Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

New C2- and N3-Modified Thieno[2,3-d]Pyrimidine Conjugates with Cytotoxicity in the Nanomolar Range

Author(s): Anelia Ts. Mavrova*, Stefan Dimov, Denitsa Yancheva*, Miroslav Rangelov, Diana Wesselinova and Emilia Naydenova

Volume 22, Issue 6, 2022

Published on: 27 July, 2021

Page: [1201 - 1212] Pages: 12

DOI: 10.2174/1871520621666210727130227

open access plus

Abstract

Aims: The aim of the current study was to develop and explore a series of new cytotoxic agents based on the conjugation between the thieno[2,3-d]pyrimidine moiety and a second pharmacophore at the C2 or N3 position.

Background: As the thieno[2,3-d]pyrimidine core is a bioisostere of the 4-anilinoquinazoline, various new thienopyrimidine derivatives were synthesized by modifying the structure of the clinically used anticancer quinazoline EGFR inhibitors of the first generation – gefitinib, and second-generation – dacomitinib and canertinib. It was reported that some thieno[2,3-d]pyrimidine derivatives showed improved EGFR inhibitory activity. On the other hand, the benzimidazole heterocycle is present as a pharmacophore unit in the structure of many clinically used chemotherapeutic agents. Some 2-aminobenzimidazole derivatives, possessing anticancer activity, demonstrated EGFR inhibition and the benzimidazole derivative EGF816 is currently in the second phase of clinical trials.

Objective: The objectives of the study were the design of a novel series thieno[2,3-d]pyrimidines, synthesis of the compounds and investigation of their effects towards human cancer HT-29, MDA-MB-231, HeLa, HepG2 and to normal human Lep3 cell lines. (American Type Culture Collection, ATCC, Rockville, MD, USA).

Methods: The synthetic protocol implemented cyclocondensation of 2-amino-thiophenes and nitriles in an inert medium, aza- Michael addition to benzimidazole derivatives and nucleophylic substitution at the N3 place. MTS test was used in order to establish the cytotoxicity of the tested compounds. SAR analysis and in silico assessment of the inhibitory potential towards human oncogenic V599EB-Raf were performed using Molinspiration tool and Molecular Operating environment software.

Results: The MTS test data showed that almost all studied thieno[2,3-d]pyirimidines (9-13, 21-22 and 25) manifest high inhibitory effect on cell proliferation at nanomolar concentrations, whereas compounds 9 (IC50 = 130 nM) and 10 (IC50 = 261 nM) containing amino acid moiety, and 21 (IC50 = 108 nM) possessing two thienopyrimidine moieties attached to a 1,3-disubstituted benzimidazole linker, revealed many times lower toxicity against Lep3 cells compared to the cancer cells. Thienopyrimidines 11-13 possessed high selectivity against HeLa cells. Compound 13 showed high inhibitory activity against MDA-MB-231 and HepG2, with IC50 1.44 nM and 1.11 nM respectively. To outline the possible biological target of the studied coumpounds, their potential to interact with human oncogenic V599EB-Raf was explored by a docking study. As a result, it was suggested that the benzimidazolyl and glycyl fragments could enhance the binding ability of the new compounds by increasing the number of hydrogen bond acceptors and by stabilizing the inactive form of the enzyme.

Conclusion: The thienopyrimidines tested in vitro for human cancer HT-29, MDA-MB-231, HeLa, HepG2 and normal human Lep3 cell lines demonstrated cytotoxicity in the nanomolar range. It was established that compounds 9, 10 and 21 showed many times lower toxicity against normal Lep3 cells that can provide a high selectivity towards all four cancer cell lines at small concentrations. Based on the analysis of the structure-activity relationship, the observed trends in the cytotoxicity could be related to the lipophilicity and the topological polar surface area of the tested compounds. The docking study on the potential of the new thieno[2,3-d]pyrimidine-4-ones to interact with mutant V599EB-Raf showed that the compounds might be able to stabilize the enzyme in its inactive form.

Keywords: Thieno[2, 3-d]pyrimidin-4(3H)-ones, cytotoxicity, HT-29, MDA-MB-231, HeLa, HepG2, SAR, B-raf.

Graphical Abstract

[1]
Prabhakar, V.; Babu, K.S.; Ravindranath, L.K.; Latha, J. Design, Synthesis, Characterization and Biological Activity of Novel Thieno[2,3-d]pyrimidine Derivatives. Ind. J. Adv. Chem. Sci, 2017, 5(1), 30-42.
[2]
Abdel-Megid, M.; Elmahdy, K.M.; Elkazak, A.M.; Seada, M.H.; Mohamed, O.F. Chemistry of Thienopyrimidines and Their Biological Applications. J. Pharmaceut. Appl. Chem, 2016, 2(3), 103-127.
[http://dx.doi.org/10.18576/jpac/020301]
[3]
Malasala, S.; Polomoni, A.; Ahmad, Md.; Shukla, M.; Kaul, G.; Dasgupta, A.; Chopra, S.; Nanduri, S. Structure based design, synthesis and evaluation of new thienopyrimidine derivatives as anti-bacterial agents. J. Mol. Struct., 2021, 1234, 130168.
[http://dx.doi.org/10.1016/j.molstruc.2021.130168]
[4]
Tolba, M.S.; Ahmed, M.; Kamal El-Dean, A.M.; Hassanien, R.; Farouk, M. Synthesis of New Fused Thienopyrimidines Derivatives as Anti-inflammatory Agents. J. Heterocycl. Chem., 2018, 55(2), 408-418.
[http://dx.doi.org/10.1002/jhet.3056]
[5]
Ragab, F.A.; Heiba, H.I.; El-Gazzar, M.G.; Abou-Seri, S.M.; El-Sabbagh, W.A.; El-Hazek, R.M. Anti-inflammatory, analgesic and COX-2 inhibitory activity of novel thiadiazoles in irradiated rats. J. Photochem. Photobiol. B, 2017, 166, 285-300.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.007] [PMID: 28013183]
[6]
El-Shoukrofy, M.S.; Abd El Razik, H.A. AboulWafa, O.M.; Bayad, A.E.; El-Ashmawy, I.M. Pyrazoles containing thiophene, thienopyrimidine and thienotriazolopyrimidine as COX-2 selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg. Chem., 2019, 85, 541-557.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.036] [PMID: 30807897]
[7]
El-Adasy, A-B.A.M. Synthesis, characterization, antioxidant and quantum chemical calculations of some new thiophene, diazepine and pyrimidine derivatives containing sulfamoyl moiety. Int. J. Chem. Stud, 2017, 5(3), 872-886.
[8]
Sathisha, K.; Gopala, S.; Rangappa, K.S. Biological activities of synthetic pyrimidine derivatives. World J. Pharmaceut Res, 2016, 15(2), 1467-1491.
[9]
Pizarro, J.C.; Hills, T.; Senisterra, G.; Wernimont, A.K.; Mackenzie, C.; Norcross, N.R.; Ferguson, M.A.J.; Wyatt, P.G.; Gilbert, I.H.; Hui, R. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. PLoS Negl. Trop. Dis., 2013, 7(10), e2492.
[http://dx.doi.org/10.1371/journal.pntd.0002492] [PMID: 24147171]
[10]
Mavrova, A.; Dimov, S.; Vuchev, D.; Anichina, K.; Yancheva, D. Antihelminthic Activity of Some 2-Substituted Thieno[2,3-d]pyrimidin-4-ones. Lett. Drug Des. Discov., 2018, 15(8), 887-894.
[http://dx.doi.org/10.2174/1570180814666171027161555]
[11]
Partridge, F.A.; Forman, R.; Willis, N.J.; Bataille, C.J.R.; Murphy, E.A.; Brown, A.E.; Heyer-Chauhan, N.; Marinič, B.; Sowood, D.J.C.; Wynne, G.M.; Else, K.J.; Russell, A.J.; Sattelle, D.B. 2,4-Diaminothieno[3,2-d]pyrimidines, a new class of anthelmintic with activity against adult and egg stages of whipworm. PLoS Negl. Trop. Dis., 2018, 12(7), e0006487.
[http://dx.doi.org/10.1371/journal.pntd.0006487] [PMID: 29995893]
[12]
Amawi, H.; Hussein, N.; Boddu, S.H.S.; Karthikeyan, C.; Williams, F.E. Novel Thienopyrimidine Derivative, RP-010, Induces β-Catenin Fragmentation and Is Efficacious against Prostate Cancer Cells. Cancers (Basel), 2019, 11, 711-729.
[http://dx.doi.org/10.3390/cancers11050711]
[13]
Song, X.J.; Yang, P.; Gao, K.; Wang, Y.; Dong, X-D.; Tan, X-H. Facile synthesis and antitumor activity of novel 2-trifluoromethylthieno[2,3-d]pyrimidine derivatives. Chin. Chem. Lett., 2014, 25, 1006-1010.
[http://dx.doi.org/10.1016/j.cclet.2014.05.043]
[14]
Khedr, M.A.; Abu-Zied, K.M.; Zaghary, W.A.; Aly, A.S.; Shouman, D.N.; Haffez, H. Novel thienopyrimidine analogues as potential metabotropic glutamate receptors inhibitors and anticancer activity: Synthesis, In-vitro, In-silico, and SAR approaches. Bioorg. Chem., 2021, 109, 104729.
[http://dx.doi.org/10.1016/j.bioorg.2021.104729] [PMID: 33676314]
[15]
Faraji, A.; Oghabi Bakhshaiesh, T.; Hasanvand, Z.; Motahari, R.; Nazeri, E.; Boshagh, M.A.; Firoozpour, L.; Mehrabi, H.; Khalaj, A.; Esmaeili, R.; Foroumadi, A. Design, synthesis and evaluation of novel thienopyrimidine-based agents bearing diaryl urea functionality as potential inhibitors of angiogenesis. Eur. J. Med. Chem., 2021, 209, 112942.
[http://dx.doi.org/10.1016/j.ejmech.2020.112942] [PMID: 33328104]
[16]
Elrazaz, E.Z.; Serya, R.A.T.; Ismail, N.S.M.; Abou, E-E.D.A.; Abouzi, K.A.M. Thieno[2,3-d]pyrimidine based derivatives as kinase inhibitors and anticancer agents. Fut. J. Pharmaceut. Sci, 2015, 1, 33-41.
[http://dx.doi.org/10.1016/j.fjps.2015.09.001]
[17]
Buron, F.; Mérour, J.Y.; Akssira, M.; Guillaumet, G.; Routier, S. Recent advances in the chemistry and biology of pyridopyrimidines. Eur. J. Med. Chem., 2015, 95, 76-95.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.029] [PMID: 25794791]
[18]
Oh, C.; Kim, H.; Kang, J.S.; Yun, J.; Sim, J.; Kim, H.M.; Han, G. Synthetic strategy for increasing solubility of potential FLT3 inhibitor thieno[2,3-d]pyrimidine derivatives through structural modifications at the C2 and C6 positions. Bioorg. Med. Chem. Lett., 2017, 27(3), 496-500.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.034] [PMID: 28043794]
[19]
Aziz, M.A.; Serya, R.A.T.; Lasheen, D.S.; Abdel-Aziz, A.K.; Esmat, A.; Mansour, A.M.; Singab, A.N.; Abouzid, K.A. Discovery of Potent VEGFR-2 Inhibitors based on Furopyrimidine and Thienopyrimidne Scaffolds as Cancer Targeting Agents. Sci. Rep., 2016, 6, 24460.
[http://dx.doi.org/10.1038/srep24460] [PMID: 27080011]
[20]
Küçükgüzel, Ş.G.; Coşkun, G.P. Macromolecular Drug Targets in Cancer Treatment and Thiosemicarbazides as Anticancer Agents. Anticancer. Agents Med. Chem., 2016, 16(10), 1288-1300.
[http://dx.doi.org/10.2174/1871520616666160219160256] [PMID: 26899188]
[21]
Ghith, A.; Ismail, N.S.M.; Youssef, K.; Abouzid, K.A.M. Medicinal Attributes of Thienopyrimidine Based Scaffold Targeting Tyrosine Kinases and Their Potential Anticancer Activities. Arc. Pharm. Chem. Life Sci., 2017, 350(11), e1700242.
[22]
Mghwary, A.E.; Gedawy, E.M.; Kamal, A.M.; Abuel-Maaty, S.M. Novel thienopyrimidine derivatives as dual EGFR and VEGFR-2 inhibitors: design, synthesis, anticancer activity and effect on cell cycle profile. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 838-852.
[http://dx.doi.org/10.1080/14756366.2019.1593160] [PMID: 30919701]
[23]
Shyyka, O.; Pokhodylo, N.; Finiuk, N.; Matiychuk, V.; Stoika, R.; Obushak, M. Anticancer Activity Evaluation of New Thieno[2,3-d]pyrimidin-4(3H)-ones and Thieno[3,2-d]pyrimidin-4(3H)-one Derivatives. Sci. Pharm., 2018, 86(3), 28-38.
[http://dx.doi.org/10.3390/scipharm86030028] [PMID: 30012942]
[24]
Kaur, R.; Kaur, P.; Sharma, S.; Singh, G.; Mehndiratta, S.; Bedi, P.M.; Nepali, K. Anti-cancer pyrimidines in diverse scaffolds: a review of patent literature. Recent Patents Anticancer Drug Discov., 2015, 10(1), 23-71.
[http://dx.doi.org/10.2174/1574892809666140917104502] [PMID: 25230072]
[25]
Zhao, M.; Wang, L.; Zheng, L.; Zhang, M.; Qiu, C.; Zhang, Y.; Du, D.; Niu, B. 2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors. BioMed Res. Int., 2017, 2017, 4649191.
[http://dx.doi.org/10.1155/2017/4649191] [PMID: 28630865]
[26]
Foulkes, D.M.; Byrne, D.P.; Yeung, W.; Shrestha, S.; Bailey, F.P.; Ferries, S.; Eyers, C.E.; Keeshan, K.; Wells, C.; Drewry, D.H.; Zuercher, W.J.; Kannan, N.; Eyers, P.A. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci. Signal., 2018, 11(549), eaat7951.
[http://dx.doi.org/10.1126/scisignal.aat7951] [PMID: 30254057]
[27]
Anand, K.; Wakode, S. Development of drugs based on Benzimidazole Heterocycle: Recent advancement and insights. Int. J. Chem. Stud, 2017, 5(2), 350-362.
[28]
Shaker, Y.M.; Omar, M.A.; Mahmoud, K.; Elhallouty, S.M.; El-Senousy, W.M.; Ali, M.M.; Mahmoud, A.E.; Abdel-Halim, A.H.; Soliman, S.M.; El Diwani, H.I. Synthesis, in vitro and in vivo antitumor and antiviral activity of novel 1-substituted benzimidazole derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 826-845.
[http://dx.doi.org/10.3109/14756366.2014.979344] [PMID: 25567722]
[29]
Yadav, S.; Narasimhan, B.; Kaur, H. Perspectives of Benzimidazole Derivatives as Anticancer Agents in the New Era. Anticancer. Agents Med. Chem., 2016, 16(11), 1403-1425.
[http://dx.doi.org/10.2174/1871520616666151103113412] [PMID: 26526461]
[30]
Tonelli, M.; Gabriele, E.; Piazza, F.; Basilico, N.; Parapini, S.; Tasso, B.; Loddo, R.; Sparatore, F.; Sparatore, A. Benzimidazole derivatives endowed with potent antileishmanial activity. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 210-226.
[http://dx.doi.org/10.1080/14756366.2017.1410480] [PMID: 29233048]
[31]
Alasmary, F.A.S.; Snelling, A.M.; Zain, M.E.; Alafeefy, A.M.; Awaad, A.S.; Karodia, N. Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents. Molecules, 2015, 20(8), 15206-15223.
[http://dx.doi.org/10.3390/molecules200815206] [PMID: 26307956]
[32]
Al-blewi, FF; Almehmadi, MA; Aouad, MR; Bardaweel, SK; Sahu, PK; Messali, M; Rezki, N Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazolesulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent.r J, 2018, 12, 110-124.
[33]
Tahlan, S.; Kumar, S.; Kakkar, S.; Narasimhan, B. Benzimidazole scafolds as promising antiproliferative agents: a review; BMC Chem, 2019, p. 13.
[34]
Khan, M.T.; Razi, M.T.; Jan, S.U.; Mukhtiar, M.; Gul, R. IzharUllah; Hussain, A.; Hashmi, A.M.; Ahmad, M.T.; Shahwani, N.A.; Rabbani, I. Synthesis, characterization and antihypertensive activity of 2-phenyl substituted benzimidazoles. Pak. J. Pharm. Sci., 2018, 31(3(Supplementary)), 1067-1074.
[PMID: 29731445]
[35]
El-Shorbagi, A.N.A.; Husein, M.A. Synthesis and investigation of antihypertensive activity using anaesthetized normotensive nonhuman primates of some 2-aryl-4-(substituted) pyrimido [1,2-a] benzimidazoles. Der Pharma. Chem., 2015, 7(4), 190-200.
[36]
Arao, T.; Okada, Y.; Mori, H.; Nishida, K.; Tanaka, Y. Antihypertensive and metabolic effects of high-dose olmesartan and telmisartan in type 2 diabetes patients with hypertension. Endocr. J., 2013, 60(5), 563-570.
[http://dx.doi.org/10.1507/endocrj.EJ12-0326] [PMID: 23303198]
[37]
Lelais, G.; Epple, R.; Marsilje, T.H.; Long, Y.O.; McNeill, M.; Chen, B.; Lu, W.; Anumolu, J.; Badiger, S.; Bursulaya, B.; DiDonato, M.; Fong, R.; Juarez, J.; Li, J.; Manuia, M.; Mason, D.E.; Gordon, P.; Groessl, T.; Johnson, K.; Jia, Y.; Kasibhatla, S.; Li, C.; Isbell, J.; Spraggon, G.; Bender, S.; Michellys, P.Y. Discovery of (R,E)-N-(7-Chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a Novel, Potent, and WT Sparing Covalent Inhibitor of Oncogenic (L858R, ex19del) and Resistant (T790M) EGFR Mutants for the Treatment of EGFR Mutant Non-Small-Cell Lung Cancers. J. Med. Chem., 2016, 59(14), 6671-6689.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01985] [PMID: 27433829]
[38]
Tan, D.S.; Kim, S-W.; Sequist, L.V.; Ponce Aix, S.; Smit, E.F.; Hida, T.; Yang, J.C-H.; Felip, E.; Seto, T.; Grohe, C.; Wolf, J.; Ko, J.; Marriere, E.; Belli, R.; Giovannini, M.; Kim, D-W. Phase II results for single-agent nazartinib (EGF816) in adult patients (pts) with treatment-naive EGFR-mutant non-small cell lung cancer (NSCLC). Ann. Oncol., 2018, (8), 748.
[39]
Farmanzadeh, D.; Najafi, M. Benzimidazole derivatives as anticancer drugs: A theoretical investigation. J. Theor. Comput. Chem., 2015, 14(03), 1550018.
[http://dx.doi.org/10.1142/S0219633615500182]
[40]
Wang, Z.; Deng, X.; Xiong, S.; Xiong, R.; Liu, J.; Zou, L.; Lei, X.; Cao, X.; Xie, Z.; Chen, Y.; Liu, Y.; Zheng, X.; Tang, G. Design, synthesis and biological evaluation of chrysin benzimidazole derivatives as potential anticancer agents. Nat. Prod. Res., 2018, 32(24), 2900-2909.
[http://dx.doi.org/10.1080/14786419.2017.1389940] [PMID: 29063798]
[41]
Chu, B.; Liu, F.; Li, L.; Ding, C.; Chen, K.; Sun, Q.; Shen, Z.; Tan, Y.; Tan, C.; Jiang, Y. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells. Cell Death Dis., 2015, 6(3), e1686.
[http://dx.doi.org/10.1038/cddis.2015.25] [PMID: 25766325]
[42]
Kumar, G.J.; Kumar, S.N.; Thummuri, D.; Adari, L.B.; Naidu, V.G.; Srinivas, K.; Rao, V.G. Synthesis and characterization of new s-triazine bearing benzimidazole and benzothiazole derivatives as anticancer agents. Med. Chem. Res., 2015, 24(12), 3991-4001.
[http://dx.doi.org/10.1007/s00044-015-1430-9]
[43]
Dimov, S.; Mavrova, A.Ts.; Yancheva, D.; Nikolova, B.; Tsoneva, I. Thieno[2,3-d]pyrimidin-4(3H)-one Derivatives of Benzimidazole as Potential Anti-Breast Cancer (MDA-MB-231, MCF-7) Agents. Anticancer. Agents Med. Chem., 2020.
[http://dx.doi.org/10.2174/1871520620666200721131431] [PMID: 32698751]
[44]
Gewald, K.; Schinke, E.; Bottcher, H. Heterocyclen aus CH-aciden Nitrilen, VIII. 2-Amino-thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel. Chem. Ber., 1966, 99, 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[45]
Puterova, Z.; Krutosikova, A.; Vegh, D. Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC, 2010, (i), 209-246.
[http://dx.doi.org/10.3998/ark.5550190.0011.105]
[46]
Sabins, R.W. The Gewald synthesis. Sulfur Rep., 1994, 16, 1-17.
[http://dx.doi.org/10.1080/01961779408048964]
[47]
Sabnis, R.W.; Rangnekar, D.W.; Sonawane, N.D. 2-Aminothiophenes by the Gewald reaction. J. Heterocycl. Chem., 1999, 36(2), 333-345.
[http://dx.doi.org/10.1002/jhet.5570360203]
[48]
Mavrova, A.Ts.; Wesselinova, D.; Tsenov, J.A.; Lubenov, L.A. Synthesis and antiproliferative activity of some new thieno[2,3-d]pyrimidin-4(3H)-ones containing 1,2,4-triazole and 1,3,4-thiadiazole moiety. Eur. J. Med. Chem., 2014, 86, 676-683.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.032] [PMID: 25222878]
[49]
Anastassova, N.O.; Mavrova, A.Ts.; Yancheva, D.Y.; Kondeva-Burdina, M.S.; Tzankova, V.I.; Stoyanov, S.S.; Shivachev, B.L.; Nikolova, R.P. Hepatotoxicity and antioxidant activity of some new N,N-disubstituted benzimidazole-2-thiones, radical scavenging mechanism and structureactivity relationship. Arab. J. Chem., 2018, 11, 353-369.
[http://dx.doi.org/10.1016/j.arabjc.2016.12.003]
[50]
Malich, G.; Markovic, B.; Winder, C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology, 1997, 124(3), 179-192.
[http://dx.doi.org/10.1016/S0300-483X(97)00151-0] [PMID: 9482120]
[51]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.A.; Izmaylov, F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.T.; Honda, N.Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.J.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Cioslowski, J.; Fox, D.J. Gaussian, Inc; Wallingford CT , 2009.
[52]
Becke, A.D.J. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[53]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[54]
Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98, 11623-11627.
[http://dx.doi.org/10.1021/j100096a001]
[55]
Wan, P.T.C.; Garnett, M.J.; Roe, S.M.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Jones, C.M.; Marshall, C.J.; Springer, C.J.; Barford, D.; Marais, R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 2004, 116(6), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(04)00215-6] [PMID: 15035987]
[56]
Molecular Operating Environment (MOE). Chemical Computing Group Inc.Sherbooke St. West; Suite: Montreal, QC, Canada, 2016.
[57]
Mavrova, A.Ts.; Vuchev, D.; Anichina, K.; Vassilev, N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno[2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem., 2010, 45(12), 5856-5861.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.050] [PMID: 20950896]
[58]
Bai, Y-B.; Zhang, A-L.; Tang, J-J.; Gao, J-M. Synthesis and Antifungal Activity of 2-Chloromethyl-1H-benzimidazole Derivatives against Phytopathogenic Fungi in vitro. J. Agric. Food Chem., 2015, 63(25), 5902-5910.
[PMID: 26063581]
[59]
Mavrova, A.Ts.; Denkova, P.; Tsenov, Y.A.; Anichina, K.K.; Vutchev, D.I. Synthesis and antitrichinellosis activity of some bis(benzimidazol-2-yl)amines. Bioorg. Med. Chem., 2007, 15(18), 6291-6297.
[http://dx.doi.org/10.1016/j.bmc.2007.06.017] [PMID: 17600722]
[60]
Katritzky, A.R.; Hall, C.D. El-Gendy, Bel-D.; Draghici, B. Tautomerism in drug discovery. J. Comput. Aided Mol. Des., 2010, 24(6-7), 475-484.
[http://dx.doi.org/10.1007/s10822-010-9359-z] [PMID: 20490619]
[61]
Martin, Y.C. Let’s not forget tautomers. J. Comput. Aided Mol. Des., 2009, 23(10), 693-704.
[http://dx.doi.org/10.1007/s10822-009-9303-2] [PMID: 19842045]
[62]
Padermshoke, A.; Katsumoto, Y.; Aida, M. Dimerization and double proton transfer-induced tautomerism of 4(3H)-pyrimidinone in solution studied by IR spectroscopy and quantum chemical calculations. J. Phys. Chem. B, 2006, 110(51), 26388-26395.
[http://dx.doi.org/10.1021/jp065408i] [PMID: 17181298]
[63]
CellTiter 96 Non-Radioactive Cell proliferation assay, Technical Bulletin#TB112, Promega Corporation USA. Revised 12/99.
[64]
Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 1993, 303(2), 474-482.
[http://dx.doi.org/10.1006/abbi.1993.1311] [PMID: 8390225]
[65]
Jover, R.; Ponsoda, X.; Castell, J.V.; Gómez-Lechón, M.J. Acute cytotoxicity of ten chemicals in human and rat cultured hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentrations. Toxicol. In Vitro, 1994, 8(1), 47-54.
[http://dx.doi.org/10.1016/0887-2333(94)90207-0] [PMID: 20692888]
[66]
Cheminformatics, M. Molinspiration property engine., 2016.www.molinspiration.com
[67]
Gopalsamy, A.; Shi, M.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer, E.; Kim, S.; Collins, K.; Wojciechowicz, D.; Mallon, R. B-Raf kinase inhibitors: hit enrichment through scaffold hopping. Bioorg. Med. Chem. Lett., 2010, 20(8), 2431-2434.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.030] [PMID: 20307980]
[68]
Bozorov, K.; Zhao, J.Y.; Elmuradov, B.; Pataer, A.; Aisa, H.A. Recent developments regarding the use of thieno[2,3-d]pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties. Eur. J. Med. Chem., 2015, 102, 552-573.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.018] [PMID: 26312434]
[69]
Park, C.H.; Lee, C.; Yang, J.S.; Joe, B-Y.; Chun, K.; Kim, H.; Kim, H.Y.; Kang, J.S.; Lee, J.I.; Kim, M.H.; Han, G. Discovery of thienopyrimidine-based FLT3 inhibitors from the structural modification of known IKKβ inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(12), 2655-2660.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.058] [PMID: 24813730]
[70]
Packard, G.K.; Papa, P.; Riggs, J.R.; Erdman, P.; Tehrani, L.; Robinson, D.; Harris, R.; Shevlin, G.; Perrin-Ninkovic, S.; Hilgraf, R.; McCarrick, M.A.; Tran, T.; Fleming, Y.; Bai, A.; Richardson, S.; Katz, J.; Tang, Y.; Leisten, J.; Moghaddam, M.; Cathers, B.; Zhu, D.; Sakata, S. Discovery and optimization of thieno[2,3-d]pyrimidines as B-Raf inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(1), 747-752.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.006] [PMID: 22137342]
[71]
Mallon, R.; Feldberg, L.R.; Kim, S.C.; Collins, K.; Wojciechowicz, D.; Hollander, I.; Kovacs, E.D.; Kohler, C. An enzyme-linked immunosorbent assay for the Raf/MEK1/MAPK signaling cascade. Anal. Biochem., 2001, 294(1), 48-54.
[http://dx.doi.org/10.1006/abio.2001.5151] [PMID: 11412005]
[72]
Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.; Rowley, B.; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.; Voznesensky, A.; Riedl, B.; Post, L.E.; Bollag, G.; Trail, P.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[73]
Hong, S.P.; Ahn, S.K. Discovery of a novel pan-RAF inhibitor with potent anti-tumor activity in preclinical models of BRAFV600E mutant cancer. Life Sci., 2017, 183, 37-44.
[http://dx.doi.org/10.1016/j.lfs.2017.06.021] [PMID: 28645859]
[74]
Wang, L.; Zhu, G.; Zhang, Q.; Duan, C.; Zhang, Y.; Zhang, Z.; Zhou, Y.; Lu, T.; Tang, W. Rational design, synthesis, and biological evaluation of Pan-Raf inhibitors to overcome resistance. Org. Biomol. Chem., 2017, 15(16), 3455-3465.
[http://dx.doi.org/10.1039/C7OB00518K] [PMID: 28368067]
[75]
Mavrova, A.Ts.; Dimov, S.; Yancheva, D.; Rangelov, M.; Wesselinova, D.; Tsenov, J.A. Synthesis, anticancer activity and photostability of novel 3-ethyl-2-mercapto-thieno[2,3-d]pyrimidin-4(3H)-ones. Eur. J. Med. Chem., 2016, 123, 69-79.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.022] [PMID: 27474924]
[76]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10.
[http://dx.doi.org/10.1016/j.drudis.2015.07.008] [PMID: 26210956]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy