; Ahmad, W. Raging the war against inflammation with natural products. Front. Pharmacol., 2018, 9, 976.
[http://dx.doi.org/10.3389/fphar.2018.00976] [PMID: 30245627]
[4]
Sarker, M.; Das, S.C.; Saha, S.K.; Mahmud, Z.A.; Bachar, S.C. Analgesic and anti-inflammatory activities of flower extracts of Punica granatum Linn.(Punicaceae). J. Appl. Pharm. Sci., 2012, 2(4), 133-136.
[http://dx.doi.org/10.7324/JAPS.2012.2408]
[5]
Khan, M.F.; Rashid, R.B.; Rashid, M.A. Computational study of geometry, molecular properties and docking study of aspirin. World J. Pharm. Res., 2015, 4, 2702-2714.
[6]
Griswold, D.E.; Adams, J.L. Constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2): Rationale for selective inhibition and progress to date. Med. Res. Rev., 1996, 16(2), 181-206.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199603)16:2<181:AID-MED3>3.0.CO;2-X] [PMID: 8656779]
[7]
Devaraj, A.; Karpagam, T. Evaluation of anti-inflammatory activity and analgesic effect of Aloe vera leaf extract in rats. Int. Res. J. Pharm., 2011, 2(3), 103-110. Available at: http://www.irjponline.com/
[8]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[9]
Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; Zhao, S. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov., 2019, 18(6), 463-477.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[10]
Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules, 2020, 25(22), 5277.
[http://dx.doi.org/10.3390/molecules25225277] [PMID: 33198233]
[11]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[12]
Liu, T. Lin, y.; Wen, X; Jorissen, RB.; Gilson, M. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-201.
[http://dx.doi.org/10.1093/nar/gkl999]
[13]
Godinez, W.J.; Hossain, I.; Lazic, S.E.; Davies, J.W.; Zhang, X. A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics, 2017, 33(13), 2010-2019.
[http://dx.doi.org/10.1093/bioinformatics/btx069] [PMID: 28203779]
[14]
Jeon, J.; Nim, S.; Teyra, J.; Datti, A.; Wrana, J.L.; Sidhu, S.S.; Moffat, J.; Kim, P.M. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med., 2014, 6(7), 57.
[http://dx.doi.org/10.1186/s13073-014-0057-7] [PMID: 25165489]
[15]
Mamoshina, P.; Volosnikova, M.; Ozerov, I.V.; Putin, E.; Skibina, E.; Cortese, F.; Zhavoronkov, A. Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front. Genet., 2018, 9, 242.
[http://dx.doi.org/10.3389/fgene.2018.00242] [PMID: 30050560]
[16]
Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: An update. Nucleic Acids Res., 2014, 42(Database issue), D1083-D1090.
[http://dx.doi.org/10.1093/nar/gkt1031] [PMID: 24214965]
[17]
Saldívar-González, F.I.; Valli, M.; Andricopulo, A.D.; da Silva Bolzani, V.; Medina-Franco, J.L. Chemical space and diversity of the NuBBE database: A chemoinformatic characterization. J. Chem. Inf. Model., 2019, 59(1), 74-85.
[http://dx.doi.org/10.1021/acs.jcim.8b00619] [PMID: 30508485]
[18]
Feltenstein, M.W.; Schühly, W.; Warnick, J.E.; Fischer, N.H.; Sufka, K.J. Anti-inflammatory and anti-hyperalgesic effects of sesquiterpene lactones from Magnolia and Bear’s foot. Pharmacol. Biochem. Behav., 2004, 79(2), 299-302.
[http://dx.doi.org/10.1016/j.pbb.2004.08.008] [PMID: 15501305]
[19]
Lagarde, N.; Zagury, J.F.O.; Montes, M. Benchmarking data sets for the evaluation of virtual ligand screening methods: review and perspectives. J. Chem. Inf. Model., 2015, 55(7), 1297-1307.
[http://dx.doi.org/10.1021/acs.jcim.5b00090] [PMID: 26038804]
[20]
Lee, A.A.; Brenner, M.P.; Colwell, L.J. Predicting protein-ligand affinity with a random matrix framework. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13564-13569.
[http://dx.doi.org/10.1073/pnas.1611138113] [PMID: 27856761]
[21]
Huang, N.; Shoichet, B.K.; Irwin, J.J. Benchmarking sets for molecular docking. J. Med. Chem., 2006, 49(23), 6789-6801.
[http://dx.doi.org/10.1021/jm0608356] [PMID: 17154509]
[22]
Landrum, G. RDKit: Open-source cheminformatics. 2006. Available at: https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
[23]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[24]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[25]
Qin, Z.; Xi, Y.; Zhang, S.; Tu, G.; Yan, A. Classification of cyclooxygenase-2 inhibitors using support vector machine and random forest methods. J. Chem. Inf. Model., 2019, 59(5), 1988-2008.
[http://dx.doi.org/10.1021/acs.jcim.8b00876] [PMID: 30762371]
[26]
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 1189-1232.
[http://dx.doi.org/10.1214/aos/1013203451]
[27]
Carletta, J. Assessing agreement on classification tasks: The kappa statistic. arXiv preprint cmp-lg, 1996, 249-256. Available at: https://arxiv.org/abs/cmp-lg/9602004
[28]
Li, B.K.; Cong, Y.; Yang, X.G.; Xue, Y.; Chen, Y.Z. In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. Comput. Biol. Med., 2013, 43(4), 395-404.
[http://dx.doi.org/10.1016/j.compbiomed.2013.01.015] [PMID: 23402937]
[29]
Valli, M.; dos Santos, R.N.; Figueira, L.D.; Nakajima, C.H.; Castro-Gamboa, I.; Andricopulo, A.D.; Bolzani, V.S. Development of a natural products database from the biodiversity of Brazil. J. Nat. Prod., 2013, 76(3), 439-444.
[http://dx.doi.org/10.1021/np3006875] [PMID: 23330984]
[30]
Khan, M.F.; Nahar, N.; Rashid, R.B.; Chowdhury, A.; Rashid, M.A. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement. Altern. Med., 2018, 18(1), 48.
[http://dx.doi.org/10.1186/s12906-018-2116-x] [PMID: 29391000]
[31]
Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J.; Kiefer, J.R.; Carter, J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett., 2010, 20(23), 7159-7163.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.054] [PMID: 20709553]
[32]
DeLano, W.L. The PyMOL user’s manual; DeLano Scientific: San Carlos, CA, 2002, p. 452. Available at: https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1958992
[33]
Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 2009, 77(S9)(Suppl. 9), 114-122.
[http://dx.doi.org/10.1002/prot.22570] [PMID: 19768677]
[34]
Dallakyan, S. MGLTools. Reference Source 2010. Available at: https://ccsb.scripps.edu/mgltools/
[35]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33]
[36]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[37]
Blobaum, A.L.; Xu, S.; Rowlinson, S.W.; Duggan, K.C.; Banerjee, S.; Kudalkar, S.N.; Birmingham, W.R.; Ghebreselasie, K.; Marnett, L.J. Action at a distance: Mutations of peripheral residues transform rapid reversible inhibitors to slow, tight binders of cyclooxygenase-2. J. Biol. Chem., 2015, 290(20), 12793-12803.
[http://dx.doi.org/10.1074/jbc.M114.635987] [PMID: 25825493]
[38]
Garavito, R.M.; Malkowski, M.G.; DeWitt, D.L. The structures of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat., 2002, 68-69, 129-152.
[http://dx.doi.org/10.1016/S0090-6980(02)00026-6] [PMID: 12432914]
[39]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[40]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[41]
Morrone, J.A.; Weber, J.K.; Huynh, T.; Luo, H.; Cornell, W.D. Combining docking pose rank and structure with deep learning improves protein–ligand binding mode prediction over a baseline docking approach. J. Chem. Inf. Model., 2020, 60(9), 4170-4179.
[http://dx.doi.org/10.1021/acs.jcim.9b00927] [PMID: 32077698]

© 2024 Bentham Science Publishers | Privacy Policy