Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Induction of Apoptosis and Autophagy by Ternary Copper Complex Towards Breast Cancer Cells

Author(s): Zheng Yang Lee, Chee Hong Leong, Krystal U. Ling Lim, Christopher Chun Sing Wong, Pornwasu Pongtheerawan, Sathiavani A. Arikrishnan, Kian Leong Tan, Jian Sheng Loh, May Lee Low, Chee Wun How, Yong Sze Ong, Yin Sim Tor and Jhi Biau Foo*

Volume 22, Issue 6, 2022

Published on: 26 July, 2021

Page: [1159 - 1170] Pages: 12

DOI: 10.2174/1871520621666210726132543

Price: $65

Abstract

Background: Copper complex has been gaining much attention in anticancer research as a targeted agent since cancer cells uptake more copper than non-cancerous cells. Our group synthesised a ternary copper complex, which is composed of 1,10-phenanthroline and tyrosine [Cu(phen)(L-tyr)Cl].3H20. These two payloads have been designed to cleave DNA and inhibit protein degradation system (proteasome) concurrently in cancer cells, making this copper complex a dual-target compound.

Objective: The current study was carried out to investigate the mode of cell death and the role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20 in MCF-7 and MDA-MB-231 breast cancer cells.

Methods: Growth inhibition of [Cu(phen)(L-tyr)Cl].3H20 towards MDA-MB-231 and human non-cancerous MCF10A breast cells was determined by MTT assay. Annexin-V-FITC/PI and cell cycle analysis were evaluated by flow cytometry. The expression of p53, Bax, caspase-9, caspase-7, caspase-3 and LC3 was determined using western blot analysis. The cells were then co-treated with hydroxychloroquine to ascertain the role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20.

Results: [Cu(phen)(L-tyr)Cl].3H20 inhibited the growth of cancer cells dose-dependently with less toxicity towards MCF10A cells. Additionally, [Cu(phen)(L-tyr)Cl].3H20 induced apoptosis and cell cycle arrest towards MCF-7 and MDA-MB-231 breast cancer cells possibly via regulation of p53, Bax, caspase-9, caspase-3 and capase-7. The expression of LC3II was upregulated in both cancer cell lines upon treatment with [Cu(phen)(L-tyr) Cl].3H20, indicating the induction of autophagy. Co-treatment with autophagy inhibitor hydroxychloroquine significantly enhanced growth inhibition of both cell lines, suggesting that autophagy induced by [Cu(phen)(L-tyr) Cl].3H20 in both breast cancer cells promoted cell survival.

Conclusion: [Cu(phen)(L-tyr)Cl].3H20 holds great potential to be developed for breast cancer treatment.

Keywords: Breast cancer, copper complex, apoptosis, cell cycle arrest, autophagy, p53.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res., 2015, 5(10), 2929-2943.
[PMID: 26693050]
[3]
Sims, A.H.; Howell, A.; Howell, S.J.; Clarke, R.B. Origins of breast cancer subtypes and therapeutic implications. Nat. Clin. Pract. Oncol., 2007, 4(9), 516-525.
[http://dx.doi.org/10.1038/ncponc0908] [PMID: 17728710]
[4]
Wang, D.Y.; Jiang, Z.; Ben-David, Y.; Woodgett, J.R.; Zacksenhaus, E. Molecular stratification within triple-negative breast cancer subtypes. Sci. Rep., 2019, 9(1), 19107.
[http://dx.doi.org/10.1038/s41598-019-55710-w] [PMID: 31836816]
[5]
Garrido-Castro, A.C.; Lin, N.U.; Polyak, K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov., 2019, 9(2), 176-198.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[6]
Guha, M.; Srinivasan, S.; Raman, P.; Jiang, Y.; Kaufman, B.A.; Taylor, D.; Dong, D.; Chakrabarti, R.; Picard, M.; Carstens, R.P.; Kijima, Y.; Feldman, M.; Avadhani, N.G. Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4 Pt A), 1060-1071.
[http://dx.doi.org/10.1016/j.bbadis.2018.01.002] [PMID: 29309924]
[7]
Marra, A.; Trapani, D. viale, G.; Criscitiello, C.; Curigliano, G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer, 2020, 6, 54.
[http://dx.doi.org/10.1038/s41523-020-00197-2] [PMID: 33088912]
[8]
Santonja, A.; Sánchez-Muñoz, A.; Lluch, A.; Chica-Parrado, M.R.; Albanell, J.; Chacón, J.I.; Antolín, S.; Jerez, J.M.; de la Haba, J.; de Luque, V.; Fernández-De Sousa, C.E.; Vicioso, L.; Plata, Y.; Ramírez-Tortosa, C.L.; Álvarez, M.; Llácer, C.; Zarcos-Pedrinaci, I.; Carrasco, E.; Caballero, R.; Martín, M.; Alba, E. Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy. Oncotarget, 2018, 9(41), 26406-26416.
[http://dx.doi.org/10.18632/oncotarget.25413] [PMID: 29899867]
[9]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet, 2017, 389(10087), 2430-2442.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0] [PMID: 27939063]
[10]
Linschoten, M.; Kamphuis, J.A.M.; van Rhenen, A.; Bosman, L.P.; Cramer, M.J.; Doevendans, P.A.; Teske, A.J.; Asselbergs, F.W. Cardiovascular adverse events in patients with non-Hodgkin lymphoma treated with first-line cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP with rituximab (R-CHOP): a systematic review and meta-analysis. Lancet Haematol., 2020, 7(4), e295-e308.
[http://dx.doi.org/10.1016/S2352-3026(20)30031-4] [PMID: 32135128]
[11]
Monach, P.A.; Arnold, L.M.; Merkel, P.A. Incidence and prevention of bladder toxicity from cyclophosphamide in the treatment of rheumatic diseases: a data-driven review. Arthritis Rheum., 2010, 62(1), 9-21.
[http://dx.doi.org/10.1002/art.25061] [PMID: 20039416]
[12]
Pugazhendhi, A.; Edison, T.N.J.I.; Velmurugan, B.K.; Jacob, J.A.; Karuppusamy, I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci., 2018, 200, 26-30.
[http://dx.doi.org/10.1016/j.lfs.2018.03.023] [PMID: 29534993]
[13]
Zhao, L.; Zhang, B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci. Rep., 2017, 7, 44735-44735.
[http://dx.doi.org/10.1038/srep44735] [PMID: 28300219]
[14]
Abdel-Mohsen, M.A.; Abdel Malak, C.A.; Abou Yossef, M.A.; El-Shafey, E.S. Antitumor activity of copper (I)-nicotinate complex and autophagy modulation in HCC1806 breast cancer cells. Anticancer. Agents Med. Chem., 2017, 17(11), 1526-1536.
[http://dx.doi.org/10.2174/1871520617666170327144122] [PMID: 28356017]
[15]
Biersack, B.; Ahmad, A.; Sarkar, F.H.; Schobert, R. Coinage metal complexes against breast cancer. Curr. Med. Chem., 2012, 19(23), 3949-3956.
[http://dx.doi.org/10.2174/092986712802002482] [PMID: 22780959]
[16]
Cadavid-Vargas, J.F.; Leon, I.E.; Etcheverry, S.B.; Santi, E.; Torre, M.H.; Di Virgilio, A.L. Copper(II) Complexes with saccharinate and glutamine as antitumor agents: Cytoand genotoxicity in human osteosarcoma cells. Anticancer. Agents Med. Chem., 2017, 17(3), 424-433.
[http://dx.doi.org/10.2174/1871520616666160513130204] [PMID: 27173967]
[17]
Foo, J.B.; Low, M.L.; Lim, J.H.; Lor, Y.Z.; Zainol Abidin, R.; Eh Dam, V.; Abdul Rahman, N.; Beh, C.Y.; Chan, L.C.; How, C.W.; Tor, Y.S.; Saiful Yazan, L. Copper complex derived from S-benzyldithiocarbazate and 3-acetylcoumarin induced apoptosis in breast cancer cell. Biometals, 2018, 31(4), 505-515.
[http://dx.doi.org/10.1007/s10534-018-0096-4] [PMID: 29623473]
[18]
Foo, J.B.; Ng, L.S.; Lim, J.H.; Tan, P.X.; Lor, Y.Z.; Loo, J.S.E.; Low, M.L.; Chan, L.C.; Beh, C.Y.; Leong, S.W.; Saiful Yazan, L.; Tor, Y.S.; How, C.W. Induction of cell cycle arrest and apoptosis by copper complex Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. RSC Advances, 2019, 9(32), 18359-18370.
[http://dx.doi.org/10.1039/C9RA03130H]
[19]
Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.A.; Khan, R.A. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: in vitro and in vivo studies. Sci. Rep., 2019, 9(1), 5237.
[http://dx.doi.org/10.1038/s41598-019-41063-x] [PMID: 30918270]
[20]
Katarzyna, M.; Anna, S.; Zielinska-Blizniewska, H.; Ireneusz, M. An evaluation of the antioxidant and anticancer properties of complex compounds of copper (II), platinum (II), palladium (II) and ruthenium (III) for use in cancer therapy. Mini Rev. Med. Chem., 2018, 18(16), 1373-1381.
[http://dx.doi.org/10.2174/1389557518666180423145825] [PMID: 29692246]
[21]
Kostelidou, A.; Kalogiannis, S.; Begou, O-A.; Perdih, F.; Turel, I.; Psomas, G. Synthesis, structure and biological activity of copper(II) complexes with gatifloxacin. Polyhedron, 2016, 119, 359-370.
[http://dx.doi.org/10.1016/j.poly.2016.09.012]
[22]
Mahendiran, D.; Amuthakala, S.; Bhuvanesh, N.S.P.; Kumar, R.S.; Rahiman, A.K. Copper complexes as prospective anticancer agents: in vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Advances, 2018, 8(30), 16973-16990.
[http://dx.doi.org/10.1039/C8RA00954F]
[23]
Marzano, C.; Pellei, M.; Tisato, F.; Santini, C. Copper complexes as anticancer agents. Anticancer. Agents Med. Chem., 2009, 9(2), 185-211.
[http://dx.doi.org/10.2174/187152009787313837] [PMID: 19199864]
[24]
Qiu, L.; Lv, G.; Guo, L.; Chen, L.; Luo, S.; Zou, M.; Lin, J. Synthesis, crystal structure and antitumor effect of a novel copper(II) complex bearing zoledronic acid derivative. Eur. J. Med. Chem., 2015, 89, 42-50.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.028] [PMID: 25462224]
[25]
Ruiz-Azuara, L.; Bravo-Gómez, M.E. Copper compounds in cancer chemotherapy. Curr. Med. Chem., 2010, 17(31), 3606-3615.
[http://dx.doi.org/10.2174/092986710793213751] [PMID: 20846116]
[26]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[27]
Singh, N.K.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer potency of copper(II) complexes of thiosemicarbazones. J. Inorg. Biochem., 2020, 210, 111134.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111134] [PMID: 32673842]
[28]
Skrott, Z.; Cvek, B. Diethyldithiocarbamate complex with copper: the mechanism of action in cancer cells. Mini Rev. Med. Chem., 2012, 12(12), 1184-1192.
[http://dx.doi.org/10.2174/138955712802762068] [PMID: 22931589]
[29]
Stefani, C.; Al-Eisawi, Z.; Jansson, P.J.; Kalinowski, D.S.; Richardson, D.R. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J. Inorg. Biochem., 2015, 152, 20-37.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.08.010] [PMID: 26335599]
[30]
Wehbe, M.; Lo, C.; Leung, A.W.Y.; Dragowska, W.H.; Ryan, G.M.; Bally, M.B. Copper (II) complexes of bidentate ligands exhibit potent anti-cancer activity regardless of platinum sensitivity status. Invest. New Drugs, 2017, 35(6), 682-690.
[http://dx.doi.org/10.1007/s10637-017-0488-2] [PMID: 28733701]
[31]
Zhang, W.C.; Tang, X.; Lu, X. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity. J. Inorg. Biochem., 2016, 156, 105-112.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.01.007] [PMID: 26775280]
[32]
Gupte, A.; Mumper, R.J. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat. Rev., 2009, 35(1), 32-46.
[http://dx.doi.org/10.1016/j.ctrv.2008.07.004] [PMID: 18774652]
[33]
Low, M.L.; Chan, C.W.; Ng, P.Y.; Ooi, I.H.; Maah, M.J.; Chye, S.M.; Tan, K.W.; Ng, S.W.; Ng, C.H. Ternary and binary copper(II) complexes: synthesis, characterization, ROS-inductive, proteasome inhibitory, and anticancer properties. J. Coord. Chem., 2017, 70(2), 223-241.
[http://dx.doi.org/10.1080/00958972.2016.1260711]
[34]
Anbu, S.; Killivalavan, A.; Alegria, E.C.B.A.; Mathan, G.; Kandaswamy, M. Effect of 1,10-phenanthroline on DNA binding, DNA cleavage, cytotoxic and lactate dehydrogenase inhibition properties of Robson type macrocyclic dicopper(II) complex. J. Coord. Chem., 2013, 66(22), 3989-4003.
[http://dx.doi.org/10.1080/00958972.2013.858136]
[35]
Banerjee, S.; Wei, T.; Wang, J.; Lee, J.J.; Gutierrez, H.L.; Chapman, O.; Wiley, S.E.; Mayfield, J.E.; Tandon, V.; Juarez, E.F.; Chavez, L.; Liang, R.; Sah, R.L.; Costello, C.; Mesirov, J.P.; de la Vega, L.; Cooper, K.L.; Dixon, J.E.; Xiao, J.; Lei, X. Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression. Proc. Natl. Acad. Sci. USA, 2019, 116(49), 24881-24891.
[http://dx.doi.org/10.1073/pnas.1912033116] [PMID: 31754034]
[36]
Bortolotto, T.; Silva, P.P.; Neves, A.; Pereira-Maia, E.C.; Terenzi, H. Photoinduced DNA cleavage promoted by two copper(II) complexes of tetracyclines and 1,10-phenanthroline. Inorg. Chem., 2011, 50(21), 10519-10521.
[http://dx.doi.org/10.1021/ic201349s] [PMID: 21970295]
[37]
Hamel, F.G.; Upward, J.L.; Siford, G.L.; Duckworth, W.C. Inhibition of proteasome activity by selected amino acids. Metabolism, 2003, 52(7), 810-814.
[http://dx.doi.org/10.1016/S0026-0495(03)00094-5] [PMID: 12870152]
[38]
Reddy, P.R.; Raju, N.; Satyanarayana, B. Synthesis, characterization, and DNA binding and cleavage properties of copper(II)-tryptophanphenyl-alanine-1,10-phenanthroline/2,2′-bipyridine complexes. Chem. Biodivers., 2011, 8(1), 131-144.
[http://dx.doi.org/10.1002/cbdv.200900388] [PMID: 21259424]
[39]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[40]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[41]
Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer, 2021, 21(1), 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y] [PMID: 33128031]
[42]
Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[43]
Ozaki, T.; Nakagawara, A. p53: the attractive tumor suppressor in the cancer research field. J. Biomed. Biotechnol., 2011, 2011, 603925.
[http://dx.doi.org/10.1155/2011/603925] [PMID: 21188172]
[44]
Bykov, V.J.N.; Eriksson, S.E.; Bianchi, J.; Wiman, K.G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer, 2018, 18(2), 89-102.
[http://dx.doi.org/10.1038/nrc.2017.109] [PMID: 29242642]
[45]
Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ., 2019, 26(2), 199-212.
[http://dx.doi.org/10.1038/s41418-018-0246-9] [PMID: 30538286]
[46]
Perri, F.; Pisconti, S.; Della Vittoria Scarpati, G. P53 mutations and cancer: a tight linkage. Ann. Transl. Med., 2016, 4(24), 522.
[http://dx.doi.org/10.21037/atm.2016.12.40] [PMID: 28149884]
[47]
Soussi, T.; Wiman, K.G. TP53: an oncogene in disguise. Cell Death Differ., 2015, 22(8), 1239-1249.
[http://dx.doi.org/10.1038/cdd.2015.53] [PMID: 26024390]
[48]
Lukashchuk, N.; Vousden, K.H. Ubiquitination and degradation of mutant p53. Mol. Cell. Biol., 2007, 27(23), 8284-8295.
[http://dx.doi.org/10.1128/MCB.00050-07] [PMID: 17908790]
[49]
Schulz-Heddergott, R.; Moll, U.M. Gain-of-Function (GOF) Mutant p53 as Actionable Therapeutic Target. Cancers (Basel), 2018, 10(6), E188.
[http://dx.doi.org/10.3390/cancers10060188] [PMID: 29875343]
[50]
Aschauer, L.; Muller, P.A. Novel targets and interaction partners of mutant p53 Gain-Of-Function. Biochem. Soc. Trans., 2016, 44(2), 460-466.
[http://dx.doi.org/10.1042/BST20150261] [PMID: 27068955]
[51]
Cordani, M.; Oppici, E.; Dando, I.; Butturini, E.; Dalla Pozza, E.; Nadal-Serrano, M.; Oliver, J.; Roca, P.; Mariotto, S.; Cellini, B.; Blandino, G.; Palmieri, M.; Di Agostino, S.; Donadelli, M. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Mol. Oncol., 2016, 10(7), 1008-1029.
[http://dx.doi.org/10.1016/j.molonc.2016.04.001] [PMID: 27118659]
[52]
Ferraiuolo, M.; Di Agostino, S.; Blandino, G.; Strano, S. Oncogenic intra-p53 family member interactions in human cancers. Front. Oncol., 2016, 6, 77.
[http://dx.doi.org/10.3389/fonc.2016.00077] [PMID: 27066457]
[53]
Choudhury, S.; Kolukula, V.K.; Preet, A.; Albanese, C.; Avantaggiati, M.L. Dissecting the pathways that destabilize mutant p53: the proteasome or autophagy? Cell Cycle, 2013, 12(7), 1022-1029.
[http://dx.doi.org/10.4161/cc.24128] [PMID: 23466706]
[54]
Bargonetti, J.; Prives, C. Gain-of-function mutant p53: history and speculation. J. Mol. Cell Biol., 2019, 11(7), 605-609.
[http://dx.doi.org/10.1093/jmcb/mjz067] [PMID: 31283823]
[55]
Blandino, G.; Di Agostino, S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J. Exp. Clin. Cancer Res., 2018, 37(1), 30.
[http://dx.doi.org/10.1186/s13046-018-0705-7] [PMID: 29448954]
[56]
Di Agostino, S.; Fontemaggi, G.; Strano, S.; Blandino, G.; D’Orazi, G. Targeting mutant p53 in cancer: the latest insights. Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2019, 38(1), 290-290.
[57]
Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 as a target for cancer treatment. Eur. J. Cancer, 2017, 83, 258-265.
[http://dx.doi.org/10.1016/j.ejca.2017.06.023] [PMID: 28756138]
[58]
Freed-Pastor, W.A.; Prives, C. Mutant p53: one name, many proteins. Genes Dev., 2012, 26(12), 1268-1286.
[http://dx.doi.org/10.1101/gad.190678.112] [PMID: 22713868]
[59]
Olive, K.P.; Tuveson, D.A.; Ruhe, Z.C.; Yin, B.; Willis, N.A.; Bronson, R.T.; Crowley, D.; Jacks, T. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 2004, 119(6), 847-860.
[http://dx.doi.org/10.1016/j.cell.2004.11.004] [PMID: 15607980]
[60]
Zhang, J.; Sun, W.; Kong, X.; Zhang, Y.; Yang, H.J.; Ren, C.; Jiang, Y.; Chen, M.; Chen, X. Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proc. Natl. Acad. Sci. USA, 2019, 116(48), 24259-24267.
[http://dx.doi.org/10.1073/pnas.1913919116] [PMID: 31712410]
[61]
Zhou, X.; Hao, Q.; Lu, H. Mutant p53 in cancer therapy-the barrier or the path. J. Mol. Cell Biol., 2019, 11(4), 293-305.
[http://dx.doi.org/10.1093/jmcb/mjy072] [PMID: 30508182]
[62]
Mullan, P.B.; Quinn, J.E.; Harkin, D.P. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene, 2006, 25(43), 5854-5863.
[http://dx.doi.org/10.1038/sj.onc.1209872] [PMID: 16998500]
[63]
Seoane, J.; Le, H.V.; Shen, L.; Anderson, S.A.; Massagué, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 2004, 117(2), 211-223.
[http://dx.doi.org/10.1016/S0092-8674(04)00298-3] [PMID: 15084259]
[64]
Tinkum, K.L.; White, L.S.; Marpegan, L.; Herzog, E.; Piwnica-Worms, D.; Piwnica-Worms, H. Forkhead box O1 (FOXO1) protein, but not p53, contributes to robust induction of p21 expression in fasted mice. J. Biol. Chem., 2013, 288(39), 27999-28008.
[http://dx.doi.org/10.1074/jbc.M113.494328] [PMID: 23918930]
[65]
Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a molecular target for cancer treatment. Eur. J. Pharm. Sci., 2019, 134, 116-137.
[http://dx.doi.org/10.1016/j.ejps.2019.04.011] [PMID: 30981885]
[66]
Battista, R.A.; Resnati, M.; Facchi, C.; Ruggieri, E.; Cremasco, F.; Paradiso, F.; Orfanelli, U.; Giordano, L.; Bussi, M.; Cenci, S.; Milan, E. Autophagy mediates epithelial cancer chemoresistance by reducing p62/SQSTM1 accumulation. PLoS One, 2018, 13(8), e0201621.
[http://dx.doi.org/10.1371/journal.pone.0201621] [PMID: 30067838]
[67]
Soni, M.; Patel, Y.; Markoutsa, E.; Jie, C.; Liu, S.; Xu, P.; Chen, H. Autophagy, cell viability, and chemoresistance are regulated by miR-489 in breast cancer. Mol. Cancer Res., 2018, 16(9), 1348-1360.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0634] [PMID: 29784669]
[68]
Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4(10), e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[69]
Jones, T.M.; Espitia, C.; Wang, W.; Nawrocki, S.T.; Carew, J.S. Moving beyond hydroxychloroquine: the novel lysosomal autophagy inhibitor ROC-325 shows significant potential in preclinical studies. Cancer Commun. (Lond.), 2019, 39(1), 72-72.
[http://dx.doi.org/10.1186/s40880-019-0418-0] [PMID: 31706349]
[70]
Liu, L.Q.; Wang, S.B.; Shao, Y.F.; Shi, J.N.; Wang, W.; Chen, W.Y.; Ye, Z.Q.; Jiang, J.Y.; Fang, Q.X.; Zhang, G.B.; Xuan, Z.X. Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed. Pharmacother., 2019, 118, 109339.
[http://dx.doi.org/10.1016/j.biopha.2019.109339] [PMID: 31545270]
[71]
Verbaanderd, C.; Maes, H.; Schaaf, M.B.; Sukhatme, V.P.; Pantziarka, P.; Sukhatme, V.; Agostinis, P.; Bouche, G. Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer agents. Ecancermedicalscience, 2017, 11, 781.
[http://dx.doi.org/10.3332/ecancer.2017.781] [PMID: 29225688]
[72]
Xu, R.; Ji, Z.; Xu, C.; Zhu, J. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore), 2018, 97(46), e12912.
[http://dx.doi.org/10.1097/MD.0000000000012912] [PMID: 30431566]
[73]
Bialik, S.; Dasari, S.K.; Kimchi, A. Autophagy-dependent cell death - where, how and why a cell eats itself to death. J. Cell Sci., 2018, 131(18), jcs215152.
[http://dx.doi.org/10.1242/jcs.215152] [PMID: 30237248]
[74]
Li, X.; Zhou, Y.; Li, Y.; Yang, L.; Ma, Y.; Peng, X.; Yang, S.; Liu, J.; Li, H. Autophagy: A novel mechanism of chemoresistance in cancers. Biomed. Pharmacother., 2019, 119, 109415.
[http://dx.doi.org/10.1016/j.biopha.2019.109415] [PMID: 31514065]
[75]
Liao, Y-X.; Yu, H-Y.; Lv, J-Y.; Cai, Y-R.; Liu, F.; He, Z-M.; He, S-S. Targeting autophagy is a promising therapeutic strategy to overcome chemoresistance and reduce metastasis in osteosarcoma. Int. J. Oncol., 2019, 55(6), 1213-1222.
[http://dx.doi.org/10.3892/ijo.2019.4902] [PMID: 31638211]
[76]
Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[77]
Pagotto, A.; Pilotto, G.; Mazzoldi, E.L.; Nicoletto, M.O.; Frezzini, S.; Pastò, A.; Amadori, A. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis., 2017, 8(7), e2943.
[http://dx.doi.org/10.1038/cddis.2017.327] [PMID: 28726781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy