Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Asymmetric Organocatalytic Syntheses of Bioactive Compounds

Author(s): Estibaliz Sansinenea and Aurelio Ortiz*

Volume 19, Issue 1, 2022

Published on: 28 July, 2021

Page: [148 - 165] Pages: 18

DOI: 10.2174/1570179418666210728145206

Price: $65

Abstract

Background: The total syntheses of complex natural products have evolved to include new methodologies to save time, simplifying the form to achieve these natural compounds.

Objectives: In this review, we have described the asymmetric synthesis of different natural products and biologically active compounds of the last ten years until the current day.

Results: An asymmetric organocatalytic reaction is a key to generate stereoselectively the main structure with the required stereochemistry.

Conclusion: Even more remarkable, the organocatalytic cascade reactions, which are carried out with high stereoselectivity, as well as a possible approximation of the organocatalysts activation with substrates are also described.

Keywords: Organocatalysis, organocatalytic process, organocatalytic cascade reactions, asymmetric synthesis, natural products, stereoselectivity, catalyst.

Graphical Abstract

[1]
Grondal, C.; Jeanty, M.; Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nat. Chem., 2010, 2(3), 167-178.
[http://dx.doi.org/10.1038/nchem.539] [PMID: 21124474]
[2]
Marqués-López, E.; Herrera, R.P.; Christmann, M. Asymmetric organocatalysis in total synthesis: A trial by fire. Nat. Prod. Rep., 2010, 27(8), 1138-1167.
[http://dx.doi.org/10.1039/b924964h] [PMID: 20445939]
[3]
Alemán, J.; Cabrera, S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev., 2013, 42(2), 774-793.
[http://dx.doi.org/10.1039/C2CS35380F] [PMID: 23154582]
[4]
Sun, B.F. Total synthesis of natural and pharmaceutical products powered by organocatalytic reactions. Tetrahedron Lett., 2015, 56, 2133-2140.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.046]
[5]
Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[6]
Song, J.; Chen, D-F.; Gong, L-Z. Recent progress in organocatalytic asymmetric total syntheses of complex indole alkaloids. Natl. Sci. Rev., 2017, 4, 381-396.
[http://dx.doi.org/10.1093/nsr/nwx028]
[7]
Sansinenea, E.; Martinez, E.F.; Ortiz, A. Organocatalytic Synthesis of Chiral spirooxindoles with quaternary stereogenic centers. Eur. J. Org. Chem., 2020, 5101-5118.
[http://dx.doi.org/10.1002/ejoc.202000470]
[8]
Han, B.; He, X-H.; Liu, Y.Q.; He, G.; Peng, C.; Li, J.L. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem. Soc. Rev., 2021, 50(3), 1522-1586.
[http://dx.doi.org/10.1039/D0CS00196A] [PMID: 33496291]
[9]
Reichard, G.A.; Stengone, C.; Paliwal, S.; Mergelsberg, I.; Majmundar, S.; Wang, C.; Tiberi, R.; McPhail, A.T.; Piwinski, J.J.; Shih, N-Y. Asymmetric synthesis of 4,4-disubstituted-2-imidazoli-dinones: potent NK1 antagonists. Org. Lett., 2003, 5(23), 4249-4251.
[http://dx.doi.org/10.1021/ol030104p] [PMID: 14601972]
[10]
Allen, A.E.; MacMillan, D.W.C. Enantioselective α-arylation of aldehydes via the productive merger of iodonium salts and organocatalysis. J. Am. Chem. Soc., 2011, 133(12), 4260-4263.
[http://dx.doi.org/10.1021/ja2008906] [PMID: 21388207]
[11]
Hubert, C.; Garrigues, B. Influence des ultrasons sur la diastéréosélectivité. Synthèse d’imidazolidine-4-one chirales. Can. J. Chem., 1998, 76, 234-237.
[http://dx.doi.org/10.1139/v97-232]
[12]
Grošelj, U.; Beck, A.; Schweizer, W.B.; Seebach, D. Preparation and Structures of 2‐Substituted 5‐Benzyl‐3‐methylimidazolidin ‐4‐one‐Derived Iminium Salts, Reactive intermediates in organocatalytic transformations involving α,β‐unsaturated aldehydes. Helv. Chim. Acta, 2014, 97, 751-796.
[http://dx.doi.org/10.1002/hlca.201400110]
[13]
Brazier, J.B.; Gibbs, T.J.K.; Rowley, J.H.; Samulis, L.; Yau, S.C.; Kennedy, A.R.; Platts, J.A.; Tomkinson, N.C.O. Improving catalyst activity in secondary amine catalysed transformations. Org. Biomol. Chem., 2015, 13(1), 133-141.
[http://dx.doi.org/10.1039/C4OB01916D] [PMID: 25347784]
[14]
Holland, M.C.; Metternich, J.B.; Mück-Lichtenfeld, C.; Gilmour, R. Cation-π interactions in iminium ion activation: correlating quadrupole moment & enantioselectivity. Chem. Commun. (Camb.), 2015, 51(25), 5322-5325.
[http://dx.doi.org/10.1039/C4CC08520E] [PMID: 25434331]
[15]
Pecchioli, T.; Muthyala, M.K.; Haag, R.; Christmann, M. Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel-Crafts alkylations. Beilstein J. Org. Chem., 2015, 11, 730-738.
[http://dx.doi.org/10.3762/bjoc.11.83] [PMID: 26150897]
[16]
Ipek, H.; Akdag, A. Enantioselective oxidation of thioanisole to metyl phenyl sulfoxide by chiral compounds bearing N-Cl bond. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 1285-1293.
[http://dx.doi.org/10.1080/10426507.2015.1012203]
[17]
Holland, M.C.; Metternich, J.B.; Daniliuc, C.; Schweizer, W.B.; Gilmour, R. aromatic interactions in organocatalyst design: augmenting selectivity reversal in iminium ion activation. Chemistry, 2015, 21(28), 10031-10038.
[http://dx.doi.org/10.1002/chem.201500270] [PMID: 25982418]
[18]
Bernna, D.; Porta, R.; Massolo, E.; Raimondi, L.; Benaglia, M. A new class of low‐loading catalysts for highly enantioselective, metal‐free imine reduction of wide general applicability. ChemCatChem, 2017, 9, 941-945.
[http://dx.doi.org/10.1002/cctc.201700052]
[19]
Nacsa, E.D.; MacMillan, D.W.C. Spin-Center shift-enabled direct enantioselective α-benzylation of aldehydes with alcohols. J. Am. Chem. Soc., 2018, 140(9), 3322-3330.
[http://dx.doi.org/10.1021/jacs.7b12768] [PMID: 29400958]
[20]
Wagner, C.; Kotthaus, A.F.; Kirsch, S.F. The asymmetric reduction of imidazolinones with trichlorosilane. Chem. Commun. (Camb.), 2017, 53(32), 4513-4516.
[http://dx.doi.org/10.1039/C7CC01561E] [PMID: 28387397]
[21]
Ichihara, A.; Tazaki, H.; Sakamura, S.; Solanapyrones, A. B and C, phytotoxic metabolites from the fungus Alternaria solani. Tetrahedron Lett., 1983, 24, 5373-5376.
[http://dx.doi.org/10.1016/S0040-4039(00)87872-7]
[22]
Ichihara, A.; Miki, M.; Sakamura, S. Absolute configuration of (−)-solanapyrone A. Tetrahedron Lett., 1985, 26, 2453-2454.
[http://dx.doi.org/10.1016/S0040-4039(00)94851-2]
[23]
Alam, S.S.; Bilton, J.N.; Slawin, A.M.Z.; Williams, D.J.; Sheppard, R.N.; Strange, R.N. Chickpea blight: Production of the phytotoxins solanapyrones A and C by Ascochyta rabiei. Phytochemistry, 1989, 28, 2627-2630.
[http://dx.doi.org/10.1016/S0031-9422(00)98054-3]
[24]
Oikawa, H.; Yokota, T.; Ichihara, A.; Sakamura, S. Structure and absolute configuration of solanapyrone D: A new clue to the occurrence of biological Diels–Alder reactions. J. Chem. Soc. Chem. Commun., 1989, 1284-1285.
[http://dx.doi.org/10.1039/C39890001284]
[25]
Oikawa, H.; Kobayashi, T.; Katayama, K.; Suzuki, Y.; Ichihara, A. Total synthesis of (-)-solanapyrone a via enzymatic Diels–Alder reaction of prosolanapyrone. J. Org. Chem., 1998, 63, 8748-8756.
[http://dx.doi.org/10.1021/jo980743r]
[26]
Wilson, R.M.; Jen, W.S.; Macmillan, D.W.C. Enantioselective organocatalytic intramolecular Diels-Alder reactions. The asymmetric synthesis of solanapyrone D. J. Am. Chem. Soc., 2005, 127(33), 11616-11617.
[http://dx.doi.org/10.1021/ja054008q] [PMID: 16104734]
[27]
Massiot, G.; Thépenier, P.; Jacquier, M-J.; Men-Olivier, L.L.; Delaude, C. Normavacurine and minfiensine, two new alkaloids with C19H22N2O formula from Strychnos species. Heterocycles, 1989, 29, 1435-1438.
[http://dx.doi.org/10.3987/COM-89-4987]
[28]
Dounay, A.B.; Overman, L.E.; Wrobleski, A.D. Sequential catalytic asymmetric Heck-iminium ion cyclization: Enantioselective total synthesis of the Strychnos alkaloid minfiensine. J. Am. Chem. Soc., 2005, 127(29), 10186-10187.
[http://dx.doi.org/10.1021/ja0533895] [PMID: 16028927]
[29]
Dounay, A.B.; Humphreys, P.G.; Overman, L.E.; Wrobleski, A.D. Total synthesis of the strychnos alkaloid (+)-minfiensine: tandem enantioselective intramolecular Heck-iminium ion cyclization. J. Am. Chem. Soc., 2008, 130(15), 5368-5377.
[http://dx.doi.org/10.1021/ja800163v] [PMID: 18303837]
[30]
Jones, S.B.; Simmons, B.; MacMillan, D.W.C. Nine-step enantioselective total synthesis of (+)-minfiensine. J. Am. Chem. Soc., 2009, 131(38), 13606-13607.
[http://dx.doi.org/10.1021/ja906472m] [PMID: 19725517]
[31]
Ohmiya, S.; Kubo, H.; Otomasu, H.; Saito, K.; Murakoshi, I. Tashiromine. A new Alkaloid from Maackia tashiroi. Heterocycles, 1990, 30, 537-542.
[http://dx.doi.org/10.3987/COM-89-S47]
[32]
Riley, D.L.; Michael, J.P.; de Koning, C.B. New syntheses of (±)-tashiromine and (±)-epitashiromine via enaminone intermediates. Beilstein J. Org. Chem., 2016, 12, 2609-2613.
[http://dx.doi.org/10.3762/bjoc.12.256] [PMID: 28144330]
[33]
Conrad, J.C.; Kong, J.; Laforteza, B.N.; MacMillan, D.W.C. Enantioselective α-arylation of aldehydes via organo-SOMO catalysis. An ortho-selective arylation reaction based on an open-shell pathway. J. Am. Chem. Soc., 2009, 131(33), 11640-11641.
[http://dx.doi.org/10.1021/ja9026902] [PMID: 19639997]
[34]
Beeson, T.D.; Mastracchio, A.; Hong, J-B.; Ashton, K.; Macmillan, D.W.C. Enantioselective organocatalysis using SOMO activation. Science, 2007, 316(5824), 582-585.
[http://dx.doi.org/10.1126/science. 1142696] [PMID: 17395791]
[35]
Um, J.M.; Gutierrez, O.; Schoenebeck, F.; Houk, K.N.; MacMillan, D.W.C. Nature of intermediates in organo-SOMO catalysis of α-arylation of aldehydes. J. Am. Chem. Soc., 2010, 132(17), 6001-6005.
[http://dx.doi.org/10.1021/ja9063074] [PMID: 20387888]
[36]
Nicolaou, K.C.; Reingruber, R.; Sarlah, D.; Bräse, S. Enantioselective intramolecular Friedel-Crafts-type α-arylation of aldehydes. J. Am. Chem. Soc., 2009, 131(6), 2086-2087.
[http://dx.doi.org/10.1021/ja809405c] [PMID: 19173649]
[37]
Barrero, A.F.; Sánchez, J.F.; Öltra, J.E.; Altarejos, J.; Ferrol, N.; Barragán, A. Oxygenated sesquiterpenes from the wood of Juniperus oxycedrus. Phytochemistry, 1991, 30, 1551-1554.
[http://dx.doi.org/10.1016/0031-9422(91)84207-9]
[38]
Xu, L.; Hilton, M.J.; Zhang, X.; Norrby, P-O.; Wu, Y.D.; Sigman, M.S.; Wiest, O. Mechanism, reactivity, and selectivity in palladium-catalyzed redox-relay Heck arylations of alkenyl alcohols. J. Am. Chem. Soc., 2014, 136(5), 1960-1967.
[http://dx.doi.org/10.1021/ja4109616] [PMID: 24410393]
[39]
Bielawski, M.; Zhu, M.; Olofsson, B. Efficient and General One-Pot synthesis of diaryliodonium triflates: Optimization, scope and limitations. Adv. Synth. Catal., 2007, 349, 2610-2618.
[http://dx.doi.org/10.1002/adsc.200700373]
[40]
Horning, B.D.; MacMillan, D.W.C. Nine-step enantioselective total synthesis of (-)-vincorine. J. Am. Chem. Soc., 2013, 135(17), 6442-6445.
[http://dx.doi.org/10.1021/ja402933s] [PMID: 23586842]
[41]
Milne, J.E.; Buchwald, S.L. An extremely active catalyst for the Negishi cross-coupling reaction. J. Am. Chem. Soc., 2004, 126(40), 13028-13032.
[http://dx.doi.org/10.1021/ja0474493] [PMID: 15469301]
[42]
Boeckman, R.K., Jr; Biegasiewicz, K.F.; Tusch, D.J.; Miller, J.R. Organocatalytic enantioselective α-hydroxymethylation of aldehydes: Mechanistic aspects and optimization. J. Org. Chem., 2015, 80(8), 4030-4045.
[http://dx.doi.org/10.1021/acs.joc.5b00380] [PMID: 25793648]
[43]
Jones, J.H.; Appayee, C.; Brenner-Moyer, S.E. One‐Pot preparation of enantiopure fluorinated β‐amino acid precursors. Eur. J. Org. Chem., 2014, 5273-5280.
[http://dx.doi.org/10.1002/ejoc.201402369]
[44]
Kemppainen, E.K.; Sahoo, G.; Valkonen, A.; Pihko, P.M. Mukaiyama-Michael reactions with acrolein and methacrolein: A catalytic enantioselective synthesis of the C17-C28 fragment of pectenotoxins. Org. Lett., 2012, 14(4), 1086-1089.
[http://dx.doi.org/10.1021/ol203486p] [PMID: 22296172]
[45]
Xu, F.; Zacuto, M.; Yoshikawa, N.; Desmond, R.; Hoerrner, S.; Itoh, T.; Journet, M.; Humphrey, G.R.; Cowden, C.; Strotman, N.; Devine, P. Asymmetric synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraine. J. Org. Chem., 2010, 75(22), 7829-7841.
[http://dx.doi.org/10.1021/jo101704b] [PMID: 20954694]
[46]
Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu, I. Organocatalytic enantioselective synthesis of nitrogen-substituted dihydropyran-2-ones, a key synthetic intermediate of 1β-methylcarbapenems. Org. Lett., 2009, 11(17), 3934-3937.
[http://dx.doi.org/10.1021/ol901544q] [PMID: 19658429]
[47]
Zi, W.; Xie, W.; Ma, D. Total synthesis of Akuammiline alkaloid (-)-vincorine via intramolecular oxidative coupling. J. Am. Chem. Soc., 2012, 134(22), 9126-9129.
[http://dx.doi.org/10.1021/ja303602f] [PMID: 22616754]
[48]
Schramm, S.; Köhler, N.; Rozhon, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules, 2019, 24(3), 498.
[http://dx.doi.org/10.3390/molecules24030498] [PMID: 30704105]
[49]
Sarkale, A.M.; Appayee, C. Stereodivergent synthesis of 1-hydroxymethylpyrrolizidine alkaloids. Org. Lett., 2020, 22(11), 4355-4359.
[http://dx.doi.org/10.1021/acs.orglett.0c01375] [PMID: 32459490]
[50]
Rang, H.P.; Dale, M.M.; Ritter, J.M.; Moore, P.K. Phamacology, 5th ed; Churchill Livingstone, 2003.
[51]
Oger, C.; Cuyamendous, C.; De la Torre, A.; Candy, M.; Guy, A.; Bultel-Poncé, V.; Durand, T.; Galano, J.M. History of chemical routes towards cyclic non-enzymatic oxygenated metabolites of polyunsaturated fatty acids. Synthesis, 2018, 50, 3257-3280.
[http://dx.doi.org/10.1055/s-0036-1589540]
[52]
Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[53]
Hayashi, Y.; Umemiya, S. Pot economy in the synthesis of prostaglandin A1 and E1 methyl esters. Angew. Chem. Int. Ed. Engl., 2013, 52(12), 3450-3452.
[http://dx.doi.org/10.1002/anie.201209380] [PMID: 23404945]
[54]
Kawauchi, G.; Umemiya, S.; Taniguchi, T.; Monde, K.; Hayashi, Y. Enantio- and diastereoselective synthesis of latanoprost using an organocatalyst. Chemistry, 2018, 24(33), 8409-8414.
[http://dx.doi.org/10.1002/chem.201800829] [PMID: 29603816]
[55]
Umekubo, N.; Suga, Y.; Hayashi, Y. Pot and time economies in the total synthesis of Corey lactone. Chem. Sci. (Camb.), 2019, 11(5), 1205-1209.
[http://dx.doi.org/10.1039/C9SC05824A] [PMID: 34123244]
[56]
Rohloff, J.C.; Kent, K.M.; Postich, M.J.; Becker, M.W.; Chapman, H.H.; Kelly, D.E.; Lew, W.; Louie, M. SMcGee, L.R.; Prisbe, E.J.; Schultze, L.M.; Yu, R.H.; Zhang, L. Practical total synthesis of the anti-influenza drug GS-4104. J. Org. Chem., 1998, 63, 4545-4550.
[http://dx.doi.org/10.1021/jo980330q]
[57]
Meanwell, N.A.; Krystal, M. Taking aim at a moving target-inhibitors of influenza virus part 1: Virus adsorption, entry and uncoating. Drug Discov. Today, 1996, 1, 316-324.
[http://dx.doi.org/10.1016/1359-6446(96)10029-5]
[58]
Meanwell, N.A.; Krystal, M. Taking aim at a moving target-inhibitors of influenza virus Part 2: Viral replication, packaging and release. Drug Discov. Today, 1996, 1, 388-397.
[http://dx.doi.org/10.1016/1359-6446(96)10035-0]
[59]
Abrecht, S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.; Wirz, B.; Zutter, U. The Synthetic development of the anti-Influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): A challenge for synthesis & process research. Chimia (Aarau), 2004, 58, 621-629.
[http://dx.doi.org/10.2533/000942904777677605]
[60]
Magano, J. Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza. Chem. Rev., 2009, 109(9), 4398-4438.
[http://dx.doi.org/10.1021/cr800449m] [PMID: 19537777]
[61]
Magano, J. Recent synthetic approaches to oseltamivir phosphate (Tamiflu) for the treatment of influenza. Tetrahedron, 2011, 67, 7875-7899.
[http://dx.doi.org/10.1016/j.tet.2011.07.010]
[62]
Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three “one-pot” operations. Angew. Chem. Int. Ed. Engl., 2009, 48(7), 1304-1307.
[http://dx.doi.org/10.1002/anie.200804883] [PMID: 19123206]
[63]
Zhu, S.; Yu, S.; Wang, Y.; Ma, D. Organocatalytic Michael addition of aldehydes to protected 2-amino-1-nitroethenes: the practical syntheses of oseltamivir (Tamiflu) and substituted 3-aminopyrrolidines. Angew. Chem. Int. Ed. Engl., 2010, 49(27), 4656-4660.
[http://dx.doi.org/10.1002/anie.201001644] [PMID: 20480479]
[64]
Ishikawa, H.; Bondzic, B.P.; Hayashi, Y. Synthesis of (-)-oseltamivir by using a microreactor in the curtius rearrangement. Eur. J. Org. Chem., 2011, 6020-6031.
[http://dx.doi.org/10.1002/ejoc.201100074]
[65]
Hajzer, V.; Fišera, R.; Latika, A.; Durmis, J.; Kollár, J.; Frecer, V.; Tučeková, Z.; Miertuš, S.; Kostolanský, F.; Varečková, E.; Šebesta, R. Stereoisomers of oseltamivir - synthesis, in silico prediction and biological evaluation. Org. Biomol. Chem., 2017, 15(8), 1828-1841.
[http://dx.doi.org/10.1039/C6OB02673G] [PMID: 28155963]
[66]
Ogasawara, S.; Hayashi, Y. Multistep continuous-flow synthesis of (-)-oseltamivir. Synthesis, 2016, 48, 424-428.
[67]
Hayashi, Y.; Ogasawara, S. Time economical total synthesis of. Oseltamivir. Org. Lett., 2016, 18(14), 3426-3429.
[http://dx.doi.org/10.1021/acs.orglett.6b01595] [PMID: 27378379]
[68]
Franke, A.; Rimpler, H. Vebraside and Iridoid glucoside from Verbena Brasiliensis. Phytochemistry, 1987, 26, 3015-3020.
[http://dx.doi.org/10.1016/S0031-9422(00)84583-5]
[69]
Li, Y-S.; Matsunaga, K.; Ishibashi, M.; Ohizumi, Y. Littoralisone, a novel neuritogenic iridolactone having an unprecedented heptacyclic skeleton including four- and nine-membered rings consisting of glucose from Verbena littoralis. J. Org. Chem., 2001, 66(6), 2165-2167.
[http://dx.doi.org/10.1021/jo001460d] [PMID: 11300918]
[70]
Mangion, I.K.; MacMillan, D.W.C. Total synthesis of brasoside and littoralisone. J. Am. Chem. Soc., 2005, 127(11), 3696-3697.
[http://dx.doi.org/10.1021/ja050064f] [PMID: 15771494]
[71]
Brown, S.P.; Brochu, M.P.; Sinz, C.J.; MacMillan, D.W.C. The direct and enantioselective organocatalytic α-oxidation of aldehydes. J. Am. Chem. Soc., 2003, 125(36), 10808-10809.
[http://dx.doi.org/10.1021/ja037096s] [PMID: 12952459]
[72]
Prévost, S.; Thai, K.; Schützenmeister, N.; Coulthard, G.; Erb, W.; Aggarwal, V.K. Synthesis of prostaglandin analogues, latanoprost and bimatoprost, using organocatalysis via a key bicyclic enal intermediate. Org. Lett., 2015, 17(3), 504-507.
[http://dx.doi.org/10.1021/ol503520f] [PMID: 25582321]
[73]
Hoover, J.M.; Ryland, B.L.; Stahl, S.S. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation. J. Am. Chem. Soc., 2013, 135(6), 2357-2367.
[http://dx.doi.org/10.1021/ja3117203] [PMID: 23317450]
[74]
Revol-Cavalier, J.; Bultel-Poncé, V.; Guy, A.; Durand, T.; Oger, C.; Galano, J.M. Total synthesis of a docosahexaenoicacid prostanoid using an intramolecular organocatalytic michael reaction of a formyl-enal derivative. Org. Lett., 2020, 22(19), 7455-7459.
[http://dx.doi.org/10.1021/acs.orglett.0c02553] [PMID: 32937076]
[75]
Tian, J-M.; Yuan, Y-H.; Tu, Y-Q.; Zhang, F-M.; Zhang, X-B.; Zhang, S-H.; Wang, S-H.; Zhang, X-M. The design of a spiro-pyrrolidine organocatalyst and its application to catalytic asymmetric Michael addition for the construction of all-carbon quaternary centers. Chem. Commun. (Camb.), 2015, 51(49), 9979-9982.
[http://dx.doi.org/10.1039/C5CC02765A] [PMID: 25998622]
[76]
Yuan, Y-H.; Han, X.; Zhu, F-P.; Tian, J-M.; Zhang, F-M.; Zhang, X-M.; Tu, Y-Q.; Wang, S-H.; Guo, X. Development of bifunctional organocatalysts and application to asymmetric total synthesis of naucleofficine I and II. Nat. Commun., 2019, 10(1), 3394.
[http://dx.doi.org/10.1038/s41467-019-11382-8] [PMID: 31358765]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy