Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Polymeric Nanoparticles for Transdermal Delivery of Polyphenols

Author(s): Namratha Turuvekere Vittala Murthy, Sagar Kumar Paul, Harsh Chauhan and Somnath Singh*

Volume 19, Issue 2, 2022

Published on: 04 January, 2022

Page: [182 - 191] Pages: 10

DOI: 10.2174/1567201818666210720144851

Price: $65

Abstract

Polyphenols comprise a large group of naturally occurring plant secondary metabolites with various nutritional and health benefits. They are safe and are found abundantly in the diet. Current research on polyphenols focuses on their mechanism and their benefits on human health. However, due to their low solubility and bioavailability, delivery from the conventional route has been a challenge and their translation into clinical applications has been limited. Topical and transdermal delivery of polymeric nanoparticles will act as a novel therapeutic approach for promising delivery of polyphenols. In this review, we have evaluated the existing scientific literature and summarized the potential use of polymeric nanoparticles as a carrier for polyphenolic compounds for delivery via topical and transdermal routes for the treatment of skin cancers such as melanoma.

Keywords: Polyphenols, polymeric nanoparticles, transdermal drug delivery, topical, curcumin, metabolites.

Graphical Abstract

[1]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[2]
Tripathy, B.C.; Oelmüller, R. Reactive oxygen species generation and signaling in plants. Plant Signal. Behav., 2012, 7(12), 1621-1633.
[http://dx.doi.org/10.4161/psb.22455] [PMID: 23072988]
[3]
Yokawa, K.; Kagenishi, T.; Baluška, F. UV-B induced generation of reactive oxygen species promotes formation of bfa-induced compartments in cells of arabidopsis root apices. Front. Plant Sci., 2016, 6, 1162.
[http://dx.doi.org/10.3389/fpls.2015.01162] [PMID: 26793199]
[4]
Shetty, N.P.; Jørgensen, H.J.L.; Jensen, J.D.; Collinge, D.B.; Shetty, H.S. Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant Pathol., 2008, 121(3), 267-280.
[http://dx.doi.org/10.1007/s10658-008-9302-5]
[5]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[6]
Khan, M.; Paniwnyk, L.; Hassan, S. Polyphenols as natural antioxidants: sources, extraction and applications in food, cosmetics and drugs. 2019, 197-235.
[http://dx.doi.org/10.1007/978-981-13-3810-6_8]
[7]
Singh, A.; Holvoet, S.; Mercenier, A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy, 2011, 41(10), 1346-1359.
[http://dx.doi.org/10.1111/j.1365-2222.2011.03773.x] [PMID: 21623967]
[8]
Aguirre, A.; Borneo, R. Chapter 4 - improving bioavailability of polyphenols using nanodelivery systems based on food polymers. Polyphenols Plants, 2nd Ed.; Watson, R.R., Ed.; Academic Press, 2019, pp. 59-65.
[http://dx.doi.org/10.1016/B978-0-12-813768-0.00004-9]
[9]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[10]
Nair, R.S.; Morris, A.; Billa, N.; Leong, C-O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery. AAPS PharmSciTech, 2019, 20(2), 69.
[http://dx.doi.org/10.1208/s12249-018-1279-6] [PMID: 30631984]
[11]
Krishnaswamy, K.; Orsat, V.; Thangavel, K. Synthesis and characterization of nano-encapsulated catechin by molecular inclusion with beta-cyclodextrin. J. Food Eng., 2012, 111(2), 255-264.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.02.024]
[12]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: a review of fda-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[13]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[14]
Ribeiro, A.M.; Veiga, F.; Figueiras, A. Chapter 3 - biodegradable polymeric nanostructures: design and advances in oral drug delivery for neurodegenerative disorders. Nanostructures Oral Med; Andronescu, E.; Grumezescu, A.M., Eds.; Elsevier, 2017, pp. 61-86.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00003-1]
[15]
Caltagirone, S.; Rossi, C.; Poggi, A.; Ranelletti, F.O.; Natali, P.G.; Brunetti, M.; Aiello, F.B.; Piantelli, M. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer, 2000, 87(4), 595-600.
[http://dx.doi.org/10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5] [PMID: 10918203]
[16]
History of CIMZIA®, CIMZIA. Available from: https://www.cimzia.com/cimzia-history [Accessed December 29, 2020].
[17]
Shire Announces FDA Approval of Adynovate [Antihemophilic Factor (Recombinant), PEGylated] for Use in Children and Surgical Settings, Drugs.Com. Available from: https://www.drugs.com/newdrugs/shire-announces-fda-approval-adynovate-antihemophilic-factor-recombinant-pegylated-children-4470.html [Accessed December 29, 2020].
[18]
C. for B.E. and Research, REBINYN, FDA. 2019. Available from: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/rebinyn [Accessed December 29, 2020]
[19]
Flexion Therapeutics Announces FDA Approval of sNDA to Revise ZILRETTA® (triamcinolone acetonide extended-release injectable suspension) Product Label | Flexion Therapeutics, Inc. Available from: https://ir.flexiontherapeutics.com/news-releases/news-release-details/flexion-therapeutics-announces-fda-approval-snda-revise [Accessed December 29, 2020]
[20]
Shreffler, J.W.; Pullan, J.E.; Dailey, K.M.; Mallik, S.; Brooks, A.E. Overcoming hurdles in nanoparticle clinical translation: the influence of experimental design and surface modification. Int. J. Mol. Sci., 2019, 20(23), E6056.
[http://dx.doi.org/10.3390/ijms20236056] [PMID: 31801303]
[21]
Pund, S.; Joshi, A. Chapter 23 - nanoarchitectures for neglected tropical protozoal diseases: challenges and state of the art. Nano- Microscale Drug Deliv. Syst; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 439-480.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00023-6]
[22]
Chaurasia, S.; Chaubey, P.; Patel, R.R.; Kumar, N.; Mishra, B. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: cytotoxicity, pharmacokinetic and anticancer efficacy studies. Drug Dev. Ind. Pharm., 2016, 42(5), 694-700.
[http://dx.doi.org/10.3109/03639045.2015.1064941] [PMID: 26165247]
[23]
Cano, A.; Ettcheto, M.; Chang, J-H.; Barroso, E.; Espina, M.; Kühne, B.A.; Barenys, M.; Auladell, C.; Folch, J.; Souto, E.B.; Camins, A.; Turowski, P.; García, M.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release, 2019, 301, 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.010] [PMID: 30876953]
[24]
Di Francesco, M.; Primavera, R.; Summa, M.; Pannuzzo, M.; Di Francesco, V.; Di Mascolo, D.; Bertorelli, R.; Decuzzi, P. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. J. Control. Release, 2020, 319, 201-212.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.039] [PMID: 31899267]
[25]
Ahmad, N.; Ahmad, R.; Alrasheed, R.A.; Almatar, H.M.A.; Al-Ramadan, A.S.; Amir, M.; Sarafroz, M. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics, 2020, 12(3), 12.
[http://dx.doi.org/10.3390/pharmaceutics12030203] [PMID: 32120778]
[26]
Krishnaswamy, K.; Orsat, V. Chapter 2 - sustainable delivery systems through green nanotechnology. Nano- Microscale Drug Deliv. Syst; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 17-32.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00002-9]
[27]
Zhang, M.; Xu, C.; Liu, D.; Han, M.K.; Wang, L.; Merlin, D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J. Crohn’s Colitis, 2018, 12(2), 217-229.
[http://dx.doi.org/10.1093/ecco-jcc/jjx115] [PMID: 28961808]
[28]
Madhusudana Rao, K.; Krishna Rao, K.S.V.; Ramanjaneyulu, G.; Ha, C-S. Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int. J. Pharm., 2015, 478(2), 788-795.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.001] [PMID: 25528297]
[29]
Alshamsan, A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J., 2014, 22(3), 219-222.
[http://dx.doi.org/10.1016/j.jsps.2013.12.002] [PMID: 25061407]
[30]
Jung, K.H.; Lee, J.H.; Park, J.W.; Quach, C.H.T.; Moon, S-H.; Cho, Y.S.; Lee, K-H. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int. J. Pharm., 2015, 478(1), 251-257.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.049] [PMID: 25445992]
[31]
Ma, Y.; Zhao, X.; Li, J.; Shen, Q. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability. Int. J. Nanomedicine, 2012, 7, 559-570.
[http://dx.doi.org/10.2147/IJN.S27641] [PMID: 22346351]
[32]
Banerjee, C.; Maiti, S.; Mustafi, M.; Kuchlyan, J.; Banik, D.; Kundu, N.; Dhara, D.; Sarkar, N. Effect of encapsulation of curcumin in polymeric nanoparticles: how efficient to control ESIPT process? Langmuir, 2014, 30(36), 10834-10844.
[http://dx.doi.org/10.1021/la5023533] [PMID: 25148375]
[33]
Xie, X.; Tao, Q.; Zou, Y.; Zhang, F.; Guo, M.; Wang, Y.; Wang, H.; Zhou, Q.; Yu, S. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms. J. Agric. Food Chem., 2011, 59(17), 9280-9289.
[http://dx.doi.org/10.1021/jf202135j] [PMID: 21797282]
[34]
Luo, H.; Jiang, B.; Li, B.; Li, Z.; Jiang, B-H.; Chen, Y.C. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int. J. Nanomedicine, 2012, 7, 3951-3959.
[http://dx.doi.org/10.2147/IJN.S33670] [PMID: 22866004]
[35]
Dinesh Kumar, V.; Verma, P.R.P.; Singh, S.K. Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. Lebensm. Wiss. Technol., 2015, 61(2), 330-338.
[http://dx.doi.org/10.1016/j.lwt.2014.12.020]
[36]
Casiraghi, A.; Franzè, S.; Selmin, F.; Dazio, V.; Minghetti, P. Investigation of the effect of different emulsifiers on the transdermal delivery of egcg entrapped in a polymeric micelle system. Planta Med., 2017, 83(5), 405-411.
[PMID: 27286328]
[37]
Gaonkar, R.H.; Ganguly, S.; Dewanjee, S.; Sinha, S.; Gupta, A.; Ganguly, S.; Chattopadhyay, D.; Chatterjee Debnath, M. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci. Rep., 2017, 7(1), 530.
[http://dx.doi.org/10.1038/s41598-017-00696-6] [PMID: 28373669]
[38]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[39]
Joshi, H.; Hegde, A.R.; Shetty, P.K.; Gollavilli, H.; Managuli, R.S.; Kalthur, G.; Mutalik, S. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations. Photodermatol. Photoimmunol. Photomed., 2018, 34(1), 69-81.
[http://dx.doi.org/10.1111/phpp.12335] [PMID: 28767160]
[40]
Zillich, O.V.; Schweiggert-Weisz, U.; Hasenkopf, K.; Eisner, P.; Kerscher, M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int. J. Cosmet. Sci., 2013, 35(5), 491-501.
[http://dx.doi.org/10.1111/ics.12072] [PMID: 23763665]
[41]
Lambert, J.D.; Kim, D.H.; Zheng, R.; Yang, C.S. Transdermal delivery of (-)-epigallocatechin-3-gallate, a green tea polyphenol, in mice. J. Pharm. Pharmacol., 2006, 58(5), 599-604.
[http://dx.doi.org/10.1211/jpp.58.5.0004] [PMID: 16640828]
[42]
Uchechi, O.; Ogbonna, J.D.N.; Attama, A.A. Attama Nanoparticles for dermal and transdermal drug delivery. Appl. Nanotechnol. Drug Deliv., 2014.
[43]
Herman, A.; Herman, A.P. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J. Pharm. Pharmacol., 2015, 67(4), 473-485.
[http://dx.doi.org/10.1111/jphp.12334] [PMID: 25557808]
[44]
dal Belo, S.E.; Gaspar, L.R.; Maia Campos, P.M.B.G.; Marty, J-P. Skin penetration of epigallocatechin-3-gallate and quercetin from green tea and Ginkgo biloba extracts vehiculated in cosmetic formulations. Skin Pharmacol. Physiol., 2009, 22(6), 299-304.
[http://dx.doi.org/10.1159/000241299] [PMID: 19786823]
[45]
Batchelder, R.J.; Calder, R.J.; Thomas, C.P.; Heard, C.M. In vitro transdermal delivery of the major catechins and caffeine from extract of Camellia sinensis. Int. J. Pharm., 2004, 283(1-2), 45-51.
[http://dx.doi.org/10.1016/j.ijpharm.2004.06.007] [PMID: 15363500]
[46]
Jijie, R.; Barras, A.; Boukherroub, R.; Szunerits, S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(44), 8653-8675.
[http://dx.doi.org/10.1039/C7TB02529G] [PMID: 32264260]
[47]
Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E-S.; Lee, G-Y.; Kim, J-K. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2019, 49(5), 485-517.
[http://dx.doi.org/10.1007/s40005-018-00418-8]
[48]
Tomoda, K.; Makino, K. Nanoparticles for transdermal drug delivery system (TDDS). Colloid Interface Sci. Pharm. Res. Dev; Ohshima, H.; Makino, K., Eds.; Elsevier: Amsterdam, 2014, pp. 131-147.
[http://dx.doi.org/10.1016/B978-0-444-62614-1.00007-7]
[49]
Aljuffali, I.A.; Lin, Y.K.; Fang, J.Y. Noninvasive approach for enhancing small interfering RNA delivery percutaneously. Expert Opin. Drug Deliv., 2016, 13(2), 265-280.
[http://dx.doi.org/10.1517/17425247.2016.1121988] [PMID: 26592090]
[50]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[51]
Brown, M.B.; Traynor, M.J.; Martin, G.P.; Akomeah, F.K. Transdermal drug delivery systems: skin perturbation devices. Methods Mol. Biol., 2008, 437, 119-139.
[http://dx.doi.org/10.1007/978-1-59745-210-6_5] [PMID: 18369965]
[52]
Olivella, M.S.; Lhez, L.; Pappano, N.B.; Debattista, N.B. Effects of dimethylformamide and L-menthol permeation enhancers on transdermal delivery of quercetin. Pharm. Dev. Technol., 2007, 12(5), 481-484.
[http://dx.doi.org/10.1080/10837450701481207] [PMID: 17963148]
[53]
Abdelghany, S.; Tekko, I.A.; Vora, L.; Larrañeta, E.; Permana, A.D.; Donnelly, R.F. Nanosuspension-based dissolving microneedle arrays for intradermal delivery of curcumin. Pharmaceutics, 2019, 11(7), E308.
[http://dx.doi.org/10.3390/pharmaceutics11070308] [PMID: 31269648]
[54]
Fang, J.Y.; Hung, C.F.; Hwang, T.L.; Wong, W.W. Transdermal delivery of tea catechins by electrically assisted methods. Skin Pharmacol. Physiol., 2006, 19(1), 28-37.
[http://dx.doi.org/10.1159/000089141] [PMID: 16247247]
[55]
Abreu, V.G.C.; Correa, G.M.; Silva, T.M.; Fontoura, H.S.; Cara, D.C.; Piló-Veloso, D.; Alcântara, A.F.C. Anti-inflammatory effects in muscle injury by transdermal application of gel with Lychnophora pinaster aerial parts using phonophoresis in rats. BMC Complement. Altern. Med., 2013, 13(1), 270.
[http://dx.doi.org/10.1186/1472-6882-13-270] [PMID: 24138803]
[56]
Heenatigala Palliyage, G.; Singh, S.; Ashby, C.R., Jr; Tiwari, A.K.; Chauhan, H. Pharmaceutical topical delivery of poorly soluble polyphenols: potential role in prevention and treatment of melanoma. AAPS PharmSciTech, 2019, 20(6), 250.
[http://dx.doi.org/10.1208/s12249-019-1457-1] [PMID: 31297635]
[57]
Menaa, F.; Menaa, A.; Menaa, B. Polyphenols nano-formulations for topical delivery and skin tissue engineering. Polyphenols in Human Health and Disease; Academic Press, 2014, pp. 839-848.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00065-7]
[58]
Souto, E.B.; Sampaio, A.C.; Campos, J.R.; Martins-Gomes, C.; Aires, A.; Silva, A.M. Polyphenols for skin cancer: Chemical properties, structure-related mechanisms of action and new delivery systems. Studies in Natural Products Chemistry; Elsevier, 2019, 63, pp. 21-42.
[59]
Murthy, K.S.; Narayanappa, M.; Ram, H. Chemotherapeutic properties of naturally occurring stilbene polyphenol-resveratrol. Int. J. Sci. Res., 2015, 4(4), 1610-1617. [IJSR].
[60]
Turuvekere Vittala Murthy, N.; Agrahari, V.; Chauhan, H. Polyphenols against infectious diseases: Controlled release nano-formulations. Eur. J. Pharm. Biopharm., 2021, 161, 66-79.
[http://dx.doi.org/10.1016/j.ejpb.2021.02.003] [PMID: 33588032]
[61]
Kurakula, M.; Naveen, N.R. Electrospraying: A facile technology unfolding the chitosan based drug delivery and biomedical applications. Eur. Polym. J., 2021, 110326, 110326.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110326]
[62]
Costa, J.R.; Xavier, M.; Amado, I.R.; Gonçalves, C.; Castro, P.M.; Tonon, R.V.; Cabral, L.M.C.; Pastrana, L.; Pintado, M.E. Polymeric nanoparticles as oral delivery systems for a grape pomace extract towards the improvement of biological activities. Mater. Sci. Eng. C, 2021, 119, 111551.
[http://dx.doi.org/10.1016/j.msec.2020.111551] [PMID: 33321615]
[63]
Kurakula, M.; Rao, G.S.N.K.; Yadav, K.S. Fabrication and characterization of polycaprolactone-based green materials for drug delivery. Applications of Advanced Green Materials; Woodhead Publishing, 2021, pp. 395-423.
[http://dx.doi.org/10.1016/B978-0-12-820484-9.00016-7]
[64]
Kurakula, M.; Naveen, N.R.; Yadav, K.S. Formulations for polymer coatings. Polymer Coatings: Tech. Applica, 2020, 415-443.
[http://dx.doi.org/10.1002/9781119655145.ch19]
[65]
Lu, W.; Kelly, A.L.; Miao, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol., 2016, 2016(47), 1-9.
[http://dx.doi.org/10.1016/j.tifs.2015.10.015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy